1	Low-level laser treatment on relieving pain and neurological symptoms in
2	patients with carpal tunnel syndrome
3	
4	Joe-Air Jiang
5	Department of Bio-Industrial Mechatronics Engineering, National Taiwan University,
6	No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C).
7	[E-mail: jajiang@ntu.edu.tw]
8	
9	Wen-Dien Chang [*]
10	Department of Recreation Sports and Health Promotion, Asian-Pacific Institute of Creativity,
11	NO. 110, Syuefu Rd, Toufen Township, Miaoli County 351, Taiwan (R.O.C.).
12	[E-mail: steven-mandy@yahoo.com.tw]
13	
14	Jih-Huah Wu
15	Department of Biomedical Engineering, Ming Chuan University,
16	No.5, Deming Rd., Guishan Township, Taoyuan County 333, Taiwan (R.O.C.).
17	[E-mail: wujh@mcu.edu.tw]
18	

20	Ping	Tung	Lai
----	------	------	-----

- 21 Department of Physical Therapy and Rehabilitation, Da Chien General Hospital,
- No. 6, Shin Guang Street, Miaoli City 360, Taiwan (R.O.C).
- 23 [E-mail:laiytd@gmail.com]
- 24

```
25 Hung-Yu Lin,
```

- 26 Department of Occupational Therapy, I-Shou University,
- 27 No.8, Yida Rd., Jiaosu Village Yanchao District, Kaohsiung City, Taiwan (R.O.C).
- 28 [E-mail: otrlin@gmail.com]
- 29
- ³⁰ * Correspondence author:
- 31 Wen-Dien Chang, Assistant Professor, Ph.D.
- 32 Department of Recreation Sports and Health Promotion
- 33 Asian-Pacific Institute of Creativity
- NO. 110, Syuefu Rd, Toufen Township, Miaoli County 351, Taiwan
- 35 TEL: 886-37- 605766
- 36 FAX: 886-37- 605784
- 37 E-mail: steven-mandy@yahoo.com.tw
- 38

ABSTRACT

40	[Purpose] This placebo-controlled study was investigated the therapeutic effects of low-level laser
41	treatment (LLLT) to apply on the transverse carpal ligament of carpal tunnel syndrome (CTS).
42	[Subjects and Methods] Idiopathic CTS patients were recruited and were randomly assigned to two
43	groups. The laser group ($n = 45$) received laser treatment (10 Hz, 60 mW, 9.7 J/cm ² , 830 nm), but the
44	placebo group $(n = 42)$ received sham laser treatment. The visual analog scale (VAS), Boston
45	Questionnaire scale, neurological symptoms and nerve conduction study (NCS) were assessed before,
46	immediately after and 5 week follow-up.
47	[Results] After LLLT, there was statistically significant decrease for VAS in laser group ($p < 0.05$).
48	Especially, the effect of LLLT on pain alleviation in the mild CTS group continued after five weeks.
49	Regarding Boston Questionnaire scale, neurological symptoms and NCS, only mild CTS patients in
50	the laser group had statistically significant improvements after treatment ($p < 0.05$).
51	[Conclusions] LLLT with 830 nm diodes laser on transverse carpal ligament had preferable
52	therapeutic effect for mild CTS patients.
53	
54	

57 INTRODUCTION

Carpal tunnel syndrome (CTS) is a median nerve lesion due to compression in the carpal tunnel. 58 The median nerve and tendons of the hand pass through the carpal tunnel and the transverse carpal 59 ligament locates on the palm side of the carpal tunnel. The tendons and transverse carpal ligament 60 become inflamed and swollen because of the pressure imposed on the median nerve below it¹⁾. The 61 abnormal sensation and weak muscle strength of hands are common clinical symptoms and signs. The 62 diagnosis of CTS is usually based on physical examination and electromyography. These symptoms 63 should be differentiated from the neural paralysis caused by diabetes or other metabolic diseases²). The 64 neurological symptoms are usually caused by high pressure on the median nerve inside the carpal 65 tunnel instead of the neuropathy of median nerve. 66 Many studies suggested that conservative treatments for the initial onset of CTS were safer than 67 surgeries^{3, 4)}. Low-level laser treatment (LLLT) is one of the choices of conservative treatments for 68 CTS⁵⁾. The effects of LLLT in treating CTS were controversial. Some studies demonstrated that it had 69 better therapeutic effects to treat CTS^{5, 6, 7)}. However, one study found that LLLT did not have greater 70 improvements than other conservative treatments⁸⁾. Recently, some researchers tried to use LLLT to 71 treat CTS and irradiated on the transverse carpal ligament of wrists⁹. They provided appropriate 72 73 parameters of LLLT and treatment location, but did not compare the therapeutic effects for different severity of CTS. To go a step further, we tried to imitate the same process of LLLT for mild and 74

moderate symptoms of CTS. The purpose of our study was to investigate the clinical outcome and
neurophysiological results of the mild and moderate CTS.

77

78 SUBJECTS AND METHODS

This study was approved by the Institutional Review Board on Human Subjects Research. Volunteers were the patients from the rehabilitation center of a teaching hospital and recruited from the out-patient clinic. In Table 1, the patients with CTS were diagnosed in accordance with the guideline¹⁰. For all patients, nerve conduction studies (NCS) on the ipsilateral ulnar nerve were normal for both the motor and sensory conduction.

The inclusion criteria in our experiments were the patients with idiopathic CTS who experienced 84 repeated pain more than a year. The exclusion criteria included that patients had medical history of 85 systemic diseases (rheumatoid arthritis, diabetes, and metabolic diseases), received any surgical 86 operation and other treatments such as anti-inflammatory medicine, acupuncture, and physical therapy. 87 In the sample size of our study, the type I error was set 0.05 ($\alpha = 0.05$) and power was set 0.8 ($\beta = 0.2$). 88 The required the number of samples which was calculated the outcomes based on literatures was at 89 least 14 for each group⁹⁾. The 90 patients were randomly assigned to two groups based on the criterion 90 of a double blinding experiment. The laser group received LLLT, and the placebo group received 91 sham laser treatment. The sham laser had the same procedure as the laser treatment, but its power 92 supply was cut off and did not generate energy output in order to avoid any psychological effect. 93

94	The laser instrument (Painless Light PL-830, Advanced Chips & Products Corp., USA) was adopted
95	in this study. The operation parameters of PL-830 were as follows: wavelength = 830 nm; output
96	frequency = 10 Hz, average power = 60 mW (2 × 30mW); and the treatment dosage = 9.7 J/cm ² ,
97	respectively. The two diodes laser that emitted a laser beam (irradiated area = 370 mm ²) on the palm
98	side of the wrist (between pisiform and navicular bones). LLLT was executed for 10 minutes, and 5
99	times per week for two weeks.
100	Each patient was assessed before, immediately after the treatment, and in the five weeks follow-ups.
101	Four assessments, such as pain, symptoms, neurological signs, and nerve conduction study, were
102	blinded to one evaluator (test-retest reliability = 0.96). All data after the treatments and in the
103	follow-ups were collected and compared with a baseline before the treatments.
104	(1) Pain assessment: Pain intensity was assessed by a visual analog scale (VAS). The most painful
105	sensation would be scored 10 and painless sensation was scored 0. The patients who participated
106	in the study used their past experience of pain as criterion and scored their pain intensity at
107	present.
108	(2) Symptoms assessment: A self-administered questionnaire, Boston Questionnaire scale, is used to
109	describe the discomfort of CTS ¹¹). It consists eleven questions to assess the symptom (Table 2).
110	The symptom at night was assessed by items 1, 2, 9, and 10, and the symptom during the day was
111	estimated by items $3 \sim 8$ and 11. The scale of each item was quantified to range from 1 (mildest)
112	to 5 (most severe), and all scales of individual items were calculated and averaged.

113 (3) Neurological signs: Two clinical tests for CTS were used.

114 Phalen's sign test

- 115 The patients in this test bend their wrists by back-hand to back-hand against each other for 60
- seconds. If there was a pricking or abnormal sensation in the radial side of the thumb, index finger,

middle finger and ring finger, then the test result would be positive.

118 *Tinel's sign test*

Physician tapped the top of the carpal tunnel of patients' wrists. If the patting caused a pricking or abnormal sensation in the radial side of the thumb, index finger, middle finger and ring finger, then the test result would be positive.

122 (4) Nerve conduction study

The NCS was performed with a portable electromyograph (Medelec Synergy, Oxford, UK), and the 123 stimulating electrodes were placed at the wrist proximal to the carpal tunnel. Accounting the 124 recommendations¹⁰, a pair of surface recording electrodes was placed on the abductor policis muscle 125 to record compound muscle action potentials. The distal motor latency and sensory peak latency of the 126 median nerve were measured by stimulating the nerve action potential. The room temperature 127 remained at around $26 \sim 29$ °C. The NCS for the CTS patients were conducted and diagnosed by the 128 same physician, and the treatments were conducted by the same physical therapist. Both were blinded 129 in this study. 130

131	All data collected from the patients was analyzed by SPSS13.0, and each statistical parameter in
132	both groups was calculated. Because the distributions of all parameters using the
133	Kolmogorov-Smirnov test were not normal $(p > 0.05)$, so non-parametric tests were used in our
134	statistical analysis. Mann-Whitney U Test was used to test the difference between the parameters of
135	the basic data before the treatment. For comparing the differences in VAS, symptom, neurological
136	signs, and NCS values of distal motor latency and sensory peak latency between both groups, the
137	Wilcoxon test was used. Mann-Whitney U Test was also used to analyze the differences of
138	assessments before and after the treatment, and in follow-ups. For categorical variables of Phalen's
139	and Tinel's sign tests, the Fisher exact test was used to compare the score before the treatment with
140	that after the treatment, and the scores in follow-ups. In all of the analyses, a two-tailed test was
141	adopted and the α value was set at 0.05.
142	

143 **RESULTS**

In this study, there were 90 patients with CTS, but 3 patients of placebo group dropped out during the experiment. In the laser group (n = 45), 27 patients were diagnosed as mild CTS, and 18 patients as moderate CTS. In the placebo group (n = 42), 27 patients were diagnosed as mild CTS and 15 patients as moderate CTS. In the baseline of age, duration, VAS, symptom, neurological signs, and NCS, there were no statistically significant differences between two groups before the treatment (p >0.05). The basic data were summarized in Table 3. For the patients with either mild or moderate CTS, there was an obvious statistical difference (p < 0.05) in VAS decrease between the laser group and the placebo group after the treatment. In addition, there was a significantly statistical difference (p < 0.05) in pain relief for the mild CTS patients during follow-ups.

According to the statistical results, the decrease of the severity in the Boston Questionnaire scale for the laser group is statistically greater than that for the placebo group, either during the daytime or at night (p < 0.05, Fig. 1 and 2). After the treatment, there was a statistically significant decrease in the total symptom scale for the patients with mild CTS in the laser group (p < 0.05), but not for the placebo group (Table 4).

In the neurological signs for CTS (i.e., Phalen's sign and Tinel's sign), if those signs occurred 159 after the treatment, the assessment would be marked as a positive one. And if no signs occurred, the 160 assessment would be scored as a negative one. After the statistical analysis, as shown in Table 5, we 161 162 found that the amount of positive neurological signs in the Phalen's sign and Tinel's sign for the laser group was reduced greater than that for the placebo group after the treatment and in the follow-ups. 163 This difference was statistically significant (p < 0.05). The laser group with mild CTS was particularly 164 statistically reduced in Phalen's sign and Tinel's sign. (p < 0.05). In the NCS for mild CTS, there was 165 a statistically difference between the laser group and the placebo group after the treatment (p < 0.05). 166

During the whole course of this study, no patient complained about any side effect and droppedout from LLLT.

DISCUSSION

170	This research was a controlled study that tried to treat CTS via providing contact band irradiation
171	on transverse carpal ligament. After two weeks of LLLT with 830 nm laser, the VAS of the mild CTS
172	patients in the laser group was decreased to 2.32 \pm 0.78. The VAS of the moderate CTS patients was
173	decreased to 3.76 \pm 1.81. The results of our study were similar to the previous researches ^{3, 5)} and
174	confirmed immediate pain alleviation of LLLT. We also found that LLLT could not maintain this
175	effect for the next five weeks, and thus further research with longer follow-up periods were required.
176	The analgesic effect of LLLT is still controversial, but the clinical effect is confirmed ^{4, 9)} . Many
177	researchers have discovered that LLLT could promote the production of adenosine triphosphate from
178	the mitochondria ^{5, 7, 9, 12)} , and enhance the respiration metabolism of the cells ¹³⁾ . Those metabolisms
179	reduce the wastes from the inflammation including leukotrienes and metabolite which could improve
180	the healing process. Fulop et al. found that the pain alleviation might be caused by serotonin and
181	endorphins ¹⁴⁾ which could effectively raise the pain threshold ¹⁵⁾ . The CTS patients who had
182	neurological symptoms and pain due to the inflammation and swelling of the wrist often interfered
183	with functional hand activities. In the result of our study, we found that a decrease of symptoms in the
184	Boston Questionnaire scale accompanied a reduction of VAS. Although our study did not provide a
185	direct proof regarding the changes of biochemical reaction in the affected wrist, we believed that
186	LLLT had a positive effect on CTS.

187	The inflammation effect of the CTS wrist often causes neurological signs and median nerve
188	injury. In the electromyography, the mechanism of pain alleviation was better understood and the
189	reduction of pain could also be explained. In the previous research, LLLT was found to enhance the
190	conduction velocity of sural nerve after diode laser irritation on the normal nerve ¹⁶⁾ .Our research found
191	that after the 830 nm LLLT, the NCS values of distal motor latency and sensory peak latency were
192	reduced. We conjectured that nerve conduction velocity increased due to the repair of nerves. This
193	contention is same as that in the past research ¹⁷⁾ . Applied to clinical treatments of CTS, LLLT was
194	more effective than other conservative treatments ^{18, 19)} . It was apparent based on their results as well as
195	ours, especially for the improvement in symptom severity and neurological signs. Elwakil et al.
196	compared LLLT with the standard open carpal tunnel release surgery, and found that LLLT could
197	improve hand weakness and the atrophy of thenar muscles ⁷). The velocity of neural conduction also
198	showed statistical significance after the treatment ($p < 0.05$). Some studies found that LLLT performed
199	better than other conservative treatments in reducing neurological signs and nerve conduction
200	velocity ^{18, 19)} . Although the effect on neural tissues generated by LLLT is not clear yet, the NCS of
201	CTS were found to be related to the degree of severity of the symptoms in our research. In our study,
202	irradiation area of LLLT was not the distribution of median nerve. We also found that the NCS of the
203	laser group were statistically less than those of the placebo group after applying LLLT to transverse
204	carpal ligament ($p < 0.05$). Accordingly, this result indicated that using the LLLT with an 830 nm
205	diodes laser on the injured nerve is effective.

206	In an animal research, Gigo-Benato et al. used laser irradiation (wavelength: 808 nm; dosage: 29
207	J / cm ² ; duration: 39 seconds) for the end-to-side neurorrhaphy of mouse, and irradiated directly on the
208	exposed axon of median nerve. They found that this approach could enhance the growth and healing
209	of the injured nerve ²⁰⁾ . However, it is difficult to apply to CTS patients. Because of median nerve of
210	human beings is located at the palm side of the wrist, and LLLT should target and reach the nerve in
211	the soft tissue under the skin. Thus, the laser energy might be absorbed by the soft tissue, and
212	insufficient energy reaches the injured nerve. Bakhtiary and Rashidy-Pour tried to use an 830 nm
213	point-like LLLT (1.8 J / point) to irradiate 5 points on the distribution of median nerve ⁸⁾ , and they
214	obtained an unsuccessful result. The reason was that the nerve dispersion is different from each patient,
215	and this method is very hard to provide an appropriate dosage for the injured section of the nerve ²¹⁾ .
216	Naeser et al. also tried to mark the hand and wrist with a square cm grid to treat each marked area with
217	the same dosage, and it resulted in an average dosage on each squares ⁶). They found that the patients
218	experienced a pain alleviation of 50 %, but statistical difference was not seen ($p > 0.05$). Naeser et al.
219	asserted the reason for no obvious statistically difference in the assessment might be that the injured
220	nerve did not absorb enough treatment dosages ⁶⁾ . Hence, the approach of point-like LLLT seemed
221	ineffectively to treat the CTS. Chang et al. thought that the main pathophysiology for CTS is the
222	inflammation and swelling of transverse carpal ligament, and essayed a beam-like diodes laser to
223	irradiate on transverse carpal ligament ⁹⁾ . An identical 830 nm LLLT (9.7 J/cm ²) on the injured
224	transverse carpal ligament were imitated in our study. We also found that the pain alleviation for the

225	mild CTS patients was higher than that for the moderate CTS patients, and the reduction of symptoms
226	for the laser group was higher than that for the placebo group after two weeks of LLLT. As mentioned
227	in the previous research, it would take 4 to 5 weeks of LLLT to treat the mild and moderate CTS in
228	order to achieve statistically significant reductions of neurological symptoms $(p < 0.05)^{6}$. We
229	considered that 830 nm diodes LLLT (9.7 J / cm^2) is a referable parameter for CTS, and a beam-like
230	laser irradiated on transverse carpal ligament is a practical method. Therefore this kind of treatment is
231	effective, especially for mild CTS.
232	Traditionally, the preferred priority treatments for CTS were the conservative methods which aim
233	at pain relief and symptom alleviation ^{3, 4)} . The successful treatment approaches include splinting, and
234	corticosteroid injection ^{22).} The success rate of splinting was 70%, but the rate decreased to a range
235	from 12% to 30% one year later ²³⁾ . The success rate of injection at a specified area for pain alleviation
236	ranged from 51 $\%$ to 93.5 $\%$, but the rate declined and fell to a range between 6.5 $\%$ and 33 $\%$ after
237	one year ²⁴⁾ . However, we found that the disappearances of the Phalen's sign and the Tinel's sign
238	reached 40 $\%$ and 47 $\%$ respectively after LLLT, and 60% and 47 $\%$ after five weeks. However, the
239	comparison between LLLT and other conservative treatments was not investigated in this research,
240	and was still needed to study in the future.

REFERENCES

243 1) Prakash KM, Fook-Chong S, Leoh TH, et al.: Sensitivities of Sensory Nerve Conduction Study

- Parameters in Carpal Tunnel Syndrome. Clin Neurophysiol, 2006, 23: 565–567.
- 245 2) Flak M, Durmala J, Czernicki K, et al.: Double crush syndrome evaluation in the median nerve in
- clinical, radiological and electrophysiological examination. Stud Health Technol Inform, 2006, 123:
- 247 435-441.
- 248 3) Piazzini DB, Aprile I, Ferrara PE, et al.: A systematic review of conservative treatment of carpal
- tunnel syndrome. Padua L Clin Rehabil, 2007, 21: 299–314.
- 4) Carlson H, Colbert A, Frydl J, et al.: Current options for nonsurgical management of carpal tunnel
- 251 syndrome. Int J Clin Rheumtol, 2010, 5: 129–142.
- 252 5) Naeser MA: Photobiomodulation of pain in carpal tunnel syndrome: review of seven laser therapy
- studies. Photomed Laser Surg, 2006, 24: 101–110.
- 6) Naeser MA, Hahn KA, Lieberman BE, et al.: Carpal tunnel syndrome pain treated with low-level
- laser and microamperes transcutaneous electric nerve stimulation: A controlled study. Arch Phys
- 256 Med Rehabil, 2002, 7: 978–988.
- 2577) Elwakil TF, Elazzazi A, Shokeir H: Treatment of carpal tunnel syndrome by low-level laser versus
- open carpal tunnel release. Lasers Med Sci, 2007, 22: 265–270.
- 8) Bakhtiary AH, Rashidy-Pour A: Ultrasound and laser therapy in the treatment of carpal tunnel
- syndrome. Aust J Physiother, 2004, 50: 147–151.
- 9) Chang WD, Wu JH, Jiang JA, et al.: Carpal tunnel syndrome treated with a diode laser: a controlled
- treatment of the transverse carpal ligament. Photomed Laser Surg, 2008, 26: 551–557.

263	10) Jablecki CK, Andary MT, Floeter MK, et al.: Practice parameter. Electrodiagnostic studies in
264	carpal tunnel syndrome. Report of the American Association of Electrodiagnostic Medicine,
265	American Academy of Neurology, and the American Academy of Physical Medicine and
266	Rehabilitation. Neurology, 2002, 58: 1589–1592.
267	11) Sezgin M, Incel NA, Serhan S, et al.: Assessment of symptom severity and functional status in
268	patients with carpal tunnel syndrome: reliability and functionality of the Turkish version of the
269	Boston Questionnaire. Disabil Rehabil, 2006, 28: 1281–1285.
270	12) Amat A, Rigau J, Waynant RW, et al.: Modification of the intrinsic fluorescence and the
271	biochemical behavior of ATP after irradiation with visible and near-infrared laser light. J
272	Photochem Photobiol, 2005, 81: 26–32.
273	13) Gao X, Xing D: Molecular mechanisms of cell proliferation induced by low power laser
274	irradiation. J Biomed Sci, 2009, 16: 4.
275	14) Fulop AM, Dhimmer S, Deluca JR : A meta-analysis of the efficacy of laser phototherapy on pain
276	relief. Clin J Pain, 2010, 26: 729–736.
277	15) Ay S, Doğan SK, Evcik D: Is low-level laser therapy effective in acute or chronic low back pain?
278	Clin Rheumatol, 2010, 29: 905–910.
279	16) Vinck E, Coorevits P, Cagnie B, et al.: Evidence of changes in sural nerve conduction mediated by
280	light emitting diode irradiation. Lasers Med Sci, 2005, 20: $35-40$.

281 17) Shooshtari SM, Badiee V, Taghizadeh SH, et al.: The effects of low level laser in clinical outcome

282	and neurophysiological results of carpal tunnel syndrome. Electromyogr Clin Neurophysiol, 2008,
283	48: 229–231.
284	18) Yagci I, Elmas O, Akcan E, et al.: Comparison of splinting and splinting plus low-level laser
285	therapy in idiopathic carpal tunnel syndrome. Clin Rheumatol, 2009, 28: 1059–1065.
286	19) Dincer U, Cakar E, Kiralp MZ, et al.: The effectiveness of conservative treatments of carpal tunnel
287	syndrome: splinting, ultrasound, and low-level laser therapies. Photomed Laser Surg, 2009, 27: 119
288	-125.
289	20) Gigo-Benato D, Geuna S, de Castro Rodrigues A, et al.: Low-power laser biostimulation enhances
290	nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median
291	nerve model. Lasers Med Sci, 2004, 19: 57–65.
292	21) Evcik D, Kavuncu V, Cakir T, et al.: Laser therapy in the treatment of carpal tunnel syndrome: a
293	randomized controlled trial. Photomed Laser Surg, 2007, 25: 34–39.
294	22) Gerritsen AA, de Krom MC, Struijs MA, et al.: Conservative treatment options for carpal tunnel
295	syndrome: a systematic review of randomised controlled trials. J Neurol, 2002, 249: 272–280.
296	23) Gerritsen AA, de Vet HC, Scholten RJ: Splinting vs surgery in the treatment of carpal tunnel
297	syndrome: a randomized controlled trial. JAMA, 2002, 288: 1245-1251.

- 298 24) Hui AC, Wong S, Leung CH, et al.: A randomized controlled trial of surgery vs. steroid injection
- for carpal tunnel syndrome. Neurology, 2005, 64: 2074 2078.

301 Table 1. Diagnostic criteria of CTS

Diagnostic items	Mild CTS	Moderate CTS
Electromyography	The sensory peak latency value of	The sensory peak latency value
	median nerve was above 3.6 ms, and the	of median nerve was above 3.6
	distal motor latency value was lower	ms, and the distal motor latency
	than 4.3 ms.	value was above 4.3 ms.
Symptoms	The patients also had two or more of the	The patients also had two or
	following symptoms:	more of the same symptoms.
	(1)Phalen's sign	
	(2) Tinel's sign	
	(3)wakefulness at night due to the pain	
	(4) wrist pain	
	(5)abnormal sensation in the first three	
	fingers.	

Items	Scale
1. How severe is the hand or wrist pain that you have at night?	1~5
2. How often did hand or wrist pain wake you up during a typical night in the past	1~5
2 weeks?	
3. Do you typically have pain in your hand or wrist during the daytime?	1~5
4. How often do you have hand or wrist pain during the daytime?	1~5
5. How long, on average, does an episode of pain last during the daytime?	1~5
6. Do you have numbness in your hand?	1~5
7. Do you have weakness in your hand and or wrist?	1~5
8. Do you have tingling sensations in your hand?	1~5
9. How severe is the numbness or tingling at night?	1~5
10. How often did hand numbness or tingling wake you up during a typical night	1~5
in the past two weeks?	
11. Do you have difficulty with the grasping and use of small objects such as keys	1~5

or pens?

	Laser	group	Placebo group		
	Mild CTS	Mod CTS	Mild CTS	Mod CTS	
Number of samples	27	18	27	15	
L't / R't wrist	3/24	0/18	3/24	0/15	
Age (y/o)	46.44 ± 10.12	48.76 ± 14.57	51.10 ± 12.19	44.60 ± 9.60	
Duration of re-onset (months)	2.13 ± 0.86	3.02 ± 0.67	2.07 ± 0.30	2.89 ± 0.97	
VAS	5.07 ± 0.76	7.91 ± 1.12	5.16 ± 0.79	7.10 ± 0.55	
Severity scale	2.68 ± 0.68	2.89 ± 0.90	2.50 ± 0.52	2.49 ± 0.43	
SPL (ms)	3.84 ± 0.24	4.05 ± 0.15	3.79 ± 0.11	3.96 ± 0.21	
DML (ms)	4.10 ± 0.17	4.34 ± 0.45	4.09 ± 0.09	4.49 ± 0.69	

All data are expressed as mean \pm standard deviation, except for items of samples and L't / R't wrist, which are presented as n.

310 VAS: Visual Analog Scale, SPL: Sensory Peak Latency, ML: Motor Latency.

Table 4. Mean changes from baseline scores of parameters, and analysis of changes after treatment

313 and five weeks follow-up

	After treatment			Follow-up			
	Laser group	Placebo group	<i>p</i> value	Laser group	Placebo group	<i>p</i> value	
VAS							
Mild CTS	-2.76 ± 1.48	-0.50 ± 0.83	0.001***	-1.01 ± 0.91	0.01 ± 0.71	0.02*	
Mod CTS	-3.17 ± 1.81	-2.01 ± 0.91	0.01**	-1.25 ± 0.78	-0.51 ± 0.86	0.19	
Severity scale							
Mild CTS	-0.78 ± 0.31	-0.12 ± 0.25	0.001***	-0.06 ± 0.53	0.31 ± 0.49	0.17	
Mod CTS	-0.91 ± 0.32)	-0.29 ± 0.76	0.14	-0.47 ± 0.41	0.31 ± 0.72	0.06	
SPL (ms)							
Mild CTS	-0.24 ± 0.12	-0.08 ± 0.13	0.006**	-0.02 ± 0.23	0.01 ± 0.04	0.11	
Mod CTS	-0.08 ± 0.05	-0.05 ± 0.04	0.18	-0.14 ± 0.06	-0.04 ± 0.07	0.05	
DML (ms)							
Mild CTS	-0.29 ± 0.21	-0.16 ± 0.14	0.002**	0.01 ± 0.11	-0.03 ± 0.25	0.19	
Mod CTS	-0.07 ± 0.04	-0.04 ± 0.13	0.92	-0.07 ± 0.03	-0.02 ± 0.06	0.14	

314 Data are expressed as mean \pm standard deviation.

315 *p < 0.05; **p < 0.01; ***p < 0.001.

	Phalen's sign test		Tinel's sign test			
	Before	After	Follow-up	Before	After	Fallow we
	treatment	treatment		treatment	treatment	Follow-up
Laser group						
Mild CTS $(n = 27)$	27 (100)	12 (44)***	9 (33)***	27 (100)	9 (33)***	9 (33)**
Mod. CTS (<i>n</i> = 18)	18 (100)	15 (83)	9 (50)	18 (100)	15 (83)	15 (83)
Total $(n = 45)$	45 (100)	27 (60)**	18 (40)***	45 (100)	24 (53)***	24 (53)*
Placebo group						
Mild CTS $(n = 27)$	24 (89)	24 (89)	21 (78)	24 (89)	21 (78)	18 (67)
Mod. CTS (<i>n</i> = 15)	15 (100)	12 (80)	12 (80)	15 (100)	15 (100)	12 (80)
Total (<i>n</i> = 42)	39 (93)	36 (86)	33 (79)	39 (93)	36 (86)	30 (71)

Table 5. Number of participants (%) with positive neurological signs

317 Data are expressed as number of positive cases (percentage).

318 *p < 0.05; **p < 0.01; ***p < 0.001.

319

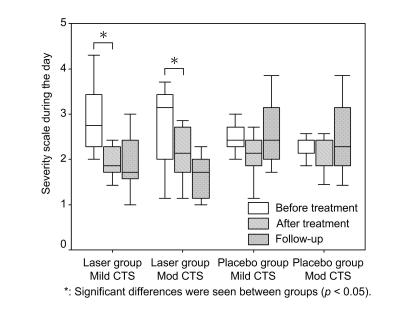


Fig. 1. Changes in the symptom scales during the day in both groups.

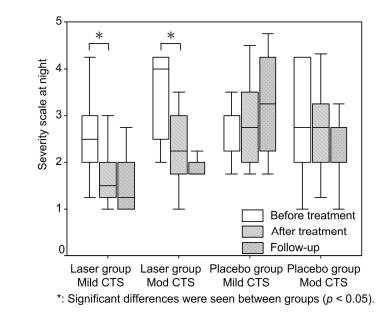


Fig. 2 Changes of symptom scales at night in both groups.