資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.cmu.edu.tw/ir/handle/310903500/30344
|
題名: | Hb Ube-2 in a Taiwanese subject: An A -> G substitution at codon 68 of the alpha 2-globin gene |
作者: | Shin, MC;Chen, CM;Liu, SC;Huang, CH;Lee, TP;Chan, WL;Chang, JG |
貢獻者: | 附設醫院檢驗醫學部;China Med Coll Hosp, Dept Lab Med, Taichung, Taiwan;China Med Coll Hosp, Dept Med Res, Taichung, Taiwan;Changhua Christian Hosp, Dept Lab Med, Changhua, Taiwan |
日期: | 2002 |
上傳時間: | 2010-09-24 14:53:40 (UTC+8) |
出版者: | MARCEL DEKKER INC |
摘要: | Humic acid (HA) has been implicated as an etiological factor in the peripheral vasculopathy of blackfoot disease (131713). In this study, we examined the effects of HA upon the generation of nitric oxide (NO) during the process of lethal cell injury in cultured human umbilical vein endothelial cells (HUVECs). NO production was measured by the formation of nitrite (NO2-), the stable end-metabolite of NO. Cell death was assessed by measuring the release of intracellular lactate dehydrogenase (LDH). Treatment HUVECs with HA at a concentration of 50, 100, and 200 mug/ml concentration-dependently increased nitrite levels, reaching a peak at 12 h subsequent to HA treatment, with a maximal response of approximately 400 pmole nitrite (from I X 10(4) cells). HA-induced nitrite formation was blocked completely by N-G-nitro-L-arginine methyl ester (L-NAME) and also by No-methyl-L-arginine (L-NMA), both being specific inhibitors of NO synthase. The LDH released from endothelial cells was evoked at from 24 h after the addition of HA (50, 100, 200 mug/ml) in a concentration- and time-dependent manner. The HA-induced LDH release was also reduced by the presence of both L-NAME and L-NMA. The addition of Ca2+ chelator (BAPTA) inhibited both nitrite formation and LDH release by HA. Moreover, the antioxidants (superoxide dismutase, vitamin C, vitamin E) and protein kinase inhibitor (H7) effectively suppressed HA-induced nitrite formation. These results suggest that HA treatment of endothelial cells stimulates NO production, which can elicit cell injury via the stimulation of Ca2+-dependent NO synthase activity by increasing cytosolic Ca2+ levels. Because the destruction of endothelial cells has been implicated in triggering the onset of BFD, the induction of excessive levels of NO and consequent endothelial-cell injury may be important to the etiology of HA-induced vascular disorders associated with BFD for humans. (C) 2002 Elsevier Science Inc. |
關聯: | HEMOGLOBIN 26(1):99-101 |
顯示於類別: | [台中附設醫院] 期刊論文
|
在CMUR中所有的資料項目都受到原著作權保護.
|