Involvement of oxidative stress-induced ERK/JNK activation in the Cu^{2+} /pyrrolidine dithiocarbamate complex-triggered mitochondria-regulated apoptosis in pancreatic β -cells

Ya-Wen Chen^{1,2}, Shing-Hwa Liu³, Chin-Chuan Su⁴, Tien-Hui Lu², Dong-Zong Hung⁵, Cheng-Chieh Yen⁶, Chun-Fa Huang⁷

¹Department of Physiology and ²Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan

³Institute of Toxicology, National Taiwan University, Taipei, Taiwan

⁴Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan

⁵Toxicology Center, China Medical University Hospital, Taichung, Taiwan

⁶Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan

⁷School of Chinese Medicine, China Medical University, Taichung, Taiwan

Abstract:

Oxidative stress was demonstrated to promote the progression of diabetes mellitus (DM). It has been suggested that copper may play a specific role in the progression and pathogenesis of DM. Pyrrolidine dithiocarbamate (PDTC), a widely apply to the medicine and pesticide, was known to be capable of enhancing copper accumulation. In this study, we investigated the effect of submicromolar-concentration $Cu^{2+}/PDTC$ complex on pancreatic β -cell damage and evaluated the role of oxidative stress in this effect. CuCl₂ (0.01~300 µM) did not affect the cell viability in β -cell line RIN-m5F cells. However, combination of CuCl₂ (0.5 $\mu M)$ and PDTC (0.3 $\mu M)$ markedly reduced RIN-m5F cell viability. $Cu^{2+}/PDTC$

complex could also increase in oxidative stress damage, and display several features of mitochondria-dependent apoptosis signals, which accompanied with the marked increase the intracellular Cu^{2+} levels. These apoptotic-related responses of Cu^{2+} /PDTC complex-induced could be effectively prevented by antioxidant *N*-acetylcysteine (NAC). Furthermore, Cu^{2+} /PDTC complex was capable of increasing the activation of ERK1/2 and JNK, and its upstream kinase MEK1/2 and MKK4, which could be reversed by NAC. Transfection with ERK2-siRNA and MAPK8-shRNA and specific inhibitors SP600125 and PD98059 could inhibit ERK1/2 and JNK activation and attenuate MMP loss and caspase-3 activity induced by the Cu^{2+} /PDTC complex. Taken together, these results are the first report to demonstrate that the Cu^{2+} /PDTC complex triggers a mitochondria-regulated apoptosis via an oxidative stress-induced ERK/JNK activation-related pathway in pancreatic β -cells.

Keywords: Copper; PDTC, Pancreatic β-cell; Oxidative stress; Apoptosis; ERK1/2; JNK