Effects on E4BP4-Induced IGF1R Activation in H9c2 Cardiomyoblast cells

林冠合; Kuan-Ho Lin^{1,2} 王建程; Chien-Cheng Wang^{#2} 黄志揚; Chih-Yang Huang^{*3}

¹Graduate Institute of Clinical Medical Science, China Medical University

²Graduate Institute of Basic Medical Science, China Medical University, Taichung,

Taiwan

³Graduate Institute of Chinese Medical Science, China Medical University, Taichung,

Taiwan

Abstract

Hypoxia and hypoxia in combination with ischemia lead to overproduction of nitric oxide (NO), a potent free radical molecule. Capase-3 activity and fragmentation of nuclear DNA in the hypoxic newborn piglet brain are NO mediated. The nuclear factor IL-3(NFIL3 also called E4BP4) is a member of the mammalian basic leucine zipper (bZIP) transcription factor superfamily. E4BP4, is up-regulated by the interleukin-3 (IL-3) signaling pathway and plays an important role in the anti-apoptotic response of IL-3. E4BP4 overexpression enhance the cardiac survival signaling by activating IGF1R/p-Akt pathway and inhibited the apoptotic proteins in cardiomyocyte. In the previous study found that the up-regulation of IGF2 and IGF2R genes is essential for angiotensin II (ANGII)-induced cell apoptosis and correlates with the promotion of cardiomyocytes apoptosis in hypertensive rat hearts. Here we show that E4BP4 down-regulates IGF2/mannose 6-phosphate receptor (IGF2R) signal pathway through G α q/Calcineurin in H9c2 cardiomyoblast cells.