Silica nanoparticles induces cell death in lung epithelial cells through mitochondria and endoplasmic reticulum pathways.

Tien-Hui Lu^{1,2}, Ling-Mei Tsai¹, Dong-Zong Hung², Cheng-Chieh Yen³, Chin-Chuan Su⁴, Yi-Chang Su⁵, Chun-Fa Huang⁵, Shing-Hwa Liu⁸, Ya-Wen Chen^{1,2}

¹Graduate Institute of Basic Medical Science, ²Department of Physiology, China Medical University, Taichung, Taiwan

²Toxicology Center, China Medical University Hospital, Taichung, Taiwan

³Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan

⁴Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan

⁵School of Chinese Medicine, China Medical University, Taichung, Taiwan

⁶Toxicology Center, China Medical University Hospital, Taichung, Taiwan

Abstract:

Silica nanoparticles (SiO₂-NPs) are widely used in nanotechnology industry and applications in various products. Previous studies have indicated that nanoparticles can induce oxidative stress damage causing cell death. Alveolar type II epithelial cells are known to be vulnerable to oxidative stress. However, the toxic effect of SiO₂-NPs on alveolar type II epithelial cell damage remains unclear. In this study, we investigate the effect and possible mechanisms of SiO₂-NPs on rat type II epithelial cell line (L2) for 24-48 h. The results showed a decreased in cell viability and an increased in annexin-V binding in a time- and dose-dependent manner. Meanwhile, after SiO₂-NPs exposure, the amount of silicon uptake and ROS production was correlated with the concentration of SiO₂-NPs at 24h, and the malondialdehyde (MDA) level increased in a dose-dependent manner at 48h. SiO₂-NPs also caused mitochondrial-dependent apoptotic signals, including the increasing of caspase-3 activity, disruption of the mitochondrial membrane potential, up-regulation of Bax and down-regulaton of Bcl-2 protein expression, activations of caspase cascades and cleave poly(ADP-Ribose) polymerase (PARP). Moreover, treatment of L2 cells with SiO₂-NPs resulted in endoplasmic reticulum (ER) stress, such as activating the protein expression of C/EBP homologous protein (CHOP), X-box binding protein 1(XBP-1), caspase-12, and decreasing the glucose-regulated protein 78/94 (GRP-78/-94) protein expression. These results suggest that SiO₂-NPs trigger an oxidative stress, and induce alveolar epithelial cells apoptosis through mitochondria and endoplasmic reticulum pathways.

Keyword: Silica nanoparticle; Lung epithelial cells; Apoptosis; ROS; Mitochondria; ER-stress