English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 29490/55136 (53%)
造訪人次 : 1511419      線上人數 : 614
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CMUR管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.cmu.edu.tw/ir/handle/310903500/27604


    題名: 應用“獨立成份分析法”改善腦部MR影像組織分割績效之研究
    Improving Tissue Classification Effects of Brain MRI Segmentation Based on Independent Component Analysis
    作者: 李三剛;蔡志文;陳啟昌;陳享民(Hsian-Min Chen)*;王士偉;歐陽彥杰;楊晴雯;張建禕
    貢獻者: 中國附醫醫學研究部共同實驗室
    日期: 2009-06
    上傳時間: 2010-09-23 18:56:29 (UTC+8)
    摘要: 本論文旨在開發-套裝電腦輔助系統,應用於MR影像腦部組織分割,以期正確執行之腦部灰、白質體積衡量,而有助於腦部定量形態學之研究。在標準合成MR影像的實驗結果發現,使用隸屬於多頻譜影像分析技術之獨立成份分析(Independent Component Analysis, ICA)方法搭配「支援向量器(Support Vector Machine, SVM)」之演算法,能有效分割MR影像腦部組織,再配合「分水嶺演算法(Watershed Algorithm)」去除非腦組織後,在背景雜訊為0%和3%等兩種MR影像中,其灰/白質分割效果量化指標(Tanimoto Index)分別為0.82/0.89和0.73/0.80,結果優於過去文獻其他技術的報告。
    In this paper we develop a computer-aided brain tissues classification system for MR images and hence make possible for more accurate volume measurement on gray/white matter, and cerebrospinal fluid. A correct classification of brain tissues is an important step in quantitative morphological study of brain. From the synthetic brain MR images experiment, it shows that using multispectral image processing technique, independent component analysis (ICA), and coupling with support vector machine (SVM) method can effectively classify brain tissues for brain MR images. In addition, we also demonstrated that the best performance can be achieved by using watershed algorithm as a pre-processing method for striping non-brain tissues. The Tanimoto index of GM/WM in synthetic MR images with noise level 0% and 3% are 0.82/0.89 and 0.73/0.80, separately which shows better performance than those what we have seen in the literatures.
    關聯: 中華放射線醫學雜誌 34(2):93-101
    顯示於類別:[台中附設醫院] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML212檢視/開啟


    在CMUR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

     


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋