Dung-shen (Codonopsis pilosula) attenuated the

Cardiac-impaired Insulin-like Growth Factor II Receptor

Pathway on Myocardial Cells

Wei-Syun Hu^{1,2}, Nien-Hung Lee ³, Chen-Yen Tsai⁴, Mu-Hsin Chang⁵, Gwo-Ping Jong⁵, Chia-Hua Kuo⁶, Bor-Show Tzang⁷, Fuu-Jen Tsai⁸, Chang-Hai Tsai⁹ and Chih-Yang Huang^{3,8,10} 胡緯勳 ^{1,2}, 李念鴻 ³, 蔡成諺 ⁴, 張木信 ⁵, 鐘國屏 ⁵, 郭家譁 ⁶, 曾柏修 ⁷, 蔡輔仁 ⁸, 蔡長海 ⁹, 黃志 揚 ^{3,8,10}

Taiwan

General Hospital, Taichung, Taiwan

Taichung, Taiwan

Abstract

Previous studies from our lab showed that increase in AngII in H9c2 cells causes elevated IGFII and IGFIIR through MEK and JNK, leading to rise in intracellular calcium, calcineurin activation by PLC-β3 *via* Gαq, insertion into mitochondrial membranes of Bad, and apoptosis *via* caspases 9 and 3. *Codonopsis pilosula* is traditionally used to lower blood pressure. The purpose of our study is to investigate if *C. pilosula* attenuates AngII plus Leu²⁷-IGFII-induced calcium influx and apoptosis in H9c2 cardiomyoblasts. *C. pilosula* significantly attenuated AngII induced IGFIIR promoter activity. Leu²⁷-IGFII was applied to enhance the AngII effect. *C. pilosula* also reversed Ca²⁺ influx, MOMP and apoptosis increased by AngII plus Leu²⁷-IGFII. Molecular markers in IGFIIR apoptotic pathway (IGFIIR, calcineurin, etc.) and IGFIIR-Gαq association were downregulated by *C. pilosula*. However, p-Bad^{Ser136}

¹Division of Cardiology, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan

²Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei,

³Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan

⁴Departments of Pediatrics, China Medical University Beigang Hospital, Yunlin, Taiwan

⁵Division of Cardiology, Department of Internal Medicine, Armed Force Taichung

⁶Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei, Taiwan

⁷Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan

⁸Graduate Institute of Chinese Medical Science, China Medical University,

⁹Department of Healthcare Administration, Asia University, Taichung, Taiwan

¹⁰Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan

and Bcl-2 were increased. Therefore, *C. pilosula* suppresses AngII plus Leu²⁷-IGFII-induced IGFII/IGFIIR pathway in myocardial cells.

Key words: angiotensin II, apoptosis, calcium influx, *Codonopsis pilosula*, leucine²⁷-insulin like growth factor II, mitochondrial outer-membrane permeability