

中國醫藥大學

生

物科

技系碩

士班

碩

士學

位論文

翰斯勒巴

東體分離株感染內皮

細胞致病機轉之研究

陳雅

柔

中華民

國九十八年七月

中 國 醫 藥 大 學 生物科技系碩士班 碩士學位論文

翰斯勒巴東體分離株感染內皮細胞 致病機轉之研究

The study of cellular responses between different Bartonella henselae strains

指導教授:徐媛曼副教授

研究生: 陳雅柔

中華民國九十八年七月

翰斯勒巴東體 (Bartonella henselae) 是革蘭氏陰性菌,會造成人畜共通傳 染病。貓為保菌者 (reservoir),為引起貓抓熱 (cat-scratch disease) 的病原 菌,對免疫不全症候群的病人會造成桿菌性血管瘤。我們將 4 株 B. henselae 感染細胞後進行比較,發現此菌經由抑制粒線體內在凋亡路徑, 進而促使細胞增生;且不同分離株間促進細胞增生及抑制凋亡的能力不 盡相同, Houston-1 (Hous) 分離株的能力最強,其次為 JK40 與 U-4,最 弱為 JK47。於刺激 ROS 產生的實驗中,只有 JK47 的能力較差,而 Hous 具有最強的細胞侵入能力。發炎反應及細胞黏附能力部分, genotype I 的 Hous 及 JK47 較 genotype II 的 U-4 及 JK40 強。在細胞反應的所有實驗中, Hous 分離株均具有最強的能力,並於蛋白質體分析中,發現 small heat shock protein · acetyl-CoA carboxylase carboxyltransferase subunit alpha · phage related protein 及 superoxide dismutase [Cu-Zn] precursor 等蛋白質, 在感染後於不同分離株之RNA表現量與各分離株刺激細胞反應強度具有 一致性。此項研究為首次以系統性的方式比較 B. henselae 分離株所引起 的細胞反應與蛋白質圖譜,我們同時發現與 B. henselae 感染細胞後所引 起的細胞反應的相關蛋白質,其極可能是造成致病性的重要因子。

Abstract

Bartonella henselae is an agent capable of causing a wide variety of disease syndromes and is an emerging pathogen that causes potentially fetal opportunistic infection in patients with acquired immunodeficiency syndrome. The most common *B. henselae*-associated diseases are cat-scratch disease and bacillary angiomatosis. In this study, the interaction between B. henselae strains and endothelial cells was studied and the candidates in response to the pathogenesis were also determined. We identified that B. henselae infection inhibited the mitochondria intrinsic pathway and the strain stimulated more cell proliferation would suppress more intrinsic apoptotic pathway. Houston-1 (Hous) strain possessed the strongest ability in stimulating cell proliferation and inhibiting infection-induced apoptosis. Further more, Hous, U-4 and JK40 induced more ROS production than JK47 did. In bacterial adhesion abilities, genotype II (U-4 and JK40 strains) showed better adhesion abilities than genotype I (Hous and JK47). However, the invasion ability of Hous was the best among all the strains. Hous and JK47 (genotype I) could also induce more IL-8 (proinflammatory factor) production than U-4 and JK40 (genotype II) did. In proteomic analysis, two-dimensional gel electrophoresis and real-time PCR analysis were used to identify virulence factors in B. henselae. The mRNA levels of small heat shock protein, succinyl-CoA synthetase subunit beta, phage related protein and superoxide dismutase [Cu-Zn] precursor were increased in B. henselae after infection. These proteins might play important roles in pathogenesis of B. henselae.

誌謝

在學期間誠摯感謝恩師 徐媛曼博士對學生畢業的細心指導、生活上 的照顧與做人處世上的教誨。論文初稿完成後,感謝 賴志河博士與 張 照勤博士撥冗審閱,並於口試時給予學生指正教導及提供寶貴建議,使 學生論文更加完備。

感謝千香學姐在實驗及生活上各項的幫助,以及實驗室的學弟妹們, 耀仁、淳介、志賢、鈺霖、郁恆、宛伶、學文和佩珊,感謝大家平常在 實驗室的陪伴,無論是快樂或悲傷,感謝你們在這兩年的研究生歲月中 對我的關心及帶給我的歡樂回憶。

感謝中國醫藥大學生物科技系碩士班同學佳妮、雪婷、力慧、佳真、 宜靜、宜君、家珺、長霖、俊賢、聖峯、振邦及建宇,陪我分享碩士班 生涯,除了給予我課業上的幫助之外,也給了我美好的回憶。

最後要感謝我的家人這兩年來默默地支持,我的父親、母親及弟弟, 感謝他們的付出以及關心,使我能順利地完成這兩年的碩士學業。

目錄

中文摘要
英文摘要
誌謝3
目錄4
圖目錄
表目錄
第一章 前言
第一節 研究緣起9
第二節 文獻回顧10
第二章 研究材料與方法17
第一節 研究材料
第二節 研究方法
第三章 研究結果
第一節 細胞反應研究
第二節 蛋白質體研究
第三節 基因定序及比對
第四章 討論
第五章 結論與建議

一節 結論	第
二節 建議	第
文獻	參考
	附錄
錄一、各分離株中4個可能毒力因子之基因庫序號48	附
錄二、各分離株中4個可能毒力因子之核酸及胺基酸序列比對…49	附
錄三、實驗數據總表	附

圖一 Bartonella spp.在哺乳類宿主的生命週期
圖二 B. henselae 之 TFSS56
圖三 不同 B. henselae 分離株促進 HMEC-1 細胞增生能力之比較57
圖四 HMEC-1 細胞以顯微鏡觀察之生長情況
圖五 比較不同 B. henselae 分離株間調控凋亡相關蛋白質表現量59
圖六 B. henselae 調控之粒線體內在凋亡路徑60
圖七 不同 B. henselae 分離株抑制細胞凋亡能力之比較61
圖八 HMEC-1 細胞經 actinomycin D 刺激凋亡後顯微鏡下之生長情況·62
圖九 不同 B. henselae 分離株之貼附能力比較
圖十 不同 B. henselae 分離株之侵入能力比較
圖十一 不同 B. henselae 分離株細胞貼附能力之比較
圖十二 不同 B. henselae 分離株細胞侵入能力之比較
圖十三 不同 B. henselae 分離株侵入指數之比較
圖十四 不同 B. henselae 分離株刺激細胞產生 IL-8 值之比較
圖十五 不同 B. henselae 分離株刺激細胞之 SOD 活性比較67
圖十六 Hous 及 U-4 分離株間二維電泳分析
圖十七 JK47 及 JK40 分離株間二維電泳分析
圖十八 4 個分離株中不同基因之 RNA 表現量比較

圖十九	4個分離株	於感染細胞	後不同基	因之RNA	表現量比較	71
圖二十	B. henselae	之致病機轉	相關蛋白	質的功能	•••••	74

表目錄

表一	即時聚合酶連鎖反應之引子序列
表二	聚合酶連鎖反應之引子
表三	Hous 及 U-4 經二維電泳分析所得之差異點
表四	JK47 及 JK40 經二維電泳分析所得之差異點
表五	4 個分離株中 5 個表現差異點之蛋白質量與 RNA 表現量比較78
表六	4株分離株間特異蛋白質之核酸及胺基酸序列分析結果

第一章 前言

第一節 研究緣起

Bartonella henselae屬於革蘭氏陰性菌,可感染人類及貓,而貓為主要 的保菌者並經由貓蚤傳播[1]。其所造成的疾病,在具有免疫力 (immunocompetent)的人會造成貓抓熱[2]及心內膜炎 (endocarditis) [3]。而 在免疫不全(immunocompromised)的人則會造成血管瘤桿菌病 (bacillary angiomatosis; BA)、bacillary peliosis (BP)及菌血症 (bacteraemia) [4, 5], 孩童尤其容易被感染而造成貓抓熱[6]。BA是由血管內皮細胞新生所造成 [7],近年來在體外研究發現, B. henselae感染內皮細胞的致病特性為促使 血管內皮細胞增生[8],其途徑是經由活化NF-κB(nuclear factor kappa-light-chain-enhancer of activated B cells)促使interlukin 8 (IL-8)分 泌,因而促進E-selectin等細胞黏著因子 (adhesion molecule) 表現,加強 淋巴球穿入血管內皮細胞[9,10]。也有研究發現, B. henselae經由抑制凋 亡作用而造成血管內皮細胞增生[11, 12],但至今其抑制凋亡機轉仍不清 楚。因此我們將藉由研究B. henselae感染血管內皮細胞後所引起的細胞反 應,進一步釐清B. henselae之致病機轉,並期待能確認細菌中致病之蛋白 質。

2-1 B. henselae之命名

1990 年從 human immunodeficiency virus (HIV) 病人身上分離出來, 經由分析其細胞膜脂肪酸組成發現與 Rochalimaea quintana (即為 Bartonella quintana)類似,但其 genomic DNA 經 EcoRV 作用後產生的圖 譜和 R. quintana 不盡相同[13],而經由 16S rRNA 分析確認其為新種,故 命名為 Rochalimaea henselae[14]。於 1993 年,經由更進一步的 16S rRNA 序列分析,顯示 Bartonella bacilliformis 與包括 Rochalimaea henselae 的四 種分離株相似度更高,故將 R. henselae 改為 B. henselae[15]。

2-2 B. henselae 之染色體序列

B. henselae 的完整序列於 2003 年由 Alsmark 等人定序完成[16], GenBank 編號為 BX897699, NCBI RefSeq 編號為 NC_005956。其染色體 共有 1,931,047 base pair (bp), 共有 1,491 個基因。在 *B. henselae* 染色體中, 有特殊的高重複性序列 (high fraction of repeated genes) 或部分重複序列 (partially repeated genes)。並於序列分析中發現了 128 個 pseudogenes。*B. henselae* 的基因功能可分為,表面蛋白 (surface proteins)、第四型輸出蛋 白系統(type IV secretion system; TFSS)、質體及 phage genes。 2-3 B. henselae ∠ genotype

於 1996 年,經由 restriction fragment length polymorphism (RFLP) 分析 16S-23S rRNA gene spacer region,將 *B. henselae* 分成 genotype I及 II。 genotype I及 II 之序列有三個 bp 不同[17]。2002 年的研究發現,genotype I 轉錄 35-kDa protein及 Pap31 protein 的基因序列,與 genotype II 不完全 相同,35-kDa protein 有 8 個 bp 在 genotypes 間不同,而 Pap31 protein 則 有 18 個 bp 的不同。2004 年的研究指出,genotype I 帶有的 virB4 基因的 序列與 genotype II 的也不盡相同[18]。2003 年的研究指出,感染 genotype I 的貓,再以 genotype II 的細菌攻毒 (challenge),會有 cross-protection 的 作用[19];然而,感染 genotype II 的貓,再以 genotype I 的細菌攻毒,則 不會有 cross-protection 的作用[20]。因此,genotype 雖然以 16S-23S rRNA gene spacer region 中的 3 個 bp 分型,但在血清學上或染色體中其他基因 序列或表現上亦有所不同。

荷蘭研究團隊指出,貓抓熱病人的淋巴結中,以分離到 genotype I 為 主,故推斷 genotype I 致病力較 genotype II 強[17]。但於另一項德國的研 究卻呈現相反的結果,分離的細菌以 genotype II 為主[21]。故經由上述研 究結果可推論,genotypes 的分佈可能與地域性有關[22]。於 2002 年的研 究發現,不同部位的病灶分離之細菌基因型會有所不同。於肝臟及脾臟 易分離出 genotype I,而於皮膚及淋巴結易分離出 genotye II [23],另外也 有研究指出,人類的貓抓熱病例通常易分離出 genotype I,而在貓身上卻較易分離出 genotype II [24]。在上述的研究中可發現,genotype I之菌株可能對 B. henselae 所造成的疾病,扮演較重要的角色。但 genotype 間之 差異,對 B. henselae 所造成的確定影響至今仍未有定論。

2-4 B. henselae之生物學特性

B. henselae 為革蘭氏陰性菌,缺乏 oxidase 故為厭氧細菌[25]。培養於 巧克力培養基,初代培養需要經過 5-15 天,繼代之後長出菌落則需要 4 天[13]。保菌者為貓,並存在紅血球中[26],經由貓蚤傳播[1],於人類造 成貓抓熱[2]、BA 及 BP 等病症[4,5]。

2-5 B. henselae 感染症之研究

2-5-1 臨床症狀及組織病理病變

Bartonella所造成的疾病,在具有免疫力的人會引起貓抓熱[2],其症 狀為發燒、頭痛與顫抖,症狀可能持續7-14天[27,28],並會引起心內膜 炎,患者會發燒與產生皮膚紅疹[3]。在免疫不全的人則會造成血管瘤桿 菌病BA和BP,其症狀為在肝及脾臟會出現血管增生進而形成血管瘤[4, 5]。在免疫不全的病人身上也容易併發其他病症造成病患死亡,例如: peliosis hepatis [4]。就組織病變上來看,BA 病變有三個特色,(1)小血管 的增生伴隨著多層的增大的內皮細胞一上皮樣血管瘤 (epithelioid hemangioma); (2)混和著發炎細胞包括嗜中性球及淋巴球包圍在未潰瘍區的血管或較深的已潰瘍區的血管外,此現象稱為化膿性肉芽腫 (pyogenic granuloma); (3)可用 Warthin-Starry staining 看到群聚的 Bartonella 桿菌。

2-5-2 感染及傳播途徑

保菌者為貓,並存在紅血球中[26]。細菌感染的動物,經由節肢動物 傳播[29],再因貓抓使帶有細菌之排泄物經傷口而感染人類[1,30]。從 Bartonella spp.感染老鼠的動物實驗可發現,細菌經吸血的節肢動物 (arthropod),特別是貓蚤 (Ctenocephalides felis),在宿主血管內皮細胞上 群聚,經過5天即可進入血流中並結合於紅血球上,進一步入侵紅血球並 大量增殖(圖一)[30,31]。

2-5-3 B. henselae之流行病學調查

B. henselae的感染在世界各地都曾經被報導過[32],在亞洲國家,日 本的血清流行率 (seroprevalence) 為9.1-15.1%,菲律賓為68%,新加坡為 48%,而印度為54% [33]。1998年,臺灣出現第1個貓抓熱病例[34]。2006 年臺灣的研究指出,獸醫相關職業的人 (veterinary-associated individuals) 在295人中有血清陽性反應 (seropositive) 的比例為1.7% [33],獸醫相關 職業的人屬於感染的高危險群,但比例僅1.7%,低於日本的15% [35]。此 研究中亦指出,在台灣有50%感染B. henselae的貓,屬於genotype I及 genotype II的交叉感染,這個比例較世界其他國家高,如泰國的9% [36]。 雖然臺灣獸醫相關職業的人其血清流行率並不高,但因一般人日常生活 中可能常會接觸這些動物,包括貓、狗等,故還是必須小心被感染。

2-6 B. henselae 之致病性因子 (Virulence factors)

近代經由分子生物學的研究,已於 B. henselae 中發現數個重要的致病 性因子[37, 38]。BadA (Bartonella adhesin A) / Vomp (variably expressed outer-membrane proteins) 為非纖毛性的黏著因子 (non-fimbrial adhesion),使細菌本身自我聚集 (autoaggregation),並使細菌可黏附於細 胞外基質 (extracellular matrix protein),進一步造成旁分泌型前血管增生 反應 (paracrine pro-angiogenic response) [39, 40]。在動植物及人的病源菌 中均存在第四型輸出蛋白的系統 (TFSS),此系統與纖毛組成的通過內膜 及外膜的蛋白通道極為類似。TFSS 可以運送大的分子如 DNA 及蛋白質 等,而研究較多的 TFSS 是 Agrobacterium tumefaciens 的系統 [41]。在 B. henselae 亦有 TFSS 的表現-VirB/VirD4, 並與 A. tumefaciens 之輸出蛋 白系統類似[42],可將 BepA-BepG (Bartonella-translocated effector protein) 藉由此系統運送入細胞內。BepA-BepG 進入內皮細胞後,改變內皮細胞 的表現,包括刺激細胞增生、抑制細胞凋亡及使發炎因子表現 (pro-inflammatory activation) (圖二) [30, 43]。這些都是造成血管瘤

(vascular tumour formation)的原因[44]。

2-7 B. henselae 感染之分子機轉

B. henselae會感染紅血球,細菌在宿主血管內皮細胞上群聚,經過一 段時間後進入血流中並結合於紅血球上,進一步入侵紅血球並大量增 殖,而造成菌血症[30]。B. henselae亦會群聚在巨噬細胞上,刺激其分泌 hypoxia-inducible factor 1 (HIF-1) [45], 促使血管生成因子 (vascular endothelial growth factor; VEGF) 表現,進而啟動血管新生的機制造成內 皮細胞的增生[8,46]。B. henselae群聚於細胞表面形成菌落,透過侵入體 (invasome)之構造感染進入血管內皮細胞[47],此步驟被認為是造成血管 增生的重要步驟[48]。在內皮細胞, B. henselae經由活化NF-κB而使細胞 黏著分子 (adhesion molecule) E-selectin及ICAM-1 (intercellular adhesion molecule-1)表現;此外活化NF-кB亦可使IL-8的表現量增加,受感染的 內皮細胞,會產生自泌性(autocrine)的IL-8 [49],分泌IL-8可使淋巴球穿入 血管內皮細胞,進而引發免疫反應[50]。在human umbilical vein endothelial cells (HUVEC) 的細胞實驗,經由測試caspase 3 / 7 的活性,發現 B. henselae 感染後caspase 3 / 7 的活性降低,故可使細胞凋亡現象被抑制 [10, 11]。2005年的研究指出, B. henselae 可抑制Mono Mac 6細胞的周 亡, 並藉由促進cellular inhibitor of apoptosis proteins-1 (cIAP-1) 及-2

- 15 -

(cIAP-2)。在正常情況下的細胞, cIAP可抑制細胞凋亡路徑,並於2001年 有研究指出, cIAP-1及cIAP-2的表現可抑制caspase 3 和9 [51]。B. henselae 感染後可促使cIAP-1及cIAP-2的表現,故caspase 3 和9的表現會降低,達 成抑制細胞凋亡的目的。這可部分解釋B. henselae在體內促進血管增生的 原因,但其詳細訊息傳遞路徑仍不清楚[10,30]。故我們實驗的目的就是 要釐清,4株不同之B. henselae感染內皮細胞後,其確定引發之訊息傳遞 路徑及與caspase 3 和9的直接關係和表現差異,進一步探討caspase 3 和9 與其上下游的蛋白質,如:Bad、Bcl-xL及cytochrome c等的關連。

第一節 研究材料

1-1 菌株

B. henselae Houston-1 (Hous) (ATCC 49882; 由Regnery等人於1990年 在美國休士頓的AIDS病人分離)、JK40與JK47 (由UC San Francisco的Dr. Jane E. Koehler在美國AIDS病人分離)及U-4 (由Dr. Bruno B. Chomel在美 國的流浪貓分離)。Hous和JK47為genotype I菌株,而JK40與U-4為genotype II菌株,上述菌由中興大學張照勤教授提供。將細菌培養在巧克力培養基 (TPM,Taiwan)上,並於37℃培養箱中厭氧培養約4到5天,即可看見菌 落產生。細菌保存方法為,刮取固態培養基上之B. henselae,將其懸浮於 isolation buffer (50% M200培養液,1% glutamin,1% sodium pyruvate,20% fetal bovine serum,3% sodium bicarbonate,10% dimethyl sulfoxide),先於 -20℃放置30分鐘後,再存放於-80℃。

1-2 細胞株

本次實驗將採用人類的微血管內皮細胞(human microvascular endothelial cell line; HMEC-1) (the Centers for Disease Control and Prevention, USA),使用 M200 培養液 (Cascade Biologic, USA),於 37℃ 5% CO₂ 的條件下生長。細胞保存方法為,將細胞以 0.05% trypsin (Biological Industries, Israel) 從培養皿上分離下後,以離心方式除去 trypsin,並使細胞懸浮於中含有 10% DMSO (dimethyl sulfoxide) (Sigma-aldrich, USA) 的 M200 培養液的冷凍管,並將冷凍管置於 4℃ 30 分鐘後,再置於-20℃ 30 分鐘,而後將冷凍管移至-80℃隔夜保存,次日 再將冷凍管移至液態氮中保存。

第二節 研究方法

2-1 細胞反應實驗

2-1-1 B. henselae 細菌感染實驗

將HMEC-1細胞以含5% PSA (penicillin, streptomycin, amphotericin) 之M200培養液培養在96孔培養盤內,每個培養孔內培養10⁴ 個細胞,隔 天換成不含抗生素的M200培養液,以multiplicity of infection (MOI) 50及 100 的比例分別感染0.5×10⁶及10⁶的菌數,並在72小時後以 phosphate-buffered saline (PBS) 清洗2次,再加入0.05% trypsin使細胞從培 養皿上分離,並吸取懸浮液至1.5ml微量離心管中,以待細胞計數。於抑 制細胞凋亡實驗中,細胞感染後24小時加入250nM的actinomycin D (Sigma-aldrich, USA),以人工方式刺激細胞凋亡,而後於24、48、及72 小時收取細胞,並以相同方式收集與計數細胞。 2-1-2 細胞之觀察與計數

本實驗將利用倒立式顯微鏡觀察細胞生長情形,並利用typan blue染 劑 (Biological Industries, Israel) 以10:1之比例與細胞混合均勻後,注入 細胞計數器上以倒立式顯微鏡觀察之,可以初步的鑑別細胞的完整性, 並且計數細胞數量。

2-1-3 細菌貼附能力實驗

用 96 孔培養盤以 MOI50 及 MOI100 的 B. henselae 分別感染 1×10⁴ 個 HMEC-1 細胞,每組實驗為 3 重複。72 小時後以 PBS 清洗雨次,再加入 0.05% trypsin 反應 3 分鐘使細胞懸浮,取部分懸浮液分別稀釋成 2×10⁻³ 及 2×10⁴倍,並均勻塗抹在巧克力培養基上,於 37°C 培養箱中厭氧培養 5 到 7 天至菌落長出,計算菌落數目。由於該數目中同時計算了貼附在細 胞表面與侵入細胞的菌數,因此必須將菌數減去侵入菌數,進而推算出 細菌貼附能力。表示方式為貼附比例 (adherence rate),即為細菌貼附數 目除以 HMEC-1 細胞數目後,所得之數值為 1 個細胞所貼附的細菌數量。 2-1-4 細菌侵入能力實驗

用 96 孔培養盤以 MOI50 及 MOI100 的 *B. henselae* 分別感染 1×10⁴ 個 HMEC-1 細胞,每組實驗為 3 重複。72 小時後,移除上清液後,加入 100µl/ml gentamicin (GIBCO, USA) 反應 2 小時,2 小時後,以 PBS 清 洗 2 次,再加入 0.05% trypsin 反應 3 分鐘使細胞懸浮,取部分懸浮液分

別稀釋成 2x10⁻² 及 2x10⁻¹ 倍,並均匀塗抹在巧克力培養基上,於 37℃培 養箱中厭氧培養 5 到 7 天至菌落長出,進而推算出細菌侵入能力。表示 方式為侵入比例 (invasion rate),即為細菌侵入數目除以 HMEC-1 細胞數 目,所得之數值為1個細胞中侵入的細菌數量。我們以侵入係數 (invasion index) 評估細菌侵入與貼附的比例,其計算方式為侵入比例除以貼附比 例之百分比。

2-2 細胞激素及抗氧化能力之测定

2-2-1酵素結合免疫吸附分析法(enzyme-linked immunosorbent assay; ELISA)

用6孔培養盤以MOI500的B. henselae感染1×10°個HMEC-1細胞,6小時後,收集上清液於1.5ml微量離心管。使用human IL-8/NAP-1 module set (Bender MedSystems Inc., USA)。首先配置coating solution,將coating antibody加入PBS,使其濃度為5µg/ml,將coating solution以每孔100µl的體積加入96孔盤,而後放置4°C隔夜。次日將96孔盤取出,用wash buffer (0.05% Tween 20於PBS) 清洗1次之後進行blocking的步驟,每孔加入 250µl的assay buffer (0.05% BSA,0.05% Tween 20於PBS) 於室溫搖晃2小時。而後製備標準品,將3µl之IL-8標準品 (200ng/ml) 加入297µl assay buffer使其濃度為2000pg/ml,然後進行序列稀釋使標準品濃度分別為: 1000 pg/ml、500 pg/ml、250 pg/ml、125 pg/ml、63 pg/ml、32 pg/ml和16

pg/ml。Blocking後先將96孔盤以wash buffer清洗2次,再依序加入不同濃 度之標準品,然後加50µl sample diluent,而後將50µl之樣本注入與sample diluent混合。標準品及樣本皆注入完成後,即可於每孔加入50µl之 biotin-conjugate (以assay buffer稀釋1000倍)後於室溫搖晃反應2小時。反 應後以wash buffer清洗3次,每孔加入100µl之streptavidin-HRP (以assay buffer稀釋1000倍)後於室溫搖晃反應1小時,作用後以wash buffer清洗3 次,每孔加入100µl tetramethylbenzidine (TMB) substrate solution 後置於室 溫避光約5分鐘直至樣本呈色,而後立即加入100µl 4N硫酸並於OD₄₅₀下偵 測讀值,每一反應重複3次並取平均值做計算,利用標準品算出濃度對應 公式,樣本讀值經該公式計算後可得IL-8濃度。 2-2-2 抗氧化酵素Superoxide dismutase (SOD) 之測定

用 6 孔培養盤以 MOI500 的 *B. henselae* 感染 1×10^{6} 個 HMEC-1 細胞, 6 小時後,收集上清液於 1.5ml 微量離心管。使用 SOD assay kit (Fluka, Switzerland) 檢測 superoxide dismutase (SOD) 酵素的活性。SOD 可使超 氧化物(O_{2})轉變成過氧化物($H_{2}O_{2}$)及氧(O_{2}),而 kit 中的 water-soluble tetrazolium salt (WST solution)經超氧化物還原後會產生 water-soluble formazan dye,並可於 OD₄₅₀ 偵測。故吸光值愈低表示超氧化物產生較少, 而其 SOD 活性相對較高。首先將 20µl 樣本加入樣本孔及 blank 2,並於 blank 1 及 3 各加入 20µl DDW (double distilled water)。每孔加入 200µl WST working solution (1ml WST solution 於 19ml buffer solution)。於 blank 2及3加入20µl dilution buffer,樣本孔及 blank 1加入20µl enzyme working solution (15µl enzyme solution 於 2.5ml dilution buffer)。置於 37°C 反應 20 分鐘,以 ELISA reader 在 OD₄₅₀下進行測定,每一反應重複 3 次並取平 均值做計算,利用 blank 讀值套入對應公式如下:

SOD activity (%) = {[(A_{blank1} - A_{blank3})-(A_{sample} - A_{blank2})] / (A_{blank1} - A_{blank3})} × 100 A : Absorbance

blank 1 中包括 DDW, WST working solution 及 enzyme working solution。 blank 2 中包括 sample solution, WST working solution 及 dilution buffer。 blank 3 中包括 DDW, WST working solution 及 dilution buffer。 經公式計算後可得 SOD 酵素活性,以 SOD activity (%)表示之。

2-3 凋亡相關蛋白質表現量

2-3-1細胞之總蛋白質抽取

細胞以PBS (pH7.4)清洗2次後,加入200µl lysis buffer (0.5M Tris-HCl, pH7.4,10% SDS,0.5M DTT)使之與細胞反應5分鐘,將此細 胞溶液抽取至1.5ml微量離心管中,以95℃加熱5分鐘,立刻置於冰上冷 卻,並儲存於-20℃。

2-3-2 蛋白質之定量分析

採用bovine serum albumin (BSA) 製作蛋白質之標準品檢量線,並以

Bradford當染劑反應5分鐘,以分光光度計在OD₅₉₀下進行蛋白質測定。 2-3-3 西方墨點轉漬法分析 (Western blot assay)

首先進行sodium dodecyl sulfate (SDS) 電泳分析。將預先鑄好的10% sodium dodecyl sulphate - polyacrylamide gel (SDS-PAGE) 從冰箱中取出 後進行電泳,先在於電泳槽入running buffer (0.3% Tris, 1.44% Glycine, 0.1% SDS),注入定量過之經上述方式純化之細胞蛋白質樣品後(30µg), 固定120伏特 2小時進行電泳,分析後利用半乾式轉漬 (Hofer TE 22, Amersham Biosciences, UK)將膠上之蛋白質轉漬(transfer)至PVDF膜 (polyvinylidene fluoride) (Hybond-P, Amersham Biosciences, UK) 上, 並 將transfer buffer (0.242% Tris, 1.44% glycine, 15% methanol) 注入轉漬 器,條件為100伏特2小時。轉漬後之濾紙浸於2.5% gelatin,室溫搖晃1小 時後,將以Tris-buffered saline (TBS)稀釋1000倍之一級抗體 (β-actin [Chemicon, USA], cytochrome c, caspase-3, caspase-9 [BioLegend, USA], Bcl-xL [Santa Cruz, USA]或Bad [Cell Signaling, USA])加入轉漬後之 PVDF 膜, 並置於4℃隔夜。次日以TBST (TBS, 5% Tween 20) 於室溫搖 晃清洗3次,每次皆為10分鐘,再以TBS稀釋10000 倍之二級抗體 (anti-mouse IgG與anti-rabbit IgG [Amersham Biosciences, UK]) 加入 PVDF膜,並於室溫下作用1小時,作用後以TBST搖晃清洗3次,每次皆 為10分鐘;處理後將PVDF膜加入Immobilon (Millipore, USA)以反應出

冷光,使用冷光照相系統 (FUJIFILM LAS-3000) 拍照並分析影像。

2-4 二維電泳 (Two dimension-gel electrophoresis; 2-DE)

2-4-1 樣本製備

將培養4天的1×10⁹菌量收集後,加入550µl lysis buffer (7 M urea, 2 M thiourea, 4 % CHAPS, 0.1% protease inhibitor [Amersham Biosciences, UK]),然後以13000rpm離心30分鐘取上清液,即為蛋白質。並以2-D Quant Kit (Amersham Biosciences, UK) 測量蛋白質濃度後,置於-80 °C 保存。

2-4-2 二維電泳系統分析

使用 2-D Clean-Up Kit (Amersham Biosciences, UK) 純化由上述方法 備製之 600 µg 蛋白質,然後重新懸浮在 350 µl 的 rehydration buffer (7 M urea, 2 M thiourea, 4 % CHAPS, 20 mM DTT, 1 % IPG buffer, 0.002 % bromophenol blue)。第一維膠體電泳使用 18 公分且 pH 值為 3-10 之 IPG strips (Amersham Biosciences, UK),使用 Ettan IPGPhor II (Amersham Biosciences, UK),先以 30V rehydration 16 小時,並於以下的 program 進行 IEF (isoelectric focusing):電壓 500V,時間 1 小時;電壓 1000V, 時間 1 小時;電壓 8000V,時間 8 小時。經 IEF 後將 strip 放入平衡緩衝 溶液 (6 M urea, 2 % SDS, 50 mM Tris-Cl pH 8.8,含有 1 % DTT 之 20 % glycerol) 使其作用 15 分鐘,其後再轉移到含有 2.5 % iodoacetamide 之 平衡緩衝溶液,同樣作用 15 分鐘。第二維膠體電泳使用 12 % SDS-PAGE gel,將 IPG (immobilized pH gradient, Amersham Biosciences, UK) strip 放入膠體後使用 PROTEAN II xi cell tank (Bio-Rad, USA) 以 35 mA 進行 電泳。完成第二維膠體電泳後以 coomassie brilliant blue R250 染色,使用 Powerlook 1120 (UMAX, USA) 照膠系統,影像分析系統則使用 ImageMasterTM 2D Platinum version 5.0 (Amersham Biosciences, UK)。將 有差異的蛋白質點取下後,進行 matrix-assisted laser desorption ionization (MALDI) - time of flight (TOF) -TOF 分析,所得之序列使用 MASCOT 資 料庫分析。

2-5 RNA表現量之測定

2-5-1 細菌之total RNA抽取

首先將lysozyme (GeneMark, USA) 溶於TE buffer (10mM Tris-Hcl pH 7.5, 1mM EDTA pH8)使其濃度為4mg/ml。刮取2盤 (生長4天) *B. henselae* (約2×10⁸個菌) 至500µl lysozyme solution,並置於室溫反應30分鐘。加入 1ml Trisolution (GeneMark, USA)後於4°C以12000×g離心10分鐘,將上清 液抽取到新的1.5ml微量離心管,加入200µl chloroform搖晃15秒,並置於 室溫3分鐘,然後於4°C以12000×g離心15分鐘,將上清液抽取到新的1.5ml

微量離心管,加入500µl isopropenol (Scharlau, Spain),並置於室溫10分 鐘,然後於4°C以12000×g離心10分鐘,移除上清液後加入1ml 70% ethanol,再於4°C以12000×g離心5分鐘,移除ethanol後風乾10分鐘,加入 30µl diethylpyrocarbonate (DEPC) water,以65°C乾浴20分鐘,抽取之RNA 存放於-20°C。而感染後細菌的RNA收集方法為,用6孔培養盤以MOI50 的*B. henselae*感染1×10⁶個HMEC-1細胞,分別於24、48和72小時收取 RNA。使用分光光度計在OD₂₆₀下測定,RNA濃度可經由下列公式而得:

RNA濃度(ng/µl)=OD₂₆₀× 稀釋倍數 ×40 (ng/µl)

2-5-2 即時聚合酶連鎖反應 (Real-time polymerase chain reaction ; RT-PCR)

使用 two-step RT-PCR 的方式。使用 high capacity cDNA reverse transcription kit (Applied Biosystems, USA),將 random primers 加入 RNA 樣本使總體積為 20µl,並置於 37°C 2 小時反應。加入 2X SYBR Green PCR master mix (Applied Biosystems, USA)、forward (F)和 reverse (R)引子後進 行定量 PCR。定量 PCR 的設定條件為:

所有的步驟皆使用 Applied Biosystems 7300 real-time PCR system,並使用 Comparative C_T method 分析。實驗使用之 internal control 為 *B. henselae* 16S rRNA,而所有引子序列如表一。

2-6 基因序列之比較

2-6-1 Genomic DNA 之抽取

使用 DNA clean / extraction Kit (GeneMark, Taiwan) 抽取 genomic DNA。刮取1盤 B. henselae (約1×10⁸個菌) 至1.5ml 微量離心管,加入 200µl extraction solution 回溶, 再加入 20µl 的 protease K 混合均匀後,置 於56℃培養箱反應3小時。反應後加入200µl binding solution 並混合均 匀,於70℃水浴槽反應10分鐘,反應後加入200µ199.8% ethanol 並混合, 將混合液移入已套入收集管之 spin column 中,以13000rpm 離心1分鐘, 移除收集管中的液體後,再加入 300µl binding solution,以 13000rpm 離 心1分鐘,移除收集管中的液體後,再加入 700µl wash solution,以 13000rpm 離心1分鐘,移除收集管中的液體,這個步驟重複2次。將 spin column 與收集管以 13000rpm 離心 3 分鐘,將 spin column 套入新的 1.5ml 微量離心管,分2次加入預熱的(70℃) 150µl elution buffer,以 13000rpm 離心3分鐘,微量離心管中收集之液體即為 genomic DNA,存放於-20℃。 2-6-2 聚合酶連鎖反應 (PCR)

將表二中之引子以四分離株之 genomic DNA 為模板 (template),及

使用 PCR Master Mix (GeneMark, Taiwan),於循環控溫儀 (Mastercycler gradient 5331, Germany) 中進行聚合酶連鎖反應。

反應管成分如下:

2-6-3 基因定序及比對

聚合酶連鎖反應後所得的產物,委託明欣生物科技股份有限公司代為 定序,使用之機型為ABI3730,利用 Sanger Method (dideoxynucleotide chain termination)之實驗原理進行核酸定序。以BLAST 比對定序後,使 用 Vector NTI8 (InforMax, Inc., USA) 軟體進行各分離株間序列之比對。

2-7 統計學分析

實驗結果之數據分析使用軟體 JMP[®] 7.0 (SAS Institute Inc., USA) 之單 因子變異數分析 (One-Way ANOVA Procedure) 進行統計學分析。各組間 之 p 值小於 0.05 即判定具有顯著差異。

第三章 研究結果

第一節 細胞反應研究

1-1 不同 B. henselae 分離株刺激細胞增生之能力不同

以 B. henselae 的不同分離株感染 HMEC-1 細胞 24、48 和 72 小時後, 由顯微鏡觀察並計數細胞。可發現 Hous 分離株於感染細胞後 48 小時具 有最好的促進增生能力,並在 MOI50 及 100 約為其他分離株的 1.3 倍(圖 三),且有顯著差異 (p<0.05);而 JK40 分離株於感染細胞後 72 小時,MOI 為 50 的時候,使細胞增生的能力較其他分離株強 1.4 倍 (圖三),U-4 分 離株則在 MOI 為 100 的時候,較其他分離株強 1.5 倍 (圖三),JK40 及 U-4 與其他分離株比較均有顯著差異(p<0.05)。經感染的 HMEC-1 細胞其 增生的數目及密度都較未感染的細胞明顯增加 (圖四)。

1-2 B. henselae 經由抑制細胞凋亡途徑刺激細胞增生

使用西方墨點轉漬法以 MOI50 的 B. henselae 感染細胞 48 小時後的凋 亡相關蛋白質的表現量分析其訊息傳遞之調控路徑,發現 B. henselae 的 感染可調控粒線體的內在凋亡路徑 (mitochondria intrinsic pathway) 中相 關蛋白質之表現。在 Hous 及 JK40 感染的細胞中, Bad、cytochrome c、 caspase 9 及 caspase 3 的表現量都會較 U-4 及 JK47 感染的細胞少。而抗 凋亡蛋白質, Bcl-xL, 其在 Hous 感染的細胞中的表現量會較其他菌株感

染的細胞高,而 JK47 感染的細胞則有最少的表現量(圖五)。從量化結果 中可明顯地發現, Bad、cytochrome c 及 caspase 3 在 点 染 U-4 及 JK47 的 細胞中表現量均比未感染及感染 Hous、JK40 的細胞高約 1.2 倍。JK47 感染的細胞其 caspase 9 表現量為未感染及感染 Hous、JK40 的細胞高約 1.6 倍, 而 U-4 感染的細胞則為 1.2 倍。Hous 感染的細胞的 Bcl-xL 表現 量較未感染及感染 U-4、JK40 的細胞高, JK47 感染細胞的表現量最差, 為未感染的 0.6 倍, 且均具有顯著差異 (p<0.05) (圖五)。從上述實驗可發 現, B. henselae 促進細胞增生, 是經由抑制細胞粒線體內在凋亡路徑 (圖 六), 且4分離株促進細胞增生能力皆不同, 所以我們想了解, 其抑制細 胞凋亡的能力是否也有差異。B. henselae 的不同分離株感染 HMEC-1 細 胞後,以 actinomycin D 刺激其細胞凋亡,於刺激凋亡 24、48 和 72 小時 後,由顯微鏡觀察並計數細胞。Hous 分離株於刺激細胞凋亡 48 小時後, 且 MOI 為 100 的情況下,明顯地較其他分離株有較強的抑制凋亡能力, 約為對照組 (只加入 actinomycin D) 的 1.4 倍 (p<0.05) (圖七)。而於刺激 細胞凋亡 72 小時後, JK40 及 U-4 分離株於 MOI50 及 100 均能有效地抑 制細胞凋亡,比 Hous 及 JK47 分離株強 1.5 倍 (p<0.05)(圖七)。經 B. henselae 感染的細胞其細胞數目及密度都較只加入 actinomycin D 的高 (圖八)。我們亦曾以 actinomycin D 刺激細胞凋亡後, 再感染 B. henselae 並觀察其抑制細胞凋亡的能力,但HMEC-1細胞卻會大量減少,推測這

個結果可能因為加入 actinomycin D 後已破壞細胞某些功能,加入 B. henselae 感染後,細胞無法負荷其所引起的細胞反應而導致死亡。

1-3 B. henselae 之細胞結合能力與 Genotype 相關

結合能力實驗分為2部份,貼附能力及侵入能力。觀察細菌在巧克力 膠上菌落生長情況並計數,菌落數量較多之分離株,代表其細胞貼附能 力或侵入較強(圖九、圖十)。實驗結果發現, 威染後48小時且 MOI100 時, U-4 之貼附能力較 Hous 強 179 倍, 而為 JK47 的 3.7 倍, JK40 之貼 附能力較 Hous 強 116 倍, 而為 JK47 的 2.4 倍。 感染後 72 小時且 MOI50 時, U-4 貼附能力較 Hous 強 16 倍, 而 JK40 較 JK47 強 21 倍, 於 MOI100 時, U-4 貼附能力較 Hous 強 4 倍, 而 JK 40 較 JK 47 強 3 倍 (圖十一), 整 體而言, U-4 及 JK40 (genotype II) 較 Hous 及 JK47 (genotype I) 具有較好 的貼附能力;而侵入能力部分,感染後72小時,BH 分離株於 MOI50時 較其他分離株強5倍,而 MOI100 時則為6.8倍 (圖十二)。 感染後48小 時且 MOI50 時, Hous 侵入指數為其他分離株的 36 倍, 而 MOI100 時為 256 倍。 威染後 72 小時, Hous 侵入指數為 JK47 的 3 倍, 卻是 U-4 及 JK40 的 22 倍(圖十三),故 Hous 分離株在侵入能力及侵入指數部分有較好的 表現。

1-4 不同 B. henselae 分離株刺激細胞產生細胞激素與抗氧化能力之比較

以ELISA 測定細胞激素 IL-8 值以評估細胞發炎反應的程度。實驗結 果發現,Hous 及JK47 分離株會引起較強的細胞發炎反應,約為U-4 及 JK40 的 1.5 倍 (圖十四),genotype I 的組別均較 genotype II 的組別表現 量大,且具有顯著差異 (p<0.05),而同一 genotype 之分離株間對引發 IL-8 表現之能力並無顯著差異。並經由測定 SOD (superoxide dismutase) 之酵 素活性,來觀察細胞因感染所受到的氧化壓力。實驗結果發現,除JK47 分離株激激感染細胞氧化反應的能力較弱外 (約為控制組之 1.3 倍),其 餘分離株會使細胞產生顯著的氧化反應,為JK47 的 1.3 倍且為控制組的 1.7 倍以上(圖十五),並具有顯著差異(p<0.05)。

第二節 蛋白質體研究

以二維電泳系統分析 B. henselae 分離株之間蛋白質表現差異。分成2 組,一組為 Hous 及 U-4 分離株間之比較(圖十六),另一組為 JK40 及 JK47 分離株間之比較(圖十七)。Hous 的二維電泳分析總共偵測到 246 個點, 而 U-4 的二維電泳分析則有 226 個點,重複的有 209 點,配對率達 88.55%。差異為 2 倍以上有 9 點,從中挑選表現差異較大的 5 個點來進 行 MALDI-TOF-TOF 分析,分析結果如表三。JK40 的二維電泳分析總共 偵測到 330 個點,而 JK47 的二維電泳分析則有 337 個點,重複的有 326 點,配對率達 97.75%。差異為兩倍以上有 12 點,從中挑選表現差異較大 的 6 個點進行 mass spectrometry 分析,分析結果如表四。以 mass

- 33 -

spectrometry 分析的 11 個蛋白質點中,有 3 點為 small heat shock protein, 因此共為9個不同的蛋白質點。以即時聚合酶連鎖反應分析這9個蛋白 質在4株分離株中之RNA表現量的差異。其中RNA表現量 (RT-PCR) 與 蛋白質表現量 (2-DE) 趨勢相同的共有 5 點,包括 BH-D (superoxide dismutase [Cu-Zn] precursor)
BU-A (acetyl-CoA carboxylase) carboxyltransferase subunit alpha) \cdot BU-B (phage related protein) \cdot 47-A (F₀F₁ ATP synthase subunit alpha)及 40-E (small heat shock protein) (表五)。 Superoxide dismutase [Cu-Zn] precursor 中,其他分離株的表現量均較 U-4 高,為1.2~1.5倍; Acetyl-CoA carboxylase carboxyltransferase subunit alpha 於 U-4 有最高的表現量,約為其他分離株的2倍; Phage related protein 中,JK40 有最高的表現量,為其他分離株的 1.5 倍; small heat shock protein 的 RNA 表現量在 U-4 中最高, 其次為 Hous 與 JK40, JK47 中最低; F0F1 ATP synthase subunit alpha 在 JK47 有最高的 RNA 表現量,為其他分離株 的5倍 (圖十八)。這5個蛋白質利用即時聚合酶連鎖反應進行進一步分 析其於感染後之 RNA 表現量。將4種分離株分別感染 HMEC-1 細胞 24、 48 及 72 小時後, 抽取其 RNA, 分析後發現, 除了 47-A (F₀F₁ ATP synthase subunit alpha)之外,其餘的4個蛋白質,在Hous 分離株在感染後48小時 都有最大的 RNA 表現量,其次為 JK40。BH-D (superoxide dismutase [Cu-Zn] precursor)在 Hous 感染細胞後表現量為 JK40 的 11 倍,但為 U-4 及 JK47 的 30 倍; BU-A (acetyl-CoA carboxylase carboxyltransferase subunit alpha) 在 Hous 感染細胞後表現量為 JK40 的 1.3 倍, 但為 U-4 及 JK47 的 50 倍; BU-B (phage related protein)在 Hous 感染細胞後表現量為 JK40 的 4 倍, 但為 U-4 及 JK47 的 70 倍; 40-E (small heat shock protein)在 Hous 感染細胞後的表現量為 JK40 的 24 倍, 但為 U-4 及 JK47 的 177 倍 (圖十 九)。

第三節 基因定序及比對

各分離株之 small heat shock protein、acetyl-CoA carboxylase carboxyltransferase subunit alpha、phage related protein 及 superoxide dismutase [Cu-Zn] precursor 核酸序列已取得基因庫序號(附錄一)。核酸序 列部分,各分離株與 Hous 比較結果如下:於 Small heat shock protein 序 列中,僅U-4分離株有2個bp的差別;於 acetyl-CoA carboxylase carboxyltransferase subunit alpha 序列中,僅U-4分離株有3個bp的差別; 於 phage related protein 序列中, JK47分離株有4個bp,而JK40則有5 個 bp的不同; superoxide dismutase [Cu-Zn] precursor 序列中,U-4分離 株有10個bp不同(附錄二)。Small heat shock protein 與 acetyl-CoA carboxylase carboxyl- transferase subunit alpha 之胺基酸序列,在4株分離 株間完全相同。各分離株與 Hous 的胺基酸序列相比,phage related protein
於JK47 分離株有 3 個胺基酸序列不同,而JK40 有 4 個; superoxide dismutase [Cu-Zn] precursor 於 U-4 分離株有 6 個胺基酸序列的差異(附 錄二)。統計結果顯示,4 株分離株在核酸與胺基酸序列的相似度均在 96% 以上(表六)。

第四章 討論

於促進細胞增生及抑制細胞凋亡、分析凋亡相關蛋白質的表現量及其 訊息傳遞路徑和刺激ROS產生這些細胞反應實驗中,可發現Hous分離株 具有最強的能力,而於細菌侵入能力的實驗中,Hous分離株亦是最強的 分離株。許多研究顯示,人類的貓抓熱病例較易分離出genotype I [24], 且genotype I可能具有較強的能力[17],這些研究中的genotype I均為Hous 分離株。2003年的研究亦指出,Hous分離株 (genotype I) 其virB genes與 Marseille (genotype II) 的序列不同,這可能是Hous分離株具有較強的致 病性的原因之一[18]。故我們可推測,當B. henselae開始入侵細胞後,可 能為strain-specific,與基因型的差異較無關聯。

另外由發炎反應及細胞黏附能力實驗中可發現,Hous及JK47分離株 的能力均大於U-4及JK40。Hous及JK47屬於genotype I,而U-4及JK40屬於 genotype II,這個結果顯示,*B. henselae*於發炎反應及細胞黏附能力,可 能有基因型上的差別。2002年的研究指出,不同部位的病灶分離之細菌 基因型會有所不同。於肝臟及脾臟易分離出genotype I,而於皮膚及淋巴 結易分離出genotye II [23]。2004年的研究指出,屬於genotype II的Marseille 分離株會表現BadA,而屬於genotype I的Hous分離株則不會表現,BadA 為非纖毛性的黏著因子,會活化巨噬細胞HIF-1進而使VEGF產生[40]。我 們認為這可能是genotype II細菌在皮膚及淋巴結的部分較不易獲得養 分,需要大量的VEGF促進血管增生,故genotype II會表現BadA並有較好的細菌黏附能力。

從我們的實驗結果中可發現,在促進細胞增生及抑制細胞凋亡的實驗 中,Hous分離株的能力最強,其次為JK40與U-4,最弱為JK47。而從分 析凋亡相關蛋白質的表現量及其訊息傳遞路徑亦可發現相同的趨勢, Hous分離株在使抗凋亡蛋白(Bcl-xL)表現量上升及抑制凋亡蛋白(Bad、 cytochrome c、caspase 9及caspase 3)表現量下降,有最好的能力其次為 JK40分離株。在B. henselae的致病機轉中,抑制血管內皮細胞凋亡是最為 重要的一環[52,53],已經證實B. henselae 會降低caspase 3/7的活性[54]。 十分重要的抗凋亡蛋白質Bcl2,亦會因B. henselae 感染而表現量增加, 且促進凋亡的蛋白質Bax表現量則會減少[49],而這兩種蛋白質,均與粒 線體的內在凋亡路徑有關,這個結論與我們的研究相符。從細胞反應的 實驗結果,故可推測,不同B. henselae分離株於感染細胞後,會造成不同 抑制程度之粒線體內在凋亡結果,且可能進而使細胞增生結果產生差異。

2006年的研究指出, B. henselae將BepA蛋白質藉由TFSS送入宿主細胞後,會細胞的cyclic adenosine monophosphate (cAMP)表現量增加而抑制細胞凋亡[52]。2005年的文獻指出, cAMP調控細胞凋亡是經由protein kinase A (PKA)抑制cytochrome c、caspase 9及caspase 3的路徑所造成[55]。將我們的實驗結果與該研究發現整合後可作出以下推測, B. henselae

感染內皮細胞後,會使cAMP增加進而活化PKA,而PKA經由使其路徑下 游之cytochrome c、caspase 9及caspase 3表現量降低,達到抑制細胞凋亡 的目的。

經由二維電泳及即時聚合酶連鎖反應的分析實驗,可發現BH-D、 BU-A、BU-B、47-A及40-E,雖然在4分離株間,表現量均不相同,但在 感染後BH-D (superoxide dismutase [Cu-Zn] precursor)、BU-A (acetyl-CoA carboxylase carboxyltransferase subunit alpha)
BU-B (phage related protein) 及40-E (small heat shock protein),其RNA表現量與細胞反應一致,即此4 種基因於Hous分離株感染後表現最高,而Hous在促進細胞增生及抑制細 胞凋亡、分析凋亡相關蛋白質的表現量及其訊息傳遞路徑和刺激ROS產 生這些細胞反應實驗中亦具有最強的能力。從上述結果可歸納出一個結 論,這些特殊的蛋白質應該與B. henselae感染細胞後所引起的細胞反應有 關。為了能更進一步探討B. henselae的致病機轉,我們必須了解這些特殊 蛋白質所扮演功能為何。 Small heat shock protein具有chaperones的功 能,可保護摺疊錯誤的蛋白質,並防止其不正常堆積[56],也可增進Vir membrane proteins的摺疊[57],此外small heat shock protein可促使因氧化 壓力破壞的蛋白質再摺疊,進而增加細菌對氧化壓力的耐受性[58]。 Acetyl-CoA carboxylase參與脂肪酸的生合成,可將acetyl-CoA 變成 malonyl-CoA, 若acetyl-CoA carboxylase被抑制,則脂肪酸合成就會受阻

礙[59]。而phage related protein為一種recombinase與基因重組有關[60]。 Superoxide dismutase可以將毒性高的超氧化物 (superoxide) 轉變為毒性 較低的過氧化氫和氧,經研究證實, superoxide dismutase亦可增進 Salmonella Typhimurium 在巨噬細胞內的存活[61],且於Helicobacter pylori中,因CagA可促進superoxide dismutase表現,可能與CagA的致病機 轉有很大的關係[62]。因此,我們假設當B. henselae感染細胞時,若small heat shock protein表現量高,可穩定較多致病因子 (virulent factors) 的摺 疊,使其能發揮更好的作用;而acetyl-CoA carboxylase若表現量高,則可 合成較多脂肪酸,使更多能量產生,則細菌存活能力增強; phage related protein表現量高可增加基因重組的機會,使細菌遭遇壓力環境時,能更快 適應; superoxide dismutase的表現量高,可增強B. henselae抵抗氧化壓力 的能力,進而讓細菌的存活率提高。這些因素可使B. henselae感染內皮細 胞更加有利,有效率地引發細胞反應,故這些蛋白質表現量較高的分離 株,可能具有較強的致病性 (圖二十)。

第五章 結論與建議

第一節 結論

我們發現 B. henselae 感染細胞後,於促進細胞增生及抑制細胞凋亡、 分析凋亡相關蛋白質的表現量及其訊息傳遞路徑和刺激 ROS 產生這些細 胞反應實驗中, Hous 分離株具有最強的能力, 且於細菌入侵能力的實驗 中,Hous 分離株亦是最強的分離株。故我們推測,當 B. henselae 開始入 侵細胞後為 strain-specific。B. henselae 會使抗凋亡蛋白(Bcl-xL)表現量上 升及抑制凋亡蛋白(Bad、cytochrome c、caspase 9及 caspase 3) 表現量下 降這條訊息傳遞路徑,進而促使細胞增生。而發炎反應及細胞黏附能力 部分,有基因型上的差異,genotype II 有較好的細菌黏附能力,可能與其 會表現 BadA 有關[40]。並於蛋白質體分析中,發現 small heat shock protein · acetyl-CoA carboxylase carboxyltransferase subunit alpha · phage related protein 及 superoxide dismutase [Cu-Zn] precursor,其 RNA 表現量 與 B. henselae 刺激細胞反應結果有一致性。Hous 分離株於這些蛋白質表 現量為所有分離株中最高,這些蛋白質可能使 Hous 分離株感染內皮細胞 更加有利,故 Hous 分離株就具有較強的致病性。我們總結,雖然目前詳 細的 B. henselae 致病機轉仍不清楚,但上述這些蛋白質可能扮演重要的 角色,並且與 B. henselae 引起的細胞反應及其侵入能力有關。

第二節 建議

我們發現 B. henselae 感染細胞後,會經由抑制粒線體內在凋亡路徑, 然而 B. henselae 所引發的訊息傳遞路徑,可能不僅有 Bad、Bcl-xL、 cytochrome c、caspase 9 及 caspase 3 這條路徑,為能更了解完整的細胞反 應,可觀察其他與細菌感染相關的訊息傳遞路徑,如 interferon α 及 tumour necrosis factor α [53]。而於蛋白質體研究方面,為了能持續研究於 實驗中所發現之特異性的蛋白質分子,如: small heat shock protein、 acetyl-CoA carboxylase carboxyltransferase subunit alpha、phage related protein 及 superoxide dismutase [Cu-Zn] precursor,可使用 gene knockout 的方式,研究 B. henselae 在缺乏這些蛋白質的情況下,其感染細胞的能 力是否會改變,確立這些蛋白質的影響,對於 B. henselae 致病機轉的研 究就能有更大的突破。 參考文獻

- 1. Chomel, B.B., et al., *Experimental transmission of Bartonella henselae* by the cat flea. J Clin Microbiol, 1996. **34**(8): p. 1952-6.
- Bass, J.W., J.M. Vincent, and D.A. Person, *The expanding spectrum of Bartonella infections: II. Cat-scratch disease*. Pediatr Infect Dis J, 1997. 16(2): p. 163-79.
- 3. Holmes, A.H., et al., *Bartonella henselae endocarditis in an immunocompetent adult*. Clin Infect Dis, 1995. **21**(4): p. 1004-7.
- Koehler, J.E., et al., Molecular epidemiology of bartonella infections in patients with bacillary angiomatosis-peliosis. N Engl J Med, 1997. 337(26): p. 1876-83.
- Reed, J.A., et al., Immunocytochemical identification of Rochalimaea henselae in bacillary (epithelioid) angiomatosis, parenchymal bacillary peliosis, and persistent fever with bacteremia. Am J Surg Pathol, 1992. 16(7): p. 650-7.
- 6. Shenep, J.L., *Cat-scratch disease and Bartonella henselae infections in children*. Pediatr Ann, 1996. **25**(9): p. 518-23.
- 7. Kostianovsky, M. and M.A. Greco, *Angiogenic process in bacillary angiomatosis*. Ultrastruct Pathol, 1994. **18**(3): p. 349-55.
- 8. Dehio, C., *Recent progress in understanding Bartonella-induced* vascular proliferation. Curr Opin Microbiol, 2003. **6**(1): p. 61-5.
- 9. Fuhrmann, O., et al., Bartonella henselae induces NF-kappaB-dependent upregulation of adhesion molecules in cultured human endothelial cells: possible role of outer membrane proteins as pathogenic factors. Infect Immun, 2001. **69**(8): p. 5088-97.
- Schmid, M.C., et al., *The VirB type IV secretion system of Bartonella* henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol, 2004. 52(1): p. 81-92.
- Kirby, J.E. and D.M. Nekorchuk, *Bartonella-associated endothelial* proliferation depends on inhibition of apoptosis. Proc Natl Acad Sci U S A, 2002. 99(7): p. 4656-61.
- 12. Dehio, C., *Molecular and cellular basis of bartonella pathogenesis*. Annu Rev Microbiol, 2004. **58**: p. 365-90.
- Slater, L.N., et al., A newly recognized fastidious gram-negative pathogen as a cause of fever and bacteremia. N Engl J Med, 1990. 323(23): p. 1587-93.

- Regnery, R.L., et al., *Characterization of a novel Rochalimaea species*, *R. henselae sp. nov., isolated from blood of a febrile, human immunodeficiency virus-positive patient.* J Clin Microbiol, 1992. **30**(2): p. 265-74.
- Brenner, D.J., et al., Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb. nov., Bartonella vinsonii comb. nov., Bartonella henselae comb. nov., and Bartonella elizabethae comb. nov., and to remove the family Bartonellaceae from the order Rickettsiales. Int J Syst Bacteriol, 1993. 43(4): p. 777-86.
- 16. Alsmark, C.M., et al., *The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae.* Proc Natl Acad Sci U S A, 2004. **101**(26): p. 9716-21.
- Bergmans, A.M., et al., Predominance of two Bartonella henselae variants among cat-scratch disease patients in the Netherlands. J Clin Microbiol, 1996. 34(2): p. 254-60.
- 18. Woestyn, S., et al., *Study of genotypes and virB4 secretion gene of Bartonella henselae strains from patients with clinically defined cat scratch disease*. J Clin Microbiol, 2004. **42**(4): p. 1420-7.
- 19. Yamamoto, K., et al., Infection and re-infection of domestic cats with various Bartonella species or types: B. henselae type I is protective against heterologous challenge with B. henselae type II. Vet Microbiol, 2003. **92**(1-2): p. 73-86.
- 20. Yamamoto, K., et al., *Homologous protection but lack of heterologous-protection by various species and types of Bartonella in specific pathogen-free cats.* Vet Immunol Immunopathol, 1998. 65(2-4): p. 191-204.
- 21. Sander, A., et al., Comparison of different DNA fingerprinting techniques for molecular typing of Bartonella henselae isolates. J Clin Microbiol, 1998. **36**(10): p. 2973-81.
- 22. Sander, A., et al., Detection of Bartonella henselae DNA by two different PCR assays and determination of the genotypes of strains involved in histologically defined cat scratch disease. J Clin Microbiol, 1999. **37**(4): p. 993-7.
- 23. Chang, C.C., et al., Molecular epidemiology of Bartonella henselae infection in human immunodeficiency virus-infected patients and their cat contacts, using pulsed-field gel electrophoresis and genotyping. J Infect Dis, 2002. **186**(12): p. 1733-9.

- 24. Dillon, B., et al., *Limited diversity among human isolates of Bartonella henselae*. J Clin Microbiol, 2002. **40**(12): p. 4691-9.
- 25. Drancourt, M. and D. Raoult, *Proposed tests for the routine identification of Rochalimaea species*. Eur J Clin Microbiol Infect Dis, 1993. **12**(9): p. 710-3.
- 26. Kordick, D.L. and E.B. Breitschwerdt, *Intraerythrocytic presence of Bartonella henselae*. J Clin Microbiol, 1995. **33**(6): p. 1655-6.
- Arlet, G. and Y. Perol-Vauchez, *The current status of cat-scratch disease: an update*. Comp Immunol Microbiol Infect Dis, 1991. 14(3): p. 223-8.
- 28. Chomel, B.B., *Cat-scratch disease*. Rev Sci Tech, 2000. **19**(1): p. 136-50.
- 29. Schulein, R., et al., Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. J Exp Med, 2001. **193**(9): p. 1077-86.
- 30. Dehio, C., Bartonella-host-cell interactions and vascular tumour formation. Nat Rev Microbiol, 2005. 3(8): p. 621-31.
- 31. Chomel, B.B., et al., *Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors*. Vet Res, 2009. 40(2): p. 29.
- 32. Boulouis, H.J., et al., *Factors associated with the rapid emergence of zoonotic Bartonella infections.* Vet Res, 2005. **36**(3): p. 383-410.
- 33. Chang, C.C., et al., *Cat-scratch disease in veterinary-associated populations and in its cat reservoir in Taiwan*. Vet Res, 2006. **37**(4): p. 565-77.
- 34. Lee, S.C., et al., *Cat-scratch disease caused by Bartonella henselae:* the first case report in Taiwan. J Formos Med Assoc, 1998. **97**(8): p. 569-72.
- 35. Kumasaka, K., et al., *Survey of veterinary professionals for antibodies* to Bartonella henselae in Japan. Rinsho Byori, 2001. **49**(9): p. 906-10.
- Maruyama, S., et al., Prevalence of Bartonella species and 16s rRNA gene types of Bartonella henselae from domestic cats in Thailand. Am J Trop Med Hyg, 2001. 65(6): p. 783-7.
- Schulein, R. and C. Dehio, *The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection*. Mol Microbiol, 2002. 46(4): p. 1053-67.
- 38. Schulein, R., et al., A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl

Acad Sci U S A, 2005. **102**(3): p. 856-61.

- 39. Zhang, P., et al., A family of variably expressed outer-membrane proteins (Vomp) mediates adhesion and autoaggregation in Bartonella quintana. Proc Natl Acad Sci U S A, 2004. **101**(37): p. 13630-5.
- 40. Riess, T., et al., *Bartonella adhesin a mediates a proangiogenic host cell response*. J Exp Med, 2004. **200**(10): p. 1267-78.
- 41. Kempf, V.A., et al., *Do plant and human pathogens have a common pathogenicity strategy?* Trends Microbiol, 2002. **10**(6): p. 269-75.
- 42. Schmiederer, M., et al., Intracellular induction of the Bartonella henselae virB operon by human endothelial cells. Infect Immun, 2001. 69(10): p. 6495-502.
- 43. Pulliainen, A.T. and C. Dehio, *Bartonella henselae: subversion of vascular endothelial cell functions by translocated bacterial effector proteins*. Int J Biochem Cell Biol, 2009. **41**(3): p. 507-10.
- 44. Minnick, M.F. and B.E. Anderson, *Bartonella interactions with host cells*. Subcell Biochem, 2000. **33**: p. 97-123.
- 45. Kempf, V.A., et al., Activation of hypoxia-inducible factor-1 in bacillary angiomatosis: evidence for a role of hypoxia-inducible factor-1 in bacterial infections. Circulation, 2005. **111**(8): p. 1054-62.
- 46. Kempf, V.A., et al., Evidence of a leading role for VEGF in Bartonella henselae-induced endothelial cell proliferations. Cell Microbiol, 2001. 3(9): p. 623-32.
- 47. Dehio, C., et al., Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J Cell Sci, 1997. **110** (**Pt 18**): p. 2141-54.
- 48. Manders, S.M., *Bacillary angiomatosis*. Clin Dermatol, 1996. **14**(3): p. 295-9.
- 49. McCord, A.M., S.I. Resto-Ruiz, and B.E. Anderson, *Autocrine role for interleukin-8 in Bartonella henselae-induced angiogenesis*. Infect Immun, 2006. **74**(9): p. 5185-90.
- 50. De Martin, R., et al., *The transcription factor NF-kappa B and the regulation of vascular cell function*. Arterioscler Thromb Vasc Biol, 2000. **20**(11): p. E83-8.
- 51. Nicholson, D.W., *Apoptosis. Baiting death inhibitors.* Nature, 2001. **410**(6824): p. 33-4.
- 52. Schmid, M.C., et al., A translocated bacterial protein protects vascular

endothelial cells from apoptosis. PLoS Pathog, 2006. 2(11): p. e115.

- 53. Dehio, M., et al., *The transcriptional response of human endothelial cells to infection with Bartonella henselae is dominated by genes controlling innate immune responses, cell cycle, and vascular remodelling.* Thromb Haemost, 2005. **94**(2): p. 347-61.
- 54. Kempf, V.A., et al., *Bartonella henselae inhibits apoptosis in Mono Mac 6 cells*. Cell Microbiol, 2005. **7**(1): p. 91-104.
- 55. Martin, M.C., et al., *Protein kinase A regulates caspase-9 activation by Apaf-1 downstream of cytochrome c.* J Biol Chem, 2005. **280**(15): p. 15449-55.
- 56. Kuczynska-Wisnik, D., et al., *Escherichia coli small heat shock proteins IbpA/B enhance activity of enzymes sequestered in inclusion bodies.* Acta Biochim Pol, 2004. **51**(4): p. 925-31.
- Lai, E.M., et al., Proteomic analysis of Agrobacterium tumefaciens response to the Vir gene inducer acetosyringone. Proteomics, 2006. 6(14): p. 4130-6.
- 58. Matuszewska, E., et al., *Escherichia coli heat-shock proteins IbpA/B* are involved in resistance to oxidative stress induced by copper. Microbiology, 2008. **154**(Pt 6): p. 1739-47.
- 59. Liu, X., P.D. Fortin, and C.T. Walsh, Andrimid producers encode an acetyl-CoA carboxyltransferase subunit resistant to the action of the antibiotic. Proc Natl Acad Sci U S A, 2008. **105**(36): p. 13321-6.
- 60. Zhang, R. and C.T. Zhang, *Identification of genomic islands in the genome of Bacillus cereus by comparative analysis with Bacillus anthracis.* Physiol Genomics, 2003. **16**(1): p. 19-23.
- 61. Craig, M. and J.M. Slauch, *Phagocytic superoxide specifically damages* an extracytoplasmic target to inhibit or kill Salmonella. PLoS ONE, 2009. **4**(3): p. e4975.
- 62. Huang, Z.G., et al., *Mutation of cytotoxin-associated gene A affects expressions of antioxidant proteins of Helicobacter pylori*. World J Gastroenterol, 2009. **15**(5): p. 599-606.

Protein	Strain	Genebank
		Accession No.
Small heat shock protein	BU4	GQ220306
	JK40	GQ220307
	JK47	GQ220308
Acetyl-CoA carboxylase	BU4	GQ227672
carboxyltransferase subunit	JK40	GQ227674
alpha	JK47	GQ227673
Phage related protein	BU4	GQ227675
	JK40	GQ227677
T 7.	JK47	GQ227676
Superoxide dismutase	BU4	GQ227678
[Cu-Zn] precursor	JK40	GQ227680
	JK47	GQ227679
EDICI	L UNITE	

附錄一、各分離株中4個可能毒力因子之基因庫序號

附錄二、B. henselae 分離株中 4 個可能毒力因子之核酸及胺基酸序列比

對,取差異較大片段陳列。

(A) Small heat shock protein 核酸序列比對

	150	160	170	180	190	200	210
[coden region]	CAAGTAGA	TTTTTCACC	ATTTTATCGT	TCAAC <mark>T</mark> GTAG	GTTTTGATCA	CCTTTTTAAT	TGGTTTGATTCCA
BH (40E)	CAAGTAGA	TTTTTCACC	ATTTTATCGI	TCAAC <mark>T</mark> GTAG	GTTTTGATCA	CCTTTTTAAT	TGGTTTGATTCCA
BU(40E)	CAAGTAGA	TTTTTCACC	ATTTTATCGT	TCAACCGTAG	GTTTTGATCA	CCTTTTTAAT	TGGTTTGATTCCA
JK47(40E)	CAAGTAGA	TTTTTCACC	ATTTTATCGT	TCAAC <mark>T</mark> GTAG	GTTTTGATCA	CCTTTTTAAT	TGGTTTGATTCCA
JK40(40E)	CAAGTAGA	TTTTTCACC	ATTTTATCGT	TCAAC <mark>T</mark> GTAG	GTTTTGATCA	CCTTTTTAAT	TGGTTTGATTCCA
	220	230	240	250	260	270	280
(coden region)	IGAACACAJ	ACCTGACGA	TGTTTCTTCT	TATCCACCAT	CAATATTGA	GCGTTTAAGT	GAGGATTCTTATAG
BH (40E)	IGAACACA.	ACCTGACGA	TGTTTCTTCT	TATCCACCAT	ACAATATTGAG	GCGTTTAAGT	GAGGATTCTTATAG
BU(40E)	GAACACA	ACCTGACGA	IGTTTCTTCT	TATCCACCAT	TAATATTGAG	GCGTTTAAGT	GAGGATTCTTATAG
JK47(40E)	GAACACA	ACCTGACGA	TGTTTCTTCT	TATCCACCAT	CAATATTGAC	GCGTTTAAGT	GAGGATTCTTATAG
JK40(40E)	GAACACA	ACCTGACGA	TGTTTCTTCT	TATCCACCAT	ACAATATTGAG	GCGTTTAAGT	GAGGATTCTTATAG
		A F)	SEL	1	1 - 1 - ale 1
(B) Acetyl-	CoA cart	ooxylase o	carboxyltra	insferase su	bunit alpha	a核酸序列	儿比對
(B) Acetyl-	CoA carl	poxylase o 230	240 240	nsferase su 250	bunit alpha	a核酸序列 270	J比對 280
(B) Acetyl-	CoA carl 220 AGAGAACC	230 230 PGCCAATTTO	240 240	nsferase su 250 FTCCCGACGTT	260 CTTGTTTAAC	a核酸序列 270 FAACATCACCI	1比對 280 TTCTTTGCCAGCCA
(B) Acetyl- [coden region] BH (BHA)	CoA carl 220 <mark>AGAGAACC AGAGAACC</mark>	230 230 CAATTTO	240 240 3AAGATATTT 3AAGATATTT	nsferase su 250 FTCCCGACGTT FTCCCGACGTT	260 260 CTTGTTTAAC	a 核酸序列 270 FAACATCACCI	」比對 280 ITCTTTGCCAGCCA ITCTTTGCCAGCCA
(B) Acetyl- [coden region] BH (BHA) BU(BHA)	CoA carl 220 agagaaco agagaaco aaagaaco	230 230 GCCAATTTC GCCAATTTC GCCAATTTC	240 240 3446474777 34464747777 344647477777	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT	260 CTTGTTTAAC CTTGTTTAAC	a 核酸序列 270 SAACATCACCI SAACATCACCI	」比對 280 FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA)	CoA carl 220 agagaaco agagaaco agagaaco agagaaco	230 CCCAATTTC CCCAATTTC CCCAATTTC CCCAATTTC	240 240 344gatattt 344gatattt 344gatattt 344gatattt	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC	a 核酸子子列 270 AACATCACCI AACATCACCI AACATCACCI	」に對 280 FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA)	CoA carl 220 AGAGAACC AGAGAACC AGAGAACC AGAGAACC AGAGAACC	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC	240 240 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT	250 FTCCCGACGTT FTCCCGACGTT FTCCCGACGTT FTCCCGACGTT FTCCCGACGTT	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC	a 核酸子子列 270 AACATCACCI AACATCACCI AACATCACCI AACATCACCI	】比對 280 FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA)	CoA carl 220 AGAGAACC AGAGAACC AGAGAACC AGAGAACC 310	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC 320	240 240 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3A3GATATTT 3330	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT 340	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC 350	a 核酸子子列 270 AACATCACCI AACATCACCI AACATCACCI AACATCACCI AACATCACCI 360	」に對 280 FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA 370
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) [coden region]	CoA carl 220 AGAGAACC AGAGAACC AGAGAACC AGAGAACC 310 AATATCAC	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC 320	240 240 240 2440 2440 2440 2440 2440 24	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT 340 TTCCCTTTTTCC	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC 350 CTTATGTGCTC	a 核酸子 外 270 3AACATCACCT 3AACATCACCT 3AACATCACCT 3AACATCACCT 3AACATCACCT 3ACATCACCT 360 3CTCCTAAGG(」に對 280 FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA 370 GCTCCGGAATAATC
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) [coden region] BH (BHA)	CoA carl 220 AGAGAACC AGAGAACC AGAGAACC AGAGAACC 310 AATATCAC	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC 320 CCGCCGCCA CCGCCGCCA	240 240 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 330 FCAATCACAG FCAATCACAG	250 TTCCCGACGTI TTCCCGACGTI TTCCCGACGTI TTCCCGACGTI TTCCCGACGTI 340 CTTTTTTCCI 2010	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC 350 CTTATGTGCTC	a 核酸子子列 270 3AACATCACCT 3AACATCACCT 3AACATCACCT 3AACATCACCT 3AACATCACCT 3AACATCACCT 360 360 300 300 300 300 300 300 300 300	1 比 對 280 TTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA 370 3CTCCGGAATAATC GCTCCGGAATAATC
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) [coden region] BH (BHA) BU(BHA)	CoA carl 220 AGAGAACC AGAGAACC AGAGAACC AGAGAACC 310 AATATCAC AATATCAC	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC CCGTCGCA CCGTCGCA CCGTCGCA	240 240 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 330 FCAATCACAG FCAATCACAG FCAATCACAG	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT 340 CTTTTTTCCT CTCTTTTCCT CTCTTTTCCT	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC 350 CTTATGTGCTC CTATGTGCTC	a 核酸子子列 270 SAACATCACCT SAACATCACCT SAACATCACCT SAACATCACCT SAACATCACCT 360 CTTCCTAAGGO CTTCCTAAGGO	1 比 對 280 FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA 370 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) [coden region] BH (BHA) BU(BHA) JK47(BHA)	CoA carl 220 AGAGAACO AGAGAACO AGAGAACO AGAGAACO 310 AATATCAO AATATCAO AATATCAO	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCGTCGCA CCGTCGCA CCGTCGCA CCGTCGCA	240 240 3446474777 34464747777 34464747777 34464747777 34464747777 330 7044704066 7044704066 7044704066 7044704066 7044704066	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT CCTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC 350 CTTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC	a 核酸子子列 270 AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT 360 CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO	280 FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA 370 GCTCCGGAATAATC GCTCCGGAATAATC GCTCCGGAATAATC
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) (coden region) BH (BHA) BU(BHA) JK47(BHA) JK40(BHA)	CoA carl 220 AGAGAACO AATATCAO AATATCAO AATATCAO AATATCAO AATATCAO	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA	240 240 3446474777 34464747777 34464747777 34464747777 34464747777 330 FC447C4C466 FC447C4C466 FC447C4C466 FC447C4C466 FC447C4C466	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT 340 CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC 350 CTTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC	a 核酸 序 列 270 AACATCACCI AACATCACCI GAACATCACCI GAACATCACCI GAACATCACCI GACATCACCI CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO	比 勤 280 FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA SCTCCGGAATAATC SCTCCGGAATAATC SCTCCGGAATAATC SCTCCGGAATAATC SCTCCGGAATAATC
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) BU(BHA) BU(BHA) JK40(BHA) JK40(BHA)	220 220 AGAGAACCO AGAGAACCO AATATCACO AATATCACO AATATCACO AATATCACO AATATCACO AATATCACO AATATCACO AATATCACO AATATCACO AATATCACO	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA	240 240 3446474777 3446474777 3446474777 3446474777 330 70447040466 7044704046 704470406 7044706 7044706 7044706 7044706 7044706 7044706 704706 7044706 704706 7	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC 350 CTTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC 440	a 核酸子子列 270 AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT 360 CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO	1 比 勤 280 FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA 370 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) JK40(BHA)	CoA carl 220 AGAGAACCO AATATCACO AATATCACO AATATCACO AATATCACO AATATCACO AATATCACO AATATCACO AATATCACO	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA	240 240 3446474777 3446474777 3446474777 3446474777 3446474777 330 FCAATCACAG FCAATCACAG FCAATCACAG FCAATCACAG FCAATCACAG 420 3744746647	250 TTCCCGACGT1 TTCCCGACGT1 TTCCCGACGT1 TTCCCGACGT1 TTCCCGACGT1 TTCCCGACGT1 340 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1 CTCTTTTCC1	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC 350 CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC	a 核酸 序 列 270 AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT 360 CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO CTCCTAAGGO	280 FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA FTCTTTGCCAGCCA 370 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC 3CTCCGGAATAATC
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) ICoden region) BH (BHA)	CoA carl 220 AGAGAACCO AATATCACO	230 GGCCAATTTC GGCCAATTTC GGCCAATTTC GGCCAATTTC GGCCAATTTC GGCCAATTTC GGCCAATTTC GGCCGTCGCA CCGGCA CCGGTCA CCGCA CCGCA CCGCA CCGCA CCGCA CCGCA CCA C	240 240 3446474777 3446474777 3446474777 3446474777 3446474777 3446474777 3466474777 330 FC447C4C466 FC447C4C466 FC447C4C466 FC447C4C466 374474C6C4 374474C6C4	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT 340 CCTCTTTTCCT CCTCTTTTCCT CCTCTTTTCCT CTCTTTTCCT 430 TATTCATTGCC TATTCATTGCC	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC 350 CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC	a 核酸 序 列 270 AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT 360 360 360 360 360 360 360 360	
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) BU(BHA) JK47(BHA) JK40(BHA) JK40(BHA) BH (BHA) BU(BHA)	CoA carl 220 AGAGAACC AGAC AGAC AGAGAACC AGAGAACC AGAC AGACAC AGAC AGAC AGAC AGAC AGAC AGAC AGAGAACC AGA	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCGTCGCA CCGGCA CCGGCA CCGGCA CCGGCA CCGCA CCGCA CCGCA CCGCA CCGCA CCA C	240 240 3446474777 3446474777 3446474777 3446474777 3446474777 3446474777 3446474777 3446474777 330 FC44764646 FC44764646 FC44764664 3744746664 3744746664	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT CCTCTTTTCCT CCTCTTTTCCT CCTCTTTTCCT CCTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC 350 CTTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC CTATGTGCTC	a 核酸 序 列 270 AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT 360 CTCCTAAGGO CTCCTAAGO CT	
(B) Acetyl- [coden region] BH (BHA) BU(BHA) JK47(BHA) JK40(BHA) BH (BHA) BU(BHA) JK40(BHA) JK40(BHA) BH (BHA) BU(BHA) BU(BHA) JK47(BHA)	CoA carl 220 AGAGAACC AGAGAACC AGAGAACC AGAGAACC AGAGAACC 310 AATATCAC AATATCAC AATATCAC AATATCAC AATATCAC AATATCAC AATATCAC AATATCAC AATATCAC AATATCAC	230 GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCAATTTC GCCGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA CCGGTCGCA CCTTGCGCAC CCTTGCGCAC	240 240 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATTT 3AAGATATCACAG 1CAATCACAG 1CAATCACAG 1CAATCACAG 3TAATACGCA 3TAATACGCA 3TAATACGCA	250 TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT TTCCCGACGTT CCTCTTTTCCT CCTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCT CTCTTTCCCT CTCTTTTCCT	260 CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAAC CTTGTTTAC CTTGTTTAC CTTGTCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	a 核酸 子 列 270 AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT AACATCACCT CTCCTAAGGO C	

(C) Phage related protein 核酸序列比對

0	200	210	220	230	240	250	260
(coden region)	AGAGCTTT	A <mark>G</mark> AAAACGA	TGTC <mark>G</mark> ATATG	GACCGTCTC	GAGCGTCTGAT	CGCATTGCG	GAAAAGGAAATAG.
BH (BHB)	AGAGCTTT	A <mark>G</mark> AAAACGA	TGTC <mark>G</mark> ATATG.	GACCGTCTC	GAGCGTCTGAT	CGCATTGCG	<mark>GGAAAAGGAAATAG</mark> .
BU(BHB)	AGAGCTTT	A <mark>G</mark> AAAACGA	TGTC <mark>G</mark> ATATG.	GACCGTCTC	GAGCGTCTGAT	CGCATTGCG	<mark>G</mark> GAAAAGGAAATAG.
JK47(BHB)	AGATCTTT	AAAAACGA	TGTC <mark>T</mark> ATATG.	GACCGTCTC	GAGCGTCTGAT	CGCATTGCG	C <mark>GAAAAGGAAATAG</mark> .
JK40(BHB)	AGAGCTTT	A <mark>G</mark> AAAACGA	TGTC <mark>G</mark> ATATG.	GACCGTCTC	GAGCGTCTGAI	CGCATTGCG	<mark>G</mark> GAAAAGGAAATAG.
	420	430	440	450	460	470	480
(coden region)	AATACCAC	TTTGCTTTG	TTTTCTCGTA	TCAAGGAAC.	AGAGTTCA <mark>G</mark> AC	AGCATAAGC	GTAGAAATGACTTT(
BH (BHB)	AATACCAC	TTTGCTTTG	TTTTCTCGTA	TCAAGGAAC	AGAGTTCA <mark>G</mark> AC	AGCATAAGC	GTAGAAATGACTTT(
BU(BHB)	AATACCAC	TTTGCTTTG	TTTTCTCGTA	TCAAGGAAC	AGAGTTCA <mark>G</mark> AC	AGCATAAGC	GTAGAAATGACTTT(
JK47(BHB)	AATACCAC	TTTGCTTTG	TTTTCTCGTA	TCAAGGAACI	AGAGTTCA <mark>G</mark> AC	AGCATAAGC	GTAGAAATGACTTT(
JK40(BHB)	AATACCAC	TTTGCTTTG	TTTTCTCGTA	TCAAGGAACI	AGAGTTCAAAC	AGCATAAGC	GTAGAAATGACTTT(
	570	580	590	600	610	620	630
(coden region)	CGGTTGGC	TCTGCTATC	ACCTATGCAC	GCAGATATC	I <mark>G</mark> TTAGGCATO	CTTCTTAAT	GTTGTGAGTGCAGA'
BH (BHB)	CGGTTGGC	TCTGCTATC	ACCTATGCAC	GCAGATATC'	T <mark>G</mark> TTAGGCATO	CTTCTTAAT	GTTGTGAGTGCAGA'
BU(BHB)	CGGTTGGC	TCTGCTATC	ACCTATGCAC	GCAGATATC [®]	TG TTAGGC A TO	CTTCTTAAT	GTTGTGAGTGCAGA'
JK47(BHB)	CGGTTGGC	TCTGCTATC	ACCTATGCAC	GCAGATATC [*]	I <mark>G</mark> TTAGGCATO	CTTCTTAAT	GTTGTGAGTGCAGA'
JK40(BHB)	CGGTTGGC	TCTACTATO	ACCTATGCAC	GCAGATATC [*]	TTTAGGCATO	CTTCTTAAT	GTTGTGAGTGCAGA [.]
	630	640	650	660	670	680	690
(coden region)	TGAGTGCA	GATGATGAT	ACGGATGGGA	ACGTGCCTC'	TCACAAGTGCI	ATTTCCGCAG	CAGATCAGTGAGAT
BH (BHB)	TGAGTGCA	GATGATGAT	ACGGATGGGA	ACGTGCCTC'	TCACAAGTGCI	ATTTCCGCAG	CAGATCA <mark>G</mark> TGAGAT
BU(BHB)	TGAGTGCA	GATGATGAT	ACGGATGGGA	ACGTGCCTC'	TCACAAGTGCI	ATTTCCGCAG	CAGATCA <mark>G</mark> TGAGAT
JK47(BHB)	TGAGTGCA	GATGATGAT	ACGGATGGGA	ACGTGCCTC'	TCACAAGTGCI	ATTTCCGCAG	CAGATCA <mark>G</mark> TGAGAT
JK40(BHB)	TGAGTGCA	GATGATGAT	ACGGATGGGA	ACGTGCCTC'	TCACAAGTGCI	ATTTCCGCAG	CAGATCAATGAGAT
	800	810	820	830	840	850	860
(coden region)	GTATTGCA	ATCTTTTGA	AAGATAAAC <mark>G</mark> A	AACAAACAA	ATAGCAAAAG	CAGAGCAATC	TCTCTCACAACAAG
BH (BHB)	GTATTGCA	ATCTTTTGA	AAGATAAAC <mark>G</mark> A	AACAAACAA	ATAGCAAAAG	CAGAGCAATC	TCTCTCACAACAAG
BU(BHB)	GTATTGCA	ATCTTTTGA	AAGATAAAC <mark>G</mark> A	AACAAACAA	ATAGCAAAAG	CAGAGCAATC	TCTCTCACAACAAG
JK47(BHB)	GTATTGCA	ATCTTTTGA.	AAGATAAAC <mark>G</mark> A	AACAAACAA	ATAGCAAAAG	CAGAGCAATC	TCTCTCACAACAAG
JK40(BHB)	GTATTGCA	ATCTTTTGA	AAGATAAAC <mark>A</mark> A	AACAAACAA	ATAGCAAAAG	CAGAGCAATC	TCTCTCACAACAAG
			DICAL	UNIT			

(D) Superoxide dismutase [Cu-Zn] precursor 核酸序列比對

(A) Small heat shock protein 胺基酸序列比對

		10	20	30	40	50	60	
BH (40E) aa	MRQVDFSPI	FYRSTVGFI	DHLFNUFDSR	TQPDDVSSYP:	PYNIERLSED	SYRISMAVAG	FSQDEIDIETHC	N
BU (40E) aa	MROVDESPI	FYRSTVGFI	DHLENNEDSR	TOPDDVSSYP	PYNIERLSED	SYRISMAVAG	FSODEIDIETHO	N
IK 47 (40E) aa	MDOUDESDI	EVDSTUCEI	HIENNEDSD	TOBDDUGGVD	DVMTEDISED	SADISMANAC	FSODEIDIETHO	TAL
JK47 (40E jda	MRQVDFSFI	FIRSIVGFI	DHLINWIDSK	TQPDDV551P	FINIERLSED	SIRISHAVAG.	POQUEIDIEINC	14
JK4U (4UE) aa	MRQVDFSPI	FYRSTVGFI	DHLFNWFDSR	TQPDDVSSYP.	PYNIERLSED	SYRISMAVAG	FSQDEIDIETHC	N
(\mathbf{D}) A patril (To A comb	ovvlaca	anthauth	on forma a	hunit alak	~ 脸甘 璇 庄	ちちしん	
(D) Acetyi-	LOA Card	Oxylase (carboxynu	alisterase s	ibuint alpi	la 胺 本 酸 广	户列印	
對								
-1								
	1	10	20	30	40	50	60	3
RH (RHA) aa	MVNVLDFF	KEVADLDG	KTLELKKISC	FEGSLDMSDE	TARLEMESKT	ALRDIVKKLS	PHORTOVARHEI	R
	MICHINE DEE	VDUADI DC	VILELVUICO	FECCIDNCDE	TADLENDOUT	ALDDIVERUS	DUORTOUADUDI	-
	MINILDFE.	KPVADLDG.	KIPEPKKI96	LEGSEDHSDE	TARLEMRONI	ALRUITKKLD	PWQKIQVARHPI	R
JK47 (BHAJ aa	MYNYLDFE	KPVADLDG.	KILELKKISC	2EEGSLDMSDE	IARLEMRSKI	ALRDIYKKLS	PWQKTQVARHPI	R
JK40 (BHA) aa	MYNYLDFE	KPVADLDG:	KILELKKISC	EEGSLDMSDE	IARLEMRSKI	ALRDIYKKLS	PWQKTQVARHPI	R
			能名	100				
			100	76				
				X				
(\mathbf{C}) Dhaga m	lated me	tain Rest	苏方石川	- 半上				
(C) Phage re	erated pro	nem 胺毒	达跋丹列印	5 玎	357			
		5-1 -			Chilton 1			
	30	40	50	60	70	80	90	
	TO AL PAID	NUD DI EDI	TALDEVETER	OUVOCRITANT	CANODENOUS		COVET DOUTD	
BH (BHB) aa	TRALENDV	DUDRFERF	TALREKETER	QNYQSFVADL	SAMOREYORI	LQKNAINTHIN	SQAAIFDÖAIDT	TR
BU (BHB) aa	TRALENDV	DMDRLERL	IALREKEIEF	RONYQSFVADL	SAMQREYQKI	QKNATNTHTN	SQYATLDQYID	AIK
JK47 (BHB) aa	TRSLKNDV	YMDRLERL	IALREKEIEF	QNYQSFVADL	SAMOREYOKI	QKNATNTHTN	SQYATLDQYID	AIK
IK 40 (BHB) aa	TRALENDY	DMDRLERL	IALREKEIEF	RONYOSFVADL	SAMOREYOKI	OKNATNTHTN	SOYATLDOYID	AIK
								_
100 CT	100	110	120	130	140	150	160	
BH (BHB) aa	ETLSKYHF	ALFSRIKE	QSSDSISVEN	ITLTHPSGNKI	ATEGKFPHDI	KGCKSNIQAV	GS <mark>A</mark> ITYARRYLI	GM
BU (BHB) aa	ETLSKYHE	ALESETKE	OSSDSISVEN	TLTHPSGNKI	ATEGKEPHDT	RGCKSNIOAV	GSAITYARRYLI	GM
IK47 (BHB) aa	FTI SVVHR	AL FODTUR	OSSDSTSVEN	TT THOSONUT	ATECVEPHDT	RECESNION	CS ATTYADDVI I	GM
	ETESKIII	ALFORINE.	200 DIDVER	TETHFOONKI	ATEORIFIIDI	ROCKOWIQAV	OSATTTARATLI	CH
	LILDKINF	ALLERIKE	795W2TSAFU	TETHPSGNKI	ATEGREPHDI	RECEDUTORY	GD I I I I ARRILI	,GM
	170	180	190	200	210	220	230	1
BH (BHB) aa	LLNVVSAD	DDTDGNVP	LTSAFPOOTS	ETRTLMAOTO	TEETKTLAYA	KUNNI. ADMSD	GOAOTVI.HLI.KI	KR
BU (BHB) aa	LINERICAD	DDTDCMUD	TEARDOOL	FIRTIMACTO	TEETRICATA	LOUBLE ADMOD	COLOTYLNILVI	W.D
IK 47 (DUD) 33	LLNVVSAD	DDTDGNVP.	LISAFFQQI	EIRIEMAQIQ	TEEIKILAIA	KVNNLADH5D	GQAQIVEREEKI	(hr
JK47 (DHD) da	LLNVVSAD	DDTDGNVP.	LTSAFPQQIS	EIRTLMAQTQ	TEETKILAYA	KVNNLADMSD	GQAQTVLHLLKI	KR
JK4U (BHBJ aa	LLNVVSAD	DDTDGNVP.	LTSAFPQQIN	EIRTLMAQTO	TEETKILAYA	KVNNLADMSD	GQAQTVLHLLKI	KQ
(\mathbf{D}) Commune			7.1		城市ゴリ	141		
(D) Superox	alde dism	utase [Ci	u-Zn j prec	cursor 胺基	.酸斤列比	對		
	10	20	30	.40	50	60	70	
BH (BHD) aa	AOVAFFNO	ISNVLADS	TOVKIYELKI	ENNLENPIGTI	EIEENIYGL	IFAPNLSSLPR	GFHGFHVHVNP	SCI
BIL (BHD) aa	TOWNERNO	TENRI ADS	TOVETVELVI	ENNITHINDICE	FIFFNINCL	TRADULSSIDE	CENCENVIUND	SCT
	1 2VVF FILC	TONULADO	TOURTEEK	STATE PARTY TOTA	ETERMINGL.	TEADM OOLS	CENCENTRY IVINE	act
JK47 (BHD) aa	ROVAFFNC	ISNVLADS	TOAKTAETKI	ENNERNPIGTI	EIEENIYGL.	IF APPLSSLPE	GF HGF HVHVNP:	SCI
JK4U (BHD) aa	AQVAFFNC	ISNVLADS	TQVKIYELK	ENNLKNPIGTI	EIEENIYGL	IFAPNLSSLPE	GFHGFHVHVNP:	SCI
	100	110	120	130	140	150	160	0
BH (BHD) aa	WHI CDWIT	MCHI CDI D	AL WUT POCE	TWCUTADDI	VI SEURCES	TTHICCOMO	DUDI DI CCCC	DI Y
BIL (BHD) an	KHEGPINI	MONEGDEP	ALIVDEQGR.	ATHOVIAPREP	RESEVAGIS	TINIGGDMQS	DAFEFEGGGGA	KU1
	KHLGPYNI	NGHLGDLP	ALYVDKQGK.	ATMSVIAPRLE	KLSEVKGHS	TIHIGGDNQS	SDKPLPLGGGGA	RLI
JK47 (BHD) aa	KHLGPYNI	NGHLGDLP	ALYVDEQGR.	ATMSVIAPRLE	KLSEVKGHS	VIIHIGGDNQS	DKPLPLGGGGA	RLA
JK40 (BHD) aa	KHLGPYNI	NGHLGDLP	ALYVDEOGR.	ATMSVIAPRLE	KLSEVKGHS	VIIHIGGDNOS	DKPLPLGGGGA	RLA

Strain	Proliferation (cell number)			Inhibition of Apoptosis (cell number)		
	24hr	48hr	72hr	24hr	48hr	72hr
MOI50			醫藥			
Control	19250±1650	20166.7±1587.7	36666.7±4200.7	13016.7±2222.8	12283.3±840.1	10450±550
Hous	17556±653.4	26888.9±2240.7	35357.1±1964.3	13646.5±4727.3	14575±275	10266.7±840.1
U-4	19983.3±2289.8	17839.7±1343.4	45000±2500	10633.3±635.1	13639.3±239.3	13999.1±1231.3
JK47	19140±1438.4	18043.9±1838.4	44000±7275.8	10413.3±0	12706.9±1270.7	11064.7±0
JK40	21526.9±358.5	21083.3±1587.7	63931.6±4308.4	10413.3±0	10364.1±1994.6	15675±1741.7
MOI100		V	EDITO			
Control	19250±1650	20166.7±1587.7	36666.7±4200.7	13016.7±2222.8	12283.3±840.1	10450±550
Hous	16632±462	26142.0±3422.8	36666.7±3000.5	13226.6±3562.9	17600±550	9350±550
U-4	19800±2520.4	17839.7±1343.4	54166.7±5204.2	13200±1455.2	13639.3±239.3	16365.1±683
JK47	18260±381.1	19105.3±0	32083.3±1587.7	10413.3±0	11012.6±1941	13523.5±1064.7
JK40	18008.1±1075.5	19250±0	39487.2±2820.5	13884.4±6012.1	11899.5±664.9	19738.9±2660.4
JK47 JK40	18260±381.1 18008.1±1075.5	19105.3±0 19250±0	32083.3±1587.7 39487.2±2820.5	10413.3±0 13884.4±6012.1	11012.6±1941 11899.5±664.9	13523.5±1064. 19738.9±2660.

附錄三、實驗數據總表

Strain	Adhesion rate (CFU/cell)		Invasion rate (CFU/cell)		Invasion Index (adhesion bactria/	
					invasion bacteria	a)x100%
	48hr	72hr	48hr	72hr	48hr	72hr
MOI50			醫藥			
Hous	1.032±0.122	0.869±0.246	0.059±0.001	0.101±0.017	5.818±0.774	12.403±5.481
U-4	27.658±4.851	14.048±0.223	0.042±0.021	0.012±0.006	0.16±0.106	0.086±0.039
JK47	14.102±1.289	0.53±0.132	0.015±0.006	0.016±0.003	0.112±0.051	3.178±1.398
JK40	28.457±1.487	11.219±5.901	0.057±0.007	0.011±0.002	0.098±0.025	0.122±0.085
MOI100		2				
Hous	0.378±0.007	3.090±0.336	0.130±0.051	0.339 ± 0.006	48.566±18.858	11.046±1.38
U-4	67.613±13.986	13.111±3.029	0.057±0	0.047±0.009	0.084 ± 0.044	0.36±0.011
JK47	18.147±2.086	2.568±0.123	0.035±0.015	0.05±0.016	0.189±0.064	1.943±0.648
JK40	43.925±2.809	8.014±1.304	0.042±0.011	0.038±0.008	0.057±0.025	0.492±0.178

Strain	Protein expression (Western blot)							
	(fold to control)							
	Bad	Bcl-xL	Cytochrome c	Caspase 9	Caspase 3			
MOI50		醫	轈					
Control	1±0	1±0	1±0	1±0	1±0			
Hous	0.953±0.046	1.31±0.109	0.983±0.069	0.961±0.062	1.002±0.076			
U-4	1.213±0.05	0.933±0.052	1.318±0.104	1.218±0.01	1.39±0.132			
JK47	1.333±0.046	0.66±0.056	1.208±0.026	1.596±0.026	1.21±0.028			
JK40	0.924±0.014	0.9±0.072	0.9±0.134	0.92±0.096	0.869±0.128			
		Sel C	AL UNI					

圖二: B. henselae 之 TFSS[30]。

圖三:不同 B. henselae 分離株促進 HMEC-1 細胞增生能力之比較。(A) MOI 為 50; (B) MOI 為 100。*: 48 小時組間比較 p<0.05; #: 72 小時 組間比較 p<0.05

圖四:HMEC-1 細胞以顯微鏡觀察之生長情況。(A)為未感染之細胞;(B)

Hous 分離株以 MOI50 感染 48 小時後的細胞。

圖五:比較不同 B. henselae 分離株間調控凋亡相關蛋白質表現量。(A)西

方墨點轉漬法。(B)量化圖。*:與對照組比較 p<0.05。

圖七:不同 B. henselae 分離株抑制細胞凋亡能力之比較。(A) MOI 為 50;
(B) MOI 為 100。*:48 小時組間比較 p<0.05;#:72 小時組間比較 p<0.05。

圖八:HMEC-1 細胞經 actinomycin D 刺激凋亡後顯微鏡下之生長情況。

(A) 為僅加入 actinomycin D 之細胞; (B) Hous 分離株以 MOI100 感染 48

小時後的細胞。

圖九:不同 B. henselae 分離株之貼附能力比較(72 小時,稀釋 2000 倍)。

(A) Hous ; (B) U-4 ; (C) JK47 ; (D) JK40 \circ

圖十:不同 B. henselae 分離株之侵入能力比較(72 小時,稀釋 20 倍)。

(A) Hous ; (B) U-4 ; (C) JK47 ; (D) JK40 \circ

圖十二:不同 B. henselae 分離株細胞侵入能力之比較。

圖十四:不同 B. henselae 分離株刺激細胞產生 IL-8 值之比較。*: genotypeII (U4 與 JK40)與 genotype I (Hous 與 JK47)比較 p<0.05。

圖十五:不同 B. henselae 分離株刺激細胞之 SOD 活性比較。*:各分離

株間比較 p<0.05。*: JK47 與其他分離株和控制組比較 p<0.05。

圖十七:JK47(A)及JK40(B)分離株間二維電泳分析。

(A)

(B)

圖十八(接續下一頁)

圖十八: 4 個分離株中之 BH-D (Superoxide dismutase [Cu-Zn] precursor)

(A) • BU-A (Acetyl-CoA carboxylase carboxyltransferase subunit alpha)

(B) \cdot BU-B (Phage related protein) (C) \cdot 47-A (F₀F₁ ATP synthase subunit

alpha)(D)與40-E(Small heat shock protein)(E)之 RNA 表現量比較

TIM

EDICAL

圖十九(接續下一頁)

圖十九(接續下一頁)

圖十九:4個分離株於感染細胞後之 BH-D (Superoxide dismutase [Cu-Zn] precursor)(A)、BU-A (Acetyl-CoA carboxylase carboxyltransferase subunit alpha)(B)、BU-B (Phage related protein)(C)、47-A (F_0F_1 ATP synthase subunit alpha)(D)與40-E (Small heat shock protein)(E)之RNA 表現量比

較。

表一:即時聚合酶連鎖反應之引子序列。

Spot	Primer	Sequence (5'-3')
47-A	47-A-F	AGCACCGAGTCGTTTAACACAA
	47-A-R	TGGTATGGCACTCAATTTGGAA
40-E	40-E-F	GCGTTTTCATTTAGCTGATCATGTT
	40-E-R	CGGCATTTCTCTTTTAAGCTGAAT
BU-A	BU-A-F	GCCAGCCATAGCCTCTAAAGC
	BU-A-R	CATTATTCCGGAGCCCTTAGG
BU-B	BU-B-F	GCATTTCCGCAGCAGATCA
	BU-B-R	CGGCAAGATTGTTGACTTTGG
BH-D	BH-D-F	GTGCCGCAGGTGGTCATTAT
	BH-D-R	TCGACATACAGTGCTGGTAAGTCA
16S rRNA	16S-F	GAGAAGAAGCCCCGGCTAAC
	16S-R	TATCCGCCTACATGCGCTTT

表二:聚合酶連鎖反應之引子。

Spot	Primer	Sequence (5'-3')	Length (bp)
40-E	40E-SF	TGATGATGAAGGGTTAAGAA	°75
	40E-SR	GAGCCATATACGAAACTTCA	823
BU-A	BUA-SF	GCTATCAGCACAAAAGATCC	1226
	BUA-SR	TATCGTTTAGTCAATGAACATCA	1550
BU-B	BUB-SF	CCTATGCTAACAAAATCCTTATT	1115
	BUB-SR TCCTC	TCCTCTGTTAATCGCTCTGT	1115
	BHD-SF	AATAATGGGTGTTTTTTGTCG	071
BH-D	BHD-SR	AATTTCACCAGTTTGATTGG	9/1
		EDICAL UNUS	

Spot	Genebank Accession No.	Protein Description	Theoretical Mr/pI
BH-D	gil49475620	Superoxide dismutase [Cu-Zn] precursor	18850/5.87
BH-E	gil49476039	Expressed protein	19684/6.14
BU-A	gil49476285	Acetyl-CoA carboxylase carboxyltransferase subunit alpha	34927/6.28
BU-B	gil49475174	Phage related protein	29123/5.80
BU-C	gil49475510	Small heat shock protein	19074/5.56

表三:Hous 及 U-4 經二維電泳分析所得之差異點。

表四:JK47及JK40經二維電泳分析所得之差異點。

Spot	Genebank Accession No.	Protein Description	Theoretical Mr/pI
47-A	gil49476189	F_0F_1 ATP synthase subunit alpha	55477/5.91
47-B	gil49476305	Succinyl-CoA synthetase subunit beta	42790/5.07
47-D	gil49474982	Inorganic pyrophosphatase	20015/5.13
40-C	gil49475012	Peptidyl-prolyl cis-trans isomerase	35575/5.81
40-Е 40-F	gil49475510	Small heat shock protein	19074/5.56

Spot	Ductoin	Protein	mRNA
Spor	Protein	(fold)	(fold)
BH-D	Superoxide dismutase [Cu-Zn]	a	1.5 ^d
	precursor		
BU-A	Acetyl-CoA carboxylase	b	2 ^c
	carboxyltransferase subunit alpha		
BU-B	Phage related protein	11 ^c	1.5 ^c
BU-C	Small heat shock protein	4.8 °	3 ^c
40-E	Small heat shock protein	5 ^e	2 ^e
47-A	ATP synthase subunit alpha	LES I	5 ^f
^a 只有 Hous	分離株有表現	Ŷ.	
^b 只有 U-4 分	♪離株有表現		
°與 Hous 中	相同基因表現量比較之倍數		
^d 與U-4中相	目同基因表現量比較之倍數		
^e 與JK47中	相同基因表現量比較之倍數		

表五:4個分離株中5個表現差異點之蛋白質量與 RNA 表現量比較。

^f與JK40 中相同基因表現量比較之倍數

Drotoin	Similarity (%)		
Protein —	Nucleotide	Amino acid	
Small heat shock protein	99.6%-100%	100%	
Acetyl-CoA carboxylase	99.7%-100%	100%	
carboxyltransferase subunit alpha			
Phage related protein	99.4%-100%	98.5%-100%	
Superoxide dismutase [Cu-Zn]	98.5%-100%	96.6%-100%	
precursor	-Y		
CHILLEDICK	L UNITERS		

表六:4株分離株間特異蛋白質之核酸及胺基酸序列分析結果。