1	Title: Identification of Escherichia coli genes associated with urinary
2	tract infections
3	
4	Running title: E. coli genes associated with urinary tract infections
5	Author Names: Bin-Hsu Mao ¹ , Yung-Fu Chang ² , Joy Scaria ² , Chih-Ching Chang ³ ,
6	Li-Wei Chou ⁴ , Ni Tien ⁵ , Jiunn-Jong Wu ^{6, 10} , Chin-Chung Tseng ⁷ , Ming-Cheng Wang ⁷ ,
7	Chao-Chin Chang ⁸ , Yuan-Man Hsu ⁹ , Ching-Hao Teng ^{1, 10 *}
8	
9	Authors' Affiliations (the address of the institutions at which the work was
10	perform):
11	Institute of Molecular Medicine, National Cheng Kung University Medical College,
12	Tainan City, Taiwan. ¹
13	Department of Population Medicine and Diagnostic Sciences, College of Veterinary
14	Medicine, Cornell University, Ithaca, NY, USA. ²
15	Department of Environmental and Occupational Health, National Cheng Kung
16	University Medical College, Tainan City, Taiwan. ³
17	Department of Physical Medicine and Rehabilitation, China Medical University
18	Hospital, Taichung City, Taiwan. ⁴
19	Department of Laboratory Medicine, China Medical University Hospital, Taichung

- 20 City, Taiwan.⁵
- 21 Department of Medical Laboratory Science and Biotechnology, National Cheng Kung
- 22 University Medical College, Tainan City, Taiwan.⁶
- 23 Division of Nephrology, Department of Internal Medicine, National Cheng Kung
- 24 University Hospital, Tainan City, Taiwan.⁷
- 25 Graduate Institute of Microbiology and Public Health, School of Veterinary Medicine,
- 26 National Chung Hsing University, Taichung City, Taiwan.⁸
- 27 Department of Biological Science and Technology, China Medical University,
- 28 Taichung City, Taiwan.⁹
- 29 Center of Infectious Disease and Signaling Research, National Cheng Kung
- 30 University, Tainan City, Taiwan.¹⁰

31 ***Corresponding author:**

- 32 Mailing address: Institute of Molecular Medicine, National Cheng Kung
- 33 University Medical College, 4th F, 367 Sheng Li Road, Tainan City,
- 34 Taiwan.
- 35 E-mail: <u>chteng@mail.ncku.edu.tw</u>
- 36 Phone: 886-6-2353535 ext. 4595
- 37 FAX: 886-6-2095845

39 Abstract:

40	Escherichia coli is the most common cause of urinary tract infections (UTIs). E. coli
41	genes epidemiologically associated with UTIs are potentially valuable in developing
42	strategies for treating and/or preventing such infections as well as differentiating
43	uropathogenic E. coli from non-uropathogenic E. coli. To identify E. coli genes
44	associated with UTIs in humans, we combined microarray-based and polymerase
45	chain reaction-based analyses to investigate different E. coli source groups derived
46	from feces of healthy humans and from patients with cystitis, pyelonephritis, or
47	urosepsis. The cjrABC-senB gene cluster, sivH, sisA, sisB, eco274, and fbpB, were
48	identified to be associated with UTIs. Of these, <i>cjrABC-senB</i> , <i>sisA</i> , <i>sisB</i> , and <i>fbpB</i> are
49	known to be involved in urovirulence in the mouse model of ascending UTI. Our
50	results provide evidence to support their roles as urovirulence factors in human UTIs.
51	In addition, the newly identified UTI-associated genes were mainly found in members
52	of phylogenetic groups B2 and/or D.
53	
54	
55	
56	
57	Introduction

58	Escherichia coli is the most common cause of urinary tract infections (UTIs),
59	including acute cystitis, pyelonephritis, and urosepsis, three common and clinically
60	distinct UTI syndromes. It is widely accepted that uropathogenic E. coli (UPEC)
61	originate from the distal gut microbiota (8, 13, 15). To cause ascending UTI, UPEC
62	needs to overcome and adapt to different distinct host environments, such as the
63	bladder, the kidneys, and even the blood stream. Accordingly, UPEC tends to be
64	distinct from the commensal E. coli strains in the intestinal tract in having extra
65	virulence genes allowing their successful transition from the intestinal tract to the
66	urinary tract.
67	An epidemiological association between an E. coli gene and UTIs may suggest
68	that the gene itself encodes a factor contributing to urovirulence or has a genetic
69	linkage to such a gene. Therefore, the genes associated with UTIs are potentially
70	valuable in differentiating UPEC from non-uropathogenic E. coli and in the
71	development of strategies for managing and preventing this particular type of disease.
72	Palaniappan et al. have developed an oligonucleotide spotted microarray
73	containing probes representing 342 E. coli genes to differentiate E. coli pathotypes
74	(27). A majority of the genes are derived from the UPEC strain CFT073, the
75	enterohemorrhagic E. coli strain EDL933, and the commensal E. coli K12 strain
76	MG1655. The remaining genes are derived from other E. coli strains capable of

causing intestinal infections. The association of the majority of the 342 genes in the array with UTIs has not yet been investigated, except for 36 uropathogenic genes included among them (27).

80 To identify E. coli genes associated with UTIs, we used the microarray 81 developed by Palaniappan et al. to screen for the genes potentially associated with 82 UTIs and then performed a polymerase chain reaction (PCR)-based analysis with a 83 larger bacterial sample size to confirm these genes' epidemiologic associations with 84 UTIs. One gene cluster and 5 individual genes (hereafter the gene cluster and 5 85 individual genes are referred to as MIGs, abbreviation of "microarray-identified 86 genes") were associated with UTIs. Of these, the gene cluster and 3 of the individual 87 genes have recently been shown to be involved in urovirulence in the mouse model of UTI (6, 20, 22). In addition, we analyzed the phylogenetic distribution of the MIGs, 88 89 and assessed the correlations between these MIGs, as well as between these genes and 90 15 known virulence genes.

91

92 Materials and Methods

93 E. coli isolates and patients

94 The UTI-associated isolates in this study, cystitis, pyelonephritis, and urosepsis
95 isolates, were collected from two hospitals in Taiwan - the China Medical University

96	Hospital (CMUH) at Taichung city in central Taiwan, and National Cheng Kung
97	University Hospital (NCKUH) at Tainan city in southern Taiwan. The UTI-associated
98	isolates used in this study were a subset of the 2,206 E. coli strains isolated from the
99	urine specimens submitted to the diagnostic laboratories of the two hospitals between
100	Jun 2006 and April 2007 (1,619 isolates from CMUH and 587 isolates from NCKUH).
101	According to the diagnostic criteria mentioned below, among the 1,619 isolates from
102	CMUH, 696 isolates were from cystitis patients, 421 isolates from pyelonephritis
103	patients, and 372 from urosepsis patients. Among the 587 isolates from NCKUH, 229
104	isolates were from cystitis patients, 141 isolates from pyelonephritis patients, and 94
105	isolates from urosepsis patients. Together, there were 925 cystitis isolates, 562
106	pyelonephritis isolates, and 466 urosepsis isolates. Out of each type of UTI isolates
107	we randomly selected 67 (7.2%) cystitis isolates, 72 (12.8%) pyelonephritis isolates
108	and 64 (13.8%) urosepsis isolates for this study. The biliary tract infection
109	(BTI)-associated bacteremia E. coli strains (n=24) were obtained from the blood
110	specimens of BTI patients with bacteremia at NCKUH between September 2004 and
111	November 2007. In addition, 115 commensal fecal isolates were collected from the
112	feces of healthy donors between Jun 2006 and April 2007. Each bacterial isolate in
113	this study was derived from a different patient or healthy donor.
114	According to the diagnostic criteria of UTIs previously described (35), the

115	prerequisite for patients with UTIs was that their fresh urine samples contained
116	bacterial counts of $\ge 10^5$ cfu/ml. Cystitis was defined by the presence of dysuria,
117	urinary frequency, and/or lower abdominal pain. Pyelonephritis was based on the
118	presence of body temperature \geq 38.3 °C, and flank pain and/or costovertebral angle
119	tenderness, with or without the syndrome of cystitis. Urosepsis was defined by the
120	presence of bacteremia in addition to UTI syndromes.
121	The diagnostic criteria for BTI were fever, abdominal pain in the right upper
122	quadrant, and/or jaundice, with imaging demonstrating the presence of acute
123	cholecystitis or acute cholangitis (37).
124	DNA microarray analysis
124 125	DNA microarray analysis For genomic DNA preparation, a single colony of bacteria were inoculated into
124 125 126	DNA microarray analysis For genomic DNA preparation, a single colony of bacteria were inoculated into LB broth and was incubated at 37°C for 12 hrs to the concentration of around 3×10 ⁹
124 125 126 127	DNA microarray analysis For genomic DNA preparation, a single colony of bacteria were inoculated into LB broth and was incubated at 37°C for 12 hrs to the concentration of around 3×10 ⁹ CFU/ml. 4ml of the O/N bacterial culture was then subjected to genomic DNA
124 125 126 127 128	DNA microarray analysis For genomic DNA preparation, a single colony of bacteria were inoculated into LB broth and was incubated at 37°C for 12 hrs to the concentration of around 3×10° CFU/ml. 4ml of the O/N bacterial culture was then subjected to genomic DNA extraction with Qiagen DNeasy kit (QIAGEN, Valencia, CA, USA.) according to
124 125 126 127 128 129	DNA microarray analysis For genomic DNA preparation, a single colony of bacteria were inoculated into LB broth and was incubated at 37°C for 12 hrs to the concentration of around 3×10° CFU/ml. 4ml of the O/N bacterial culture was then subjected to genomic DNA extraction with Qiagen DNeasy kit (QIAGEN, Valencia, CA, USA.) according to manufacturer's instructions. The integrity of the genomic DNA was verified by 1%
124 125 126 127 128 129 130	DNA microarray analysis For genomic DNA preparation, a single colony of bacteria were inoculated into LB broth and was incubated at 37°C for 12 hrs to the concentration of around 3×10° CFU/ml. 4ml of the O/N bacterial culture was then subjected to genomic DNA extraction with Qiagen DNeasy kit (QIAGEN, Valencia, CA, USA.) according to manufacturer's instructions. The integrity of the genomic DNA was verified by 1% agarose gel electrophoresis stained with ethidium bromide. 2ug the genomic DNA
124 125 126 127 128 129 130 131	DNA microarray analysis For genomic DNA preparation, a single colony of bacteria were inoculated into LB broth and was incubated at 37°C for 12 hrs to the concentration of around 3×10° CFU/ml. 4ml of the O/N bacterial culture was then subjected to genomic DNA extraction with Qiagen DNeasy kit (QIAGEN, Valencia, CA, USA.) according to manufacturer's instructions. The integrity of the genomic DNA was verified by 1% agarose gel electrophoresis stained with ethidium bromide. 2ug the genomic DNA was used for the enzyme digestion and labeling processes, and then concentrated to a

133 printing, bacterial genomic DNA labeling, microarray hybridization, and data

134	acquisition were performed as previously described (27). Each slide had triplicate
135	spots of each gene. Similarly, the derived data were analyzed as previously described
136	but with a modification in the cutoff criteria determining the positive signals. For each
137	gene the background-subtracted median fluorescence intensities of each triplicate spot
138	were averaged and \log_2 transformed, designated as L values. A gene was considered
139	positive when its L value was greater than the value of the mean (M) substracted by
140	the standard deviation (SD) of the L values derived from 48 genes commonly present
141	in the E. coli strains MG1655, CFT073, and EDL933 (27).
142	Fifteen of the 342 E. coli gene probes were selected as positive control for the
143	microarray experiments, because the target genes they hybridize with were identified
144	in all the current available E. coli strains with complete genome sequences (some of
145	them have been demonstrated as <i>E. coli</i> essential genes) (Supplement table 1). Twenty
146	Salmonella enterica serovar Typhimurim LT2-specific gene probes and the
147	autoblanks (Spots of dimethyl sulfoxide without any probes) were used as the
148	negative controls (Supplement table 1) (27).

149 **PCR-based genotyping and phylogenetic typing**

150 The frequencies of the genes screened in by the microarray analysis were 151 determined by PCR-based analysis. The primers were designed to target the 152 conserved regions of the MIGs (Table 1). The PCR reactions were heated to 95°C in

153	an automated thermal cycler for 5 min, followed by 30 cycles of denaturation (95 $^\circ C$,
154	45 sec), annealing (59 °C, 45 sec), and extension (72 °C, 50 sec). Taq polymerase was
155	used in the reactions. The phylogenetic groups of the 342 E. coli isolates were
156	determined based on the PCR-based method described previously (5). The
157	frequencies of the 15 selected known virulence genes of extraintestinal pathogenic E.
158	coli were determined by PCR-based assays, using primers and PCR conditions as
159	described previously (3, 16).
160	The following E. coli strains were used as controls for the PCR-based analysis
161	of the MIGs and the known virulence genes. The E. coli strains which served as
162	positive controls included CFT073 (sivH, shiA, sisA, sisB, fbpB, papGII, chuA, ompT,
163	sat, iha, usp, ireA, iroN, and hlyA), UTI89 (cjrA, cjrB, cjrC, senB, cnf1, sfaS, and
164	ibeA), EDL933 (eco274), J96 (papGI and papGIII), and one of the UTI-associated
165	clinical isolates A53, which was identified to harbor <i>afa/dra</i> by sequencing the PCR
166	product amplified by the afa/dra specific primers (afa/dra). MG1655 was used as a
167	negative control for all the genes except <i>ompT</i> . An <i>ompT</i> deletion mutant of <i>E. coli</i>
168	strain RS218 was constructed and served as the negative control of <i>ompT</i> .
169	The PCR amplification was done in a 25µl reaction mixture. Amplifications
170	were carried out in Eppendorf Mastercycler [@] gradient thermal cycler (Eppendorf,
171	Hamburg, Germany). The PCR products were electrophoresed in 1.5% agarose gels,

172	stained with ethidium bromide, and photographed using an AlphaImager $\ensuremath{^@}$ HP system
173	(Cell Biosciences, Inc, Santa Clara, CA, USA). The sizes of the products were
174	determined by comparing them with a 100-bp DNA ladder (Fermentas Inc., Glen
175	Burnie, MD, USA) run on the same gel. All PCR tests were performed 3 times with
176	independently prepared boiled lysates. Additional investigations were further
177	conducted, if discrepancies between the independent assays occurred.
178	Statistical analysis
179	Comparisons involving the frequencies of a given gene in different groups were
180	measured by using two-tailed Fisher's exact test. P value < 0.05 was arbitrarily set as
181	the threshold for statistical significance. Correlations between genes were measured
182	by using the Fisher's exact test (two tailed). Because of multiple comparisons, P value
183	< 0.01 was arbitrarily set as the threshold for statistical significance, with <i>P</i> value $<$
184	0.05 as borderline statistical significance (12, 14).
185	Results
186	E. coli genes potentially associated with UTIs
187	To screen for E. coli genes that are potentially associated with UTIs, a
188	microarray-based pilot study was conducted by using 40 E. coli isolates which were

190 which they were associated; fecal isolates from healthy humans (n=8 isolates), cystitis

divided into 4 source groups according to the clinical syndromes (or conditions) with

191	isolates ($n=12$), pyelonephritis isolates ($n=10$), and urosepsis isolates ($n=10$) (Table 2).
192	The bacterial isolates were subjected to gene profiling using the DNA microarray
193	developed by Palaniappan et al. (27). With the gene profiles derived from the
194	microarray data, we determined the frequencies of each microarray-detectable gene in
195	the 4 source groups of E. coli (Supplement table 1). Based on the results of this pilot
196	study, eight genes (cjrA, cjrB, cjrC, SenB, sivH, shiA, eco274, and fbpB) were selected
197	for a further study, since they exhibited higher frequencies in the UTI-associated
198	source groups than those in the fecal source group. While these differences in
199	frequencies were consistently observed between UTI-associated and fecal source
200	groups, only the <i>sivH</i> in the pyelonephritis isolates reached statistically significance
201	(Table 2). Based on BLAST and literature searches, their potential functions were
202	predicted (Table 3). Among them, cjrA, cjrB, and cjrC are located in the operon
203	cjrABC, and senB is located downstream of the operon with its 5' end partially
204	overlapping with cjrC (32). Thus, cjrABC and senB are referred to as cjrABC-senB in
205	this study. According to recent studies using the mouse model of ascending UTI,
206	cjrABC-senB, shiA, and fbpB are involved in the virulence of UPEC (6, 20, 22).
207	However, this is the first time their association with human UTIs has been studied.
208	PCR confirmed associations between the MIGs and UTIs

isolates (n=12), pyelonephritis isolates (n=10), and urosepsis isolates (n=10) (Table 2).

210	study are associated with UTIs, a PCR-based analysis with a larger sample size was
211	performed. Here, another source group containing E. coli isolates causing biliary tract
212	infection (BTI)-associated bacteremia (BTI-associated isolates) was included in
213	addition to the original 4 source groups. The 5 source groups contained a total of 342
214	E. coli isolates (Table 4). We compared the distributions of 6 known virulence genes
215	(papGII, cnfI, hlyA, chuA, iroN, and usp) in the UTI-associated source groups with
216	those in the fecal isolates, all the virulence genes exhibited significantly higher
217	frequencies in the UTI-associated source groups then the fecal isolates (Supplement
218	table 2).
219	According to the PCR analysis with all the E. coli isolates, 107 isolates had at
220	least one gene of cjrABC-senB. A total of 104 out of the 107 isolates (97%) contained
221	all 4 genes, suggesting that their coexistence is common in E. coli. Therefore, we
222	investigated the distribution of the intact gene cluster, cjrABC-senB, by detecting the
223	4 genes separately with different primer pairs specific to each gene (Table 1). Two
224	shiA homologs, sisA and sisB, are identified in E. coli (22), but the microarray used in
225	this study could not differentiate between them. SisA and SisB share 86% identity at
226	the level of amino acid sequences, with their N-termini being the most divergent parts.
227	The distributions of <i>shiA</i> , <i>sisA</i> , and <i>sisB</i> were investigated separately by using <i>shiA</i>

To further confirm whether the genes identified from the microarray-based pilot

228 primers able to detect the sequence common to sisA and sisB, and primers specific to

- sisA and sisB, in the PCR-based analysis (Table 1).
- Overall, the results confirmed that these MIGs are associated with UTIs. The frequencies of most of the MIGs in each of the UTI-associated source groups (cystitis, pyelonephritis, and urosepsis) were significantly higher than that in the fecal source group (Table 4). Although the frequencies of eco274 in the cystitis and fecal isolates were not significantly different, its frequencies in the pyelonephritis and urosepsis isolates were significantly higher than that in the fecal isolates.

236 When the three UTI-associated source groups were compared, shiA and sisA 237 showed significantly higher frequencies in the pyelonephritis isolates than in the 238 cystitis isolates (Table 4). When the UTI-associated groups were compared with the 239 BTI-associated group, the distributions of cjrABC-senB, sivH, shiA, sisA, and fbpB 240 markedly favored the UTI-associated bacterial isolates (Table 4). sisB tended to 241 exhibit higher frequencies in the UTI-associated isolates than in the BTI-associated 242 isolates although the differences did not reach statistical significance. In addition, 243 when the BTI-associated isolates were compared with the fecal isolates, the 244 frequencies of the MIGs were not significantly different (data not shown).

245 Phylogenetic distribution of the MIGs

The MIGs were mainly concentrated within phylogenetic groups B2 and/or D 246 247 (Table 5). cjrABC-senB and eco274 showed significantly greater frequencies in group 248 D than in group B2, while *sivH* and *fbpB* were present with significantly higher 249 frequencies in group B2 than in group D. sivH and fbpB were almost entirely confined to group B2 and were not found in group A or B1. The frequencies of shiA, sisA, and 250 251 sisB in group B2 and in group D isolates were not significantly different. 252 Stratification of the MIGs by phylogeny 253 To determine whether the associations of the MIGs with UTIs were still present

in individual phylogenetic groups, we further evaluated the distributions of the genes
in the fecal and UTI-associated isolates with stratification of individual phylogenetic
groups. Since the genes were mainly concentrated in groups B2 and/or D, and were
relatively rare in groups A and B1 (Table 6), only the group B2 and group D strains
were assessed.

In group B2, the distributions of *shiA*, *sisA*, and *sisB* still markedly favored the UTI-associated isolates over the fecal isolates (Table 6). The frequencies of *sivH* in the cystitis and pyelonephritis isolates of B2 bacteria were higher than those in the B2 fecal isolates, while the frequencies of *fbpB* in the cystitis and urosepsis isolates of B2 bacteria were higher than those in the B2 fecal isolates (Table 6).

264	In group D, when the UTI-associated source groups were compared with the
265	fecal source group, significant difference in frequencies favoring the cystitis and
266	pyelonephritis isolates was still detected for <i>cjrABC-senB</i> , <i>shiA</i> , and <i>sisA</i> .
267	Correlations of the MIGs with one another and with known virulence genes
268	We performed pairwise comparisons of the MIGs with one another and with the
269	15 selected known virulence genes among the 203 UTI-associated E. coli isolates (the
270	total isolates in the source groups of pyelonephritis, cystitis, and urosepsis) (Table 7).
271	When the MIGs were compared with one another, both positive and negative
272	associations were detected. The positive associations seemed to be related to the
273	phylogenetic distribution of the E. coli strains which carried these genes. sivH and
274	fbpB, which were mainly concentrated in group B2 (Table 5), were positively
275	associated with each other. cjrABC-senB and eco274, whose frequencies in group D
276	were significantly higher than those in group B2 (Table 5), demonstrated a positive
277	association. sisA and sisB, whose frequencies in groups B2 and D were not
278	significantly different (Table 5), exhibited a marginal positive statistical association
279	($P=0.014$; data not shown). In addition, negative associations were detected when
280	sivH was compared with cjrABC-senB and eco274.
281	As to the associations between MIGs with the 15 known virulence genes,

282 positive and negative associations were also detected (Fig. 1). Of note, the association

283	patterns of $sivH$ and eco274 with some of the known virulence genes were opposite.
284	sivH was positively associated with cnf1, usp, ireA, iroN, sfaS, while eco274 was
285	negatively associated with these genes. In addition, sivH was negatively associated
286	with sat and <i>iha</i> , while eco274 was positively associated with these genes (Table 7).
287	Discussion
288	This study is the first to identify the epidemiological associations of the E. coli genes,
289	cjrABC-senB, sivH, sisA, sisB, eco274, and fbpB, with UTIs by utilizing the
290	microarray and PCR-based analyses on fecal isolates and three distinct UTI
291	syndrome-associated isolates. Most of the MIGs were associated with all three distinct
292	UTI syndromes, cystitis, pyelonephritis, and urosepsis, while eco274 was associated
293	only with pyelonephritis and urosepsis. cjrABC-senB, sisA, sisB, and fbpB have
294	recently been found to be involved in the virulence of UPEC in the mouse model of
295	ascending UTI (6, 20, 22). Consistently, our results show these genes' associations
296	with human UTIs, well supporting their roles as <i>E. coli</i> virulence factors in human
297	UTIs. As for <i>eco274</i> and <i>sivH</i> , their roles in urovirulence have not yet been assessed
298	in the mouse model. However, they are likely to be urovirulence genes themselves or
299	have genetic linkage with such genes, based on their associations with UTIs. Thus,
300	these MIGs could be potential targets for developing preventive, and/or therapeutic
301	strategies for UTIs as well as potential markers of UPEC.

302	<i>cjrABC-senB</i> has been shown to be present on the plasmids of enteroinvasive <i>E</i> .
303	coli (EIEC) and two UPEC strains, UTI89 and UMN026 (26, 32, 34). Interruption of
304	this gene cluster in UTI89 decreases the bacterium's ability for bladder colonization in
305	the early stage of the mouse model of UTI (6). The cjrABC operon is predicted to be
306	involved in iron acquisition, which may contribute to urovirulence (6). senB encodes
307	for the TieB protein, which may have some role in enterotoxicity of EIEC (26).
308	However, its role in UTIs is not yet clear. senB and the gene encoding the ShET-2
309	toxin, named senA (or sen), are located on a plasmid of an enteroinvasive E. coli
310	strain EI37 (26). It has been proposed that the polar effect caused by interruption of
311	senB may affect expression of senA (26). However, Soto et al. showed that senA was
312	not present in all of the 170 UPEC clinical isolates they examined (33), therefore it
313	seems unlikely that the association of <i>senB</i> with UTIs is strictly based on its affect on
314	senA expression.
315	shiA is primarily identified in the SHI-2 pathogenicity island (PAI) of Shigella

flexneri (25, 36). This gene has been shown to be involved in the down regulation of inflammatory responses in both the rabbit ileal loop and mouse lung models of shigellosis (10, 11). The *shiA* homologs, *sisA* and *sisB*, in the UPEC strain CFT073 have been shown to be involved in suppressing the host immune response, facilitating bacterial colonization of the bladder and kidney during the initial stage of UTI in mice 321 (22).

322	fbpB is located in the fbp locus, which contains the genes $fbpABCD$ and is
323	potentially involved in iron acquisition (28). <i>fbpB</i> is predicted to encode a periplasmic
324	siderophore-binding protein (28). CFT073 contains two identical copies of <i>fbpABCD</i>
325	located in distinct genomic islands, PAI-CFT073-aspV and GI-CFT073-cobU (21).
326	The CFT073 mutant with deletion of the two <i>fbp</i> loci is significantly outcompeted by
327	the wild-type strain in the bladders and kidneys of mice (20).
328	sivH was originally identified in the CS54 island of Salmonella enterica
329	serotype Typhimurium (24). The sivH of Salmonella is known to be involved in the
330	colonization of the Peyer's patches in mice (17). Deletion of the genomic island RDI
331	13, which contains sivH, in the meningitis-associated E. coli strain RS218 decreases
332	the bacterium's ability to adhere to and invade human brain microvascular endothelial
333	cells (39). Whether SivH contributes to the urovirulence of UPEC is unknown.
334	eco274 is classified as an EDL933-specific gene in the DNA microarray used in
335	our initial screening (27). This gene is located in the O island #148 of EDL933 (29).
336	Its role in urovirulence is unknown. When the three UTI-associated groups were
337	compared with the fecal isolates, it was noted that eco274 was not associated with
338	cystitis, but rather only with pyelonephritis and urosepsis. Thus, eco274 is likely to
339	encode a virulence factor involved only in pyelonephritis and urosepsis, or have a

340 genetic linkage with a gene encoding such a virulence factor.

341	The distributions of several MIGs in the UPEC strains revealed in this study are
342	consistent with results from other related studies. The frequencies of cjrABC-senB in
343	the three UTI-associated groups ranged from 36% to 43% in the present study, which
344	is similar to the findings of Cusumano et al. that senB exists in 8 of 18 UPEC isolates
345	(44%) (6). Similarly, the higher frequencies of sisA in the UTI-associated groups
346	compared to those of sisB in our study (67%-80% versus 28%-31%) support the
347	hypothesis of Lloyd et al (20). that sisA is more prevalent than sisB in UPEC isolates.
348	Their hypothesis is based on the findings that in all sequenced bacterial species, sisA
349	is mainly distributed in extraintestinal pathogenic E. coli strains, while sisB is mainly
350	distributed in enteric strains (22). Also, our finding that no significant difference in
351	the distributions of <i>fbpB</i> between the cystitis and pyelonephritis isolates is consistent
352	with the findings of Parham et al. that the distributions of the fbp locus in these two
353	types of isolates are not significantly different. However, the <i>fbpB</i> frequencies in the
354	cystitis and pyelonephritis isolates in our study (45% and 44%, respectively) are
355	lower than those of the <i>fbp</i> locus in the same types of isolates in the study of Parham
356	et al.(58% and 59%, respectively). In addition, Lloyd et al. classified fbpB as
357	UPEC-specific based on an investigation of 11 UPEC and 4 fecal or commensal E.
358	coli strains, showing that fbpB is present in all the UPEC strains but not in the

fecal/commensal strains (21). However, in our study *fbpB* was detected in 18 out of the 115 fecal isolates (Table 4), suggesting that *fbpB* is not a UPEC specific gene, although its frequencies in fecal isolates was significantly lower than those in the UTI-associated isolates.

The significantly higher frequency of *shiA* in the pyelonephritis group than that in the cystitis group may be due to the distribution of *sisA*. This is because the frequency of the *shiA* distribution was the composite of the *sisA* and *sisB* distributions, and only *sisA* but not *sisB* exhibited higher frequencies in the pyelonephritis group than in the cystitis group. In addition, the significantly higher frequencies of *sisA* in the pyelonephritis group may suggest that *sisA* plays a more important role in pyelonephritis than in cystitis.

The distributions of the MIGs, which were mainly concentrated in groups B2 and/or D, are similar to those of most extraintestinal virulence genes, concentrated in groups B2 and/or D as well (12, 15). Such accordance is supportive to our assertion that the MIGs are potential virulence genes or have genetic linkage to such genes.

The associations of the MIGs with extraintestinal infections may be syndrome-dependent (i.e. BTI versus UTI), because these genes were correlated with the UTI-associated isolates, but not with the BTI-associated isolates, when compared with the fecal isolates. Wang *et al.* have shown that *E. coli* strains responsible for BTI

378	mainly belong to the phylogenetic groups A and B1(37), unlike the other
379	extraintestinal pathogenic strains, including UPEC, mainly belonging to phylogenetic
380	group B2 and, to a lesser extent, group D (7, 16, 30). Similarly, 50% (12/24) of the
381	BTI-associated isolates in this study belong to phylogenetic group A (data not shown).
382	Given our finding that these MIGs were mainly concentrated in phylogenetic groups
383	B2 and/or D, such distinct phylogenetic distribution of BTI-associated isolates might
384	be responsible for the syndrome-dependent associations. However, the possibility that
385	these genes are specifically associated with UTIs, but not other types of extraintestinal
386	infections, can not be excluded. A detailed study to assess more types of
387	extraintestinal infections caused by E. coli may be required.
388	The associations of <i>cjrABC-senB</i> , <i>sivH</i> , and <i>fbpB</i> with the UTI syndromes may
389	not necessarily be phylogenetic group dependent, although these associations were
390	observed exclusively in one of the investigated phylogenetic groups, B2 and D (Table
391	6). These observations may be due to the decreased sample size after stratification by
392	phylogeny.
393	Two genes having genetic linkage, such as their co-localization in the same
394	plasmid or genomic island, may result in a positive association. However, the MIGs
395	positively associated with each other were not found in the same genomic islands or
396	plasmids, according to the BLAST search on the completely sequenced E. coli strains.

397	These observations suggest that such associations are not due to genetic linkages but
398	due to a process of co-selection, which may facilitate the pathogenesis in UTIs. As an
399	example, <i>cjrABC-senB</i> is located in plasmids of <i>E. coli</i> strains (26, 32, 34), while its
400	positively associated genes, <i>eco274</i> and <i>sisA</i> , are located in the chromosome (34, 38).
401	Also, <i>sivH</i> is located in a three-gene genomic island (named RDI 13 in RS218, as
402	mentioned) which is always inserted between $yfgJ$ and $xseA$ in the chromosome (2, 4,
403	34, 38), while <i>sisA</i> and <i>fbpB</i> , which are positively associated with <i>sivH</i> , are located in
404	other PAIs (2, 34, 38).
405	The positive association of sisA with the known virulence genes, papGII, iha,
406	and <i>sat</i> , may be due to genetic linkages among them (Table 7), because <i>sisA</i> and these
407	known virulence genes are located in a PAI, PAI-CFT073-pheV, in CFT073 (21).
408	However, the associations are not absolute. In addition, sisA was not associated with
409	hly which is also located in PAI-CFT073-pheV (21). These observations demonstrate
410	that the genetic linkages between virulence factors in a PAI are not constant,
411	supporting the suggestion of Johnson et al. that virulence genes may be transferred
412	horizontally, independent of the PAIs where they were originally located, in addition
413	to being transferred with the entire PAI (14).
414	It is known that UPEC requires multiple virulence genes in together to cause

415 infection (23). The virulence gene combination of a UPEC strain may determine the

416	pathogenesis process employed by this strain to cause infection. Johnson et al. have
417	identified two groups of urovirulence genes. The member genes in the same group
418	exhibit positive associations, but in general negatively associate with genes in the
419	other group (14). Also, we found that eco274 and sivH, which were negatively
420	associated with each other, exhibited opposite association patterns with a portion of
421	the known virulence genes (as mentioned in the Results section). These findings
422	imply that sets of virulence genes, with members that are for the most part discrete,
423	may exist among UPEC to direct bacteria through distinct pathways to cause UTIs.
424	However, a further study with more virulence factors to determine their distributions
425	and co-occurrence, is necessary to test this inference.
426	The expression of a bacterial gene in an environment may reflect the role of this
427	gene in bacterial adaptation to this particular environment (31). Thus, transcriptome
428	analyses of UPEC genes during UTIs may provide clues whether or not and how a
429	bacterial gene is involved in pathogenesis of UTIs. According to a recent microarray
430	analysis of E. coli global gene expression in 8 urine samples from different women
431	with UTIs, expression of <i>sisA</i> is detected in most of the urine samples (9), consistent
432	with the notion that this gene is a virulence factor in human UTIs. However, the
433	expression of sisB and fbpA, which is located upstream of fbpB in the fbp locus, was
434	not detected in these urine samples (9). This may be because $sisB$ and the genes in the

fbp locus are only transiently required for pathogenesis of human UTIs and the urine
samples only represent a stage of the infection that these genes are not involved in.
Alternatively, since most urovirulence genes only exist in a portion of UPEC strains,
the *E* .*coli* strains in these urine samples may not have harbored these potential
virulence genes.

440 In conclusion, the MIGs are potential targets for developing preventive and/or 441 therapeutic strategies to manage UTIs as well as potential markers for differentiating 442 UPEC from non-uropathgenic E. coli. Virulence factors of UPEC are good targets for 443 prevention and treatment of UTIs. For example, the FimH adhesin of type 1 fimbria is 444 responsible for colonization of UPEC on the uroepithelium of the bladder. FimH 445 antagonists have been developed as anti-adhesive drug for oral treatment of UTIs (18). 446 Also, FimH and iron receptors, such as IreA, Hma, and IutA are able to induce 447 protective immune response against UPEC infections (1, 19). Thus, cjrABC-senB, 448 sisA, sisB, and fbpB, which are involved in urovirulence of UPEC, are potential 449 therapeutic and/or preventive targets. In addition, all the MIGs are potential markers 450 for UPEC. Such markers may be valuable in public health for monitoring biological 451 threats, such as outbreaks of UTIs caused by E. coli and emergency of new virulence 452 E. coli strains, and also in basic microbiology research, such as studies in evolution 453 and classification of pathogenic E. coli. However, so far, none of the known

454 ur	rovirulence factors alone is sufficient to account for the virulence properties of
455 U	PEC and most of the urovirulence genes only exist in a portion of UPEC strains.
456 TI	herefore, to develop effective and widely usable preventive and/or therapeutic
457 str	rategies to manage E. coli-caused UTIs, a combination of multiple urovirulence
458 ge	enes to serve as the targets may be necessary. Accordingly, the properties of the
459 M	IIGs revealed in this study, including their prevalence, phylogenetic distribution, and
460 co	prrelation patterns with other known virulence genes, may be beneficial for
461 de	esigning such a gene combination for controlling these E. coli-caused diseases.

Table 1. Primer sequences used in this study

Conos	Drimor Sequence $(5', 2')$	Amplicon size
Gelles	Fillier Sequence (5 - 5)	(bp)
cjrA	AAAGGGTGGTCCTGGGAGAT	223
	ACGTCAGTTGCTGGCTTTCA	
cjrB	CGAAGTTCAGCCCGCTATGT	397
	GCTTTCCCAAGATGCCTCAG	
cjrC	AAACCTCAGCGCAAAATCGT	518
	AGGCTTCAGGAATGGGTTCA	
senB	CCGTTGAAAGATCCGAGACC	312
	GTTTGGGTAGACCGGCATGT	
sivH	TACAGCACGCGTAAACCGTA	866
	TGGCAGTACAGTTCCGATCA	
shiA	TCACCTTACTGGTATGAACTC	451
	TCCAGGGCCAGACATATTCA	
sisA	TTGCCCGACAGGAGAATGAC	360
	GCAGTATATGGCGTGCCTGT	
sisB	GAACGATAGATTATGCTTTG	518
	TCAGTACACTGAAGGCTCGC	
eco274	TTGACAAAGCCTGCCTGACC	207
	CCTCCAACCCGTGTTTTTGC	
fbpB	GCAAATCGCGCAGGATAAAG	821
	ACGCACAAGGAGGTGCGTAT	

465 Table 2. The microarray-analysis-derived frequencies of the genes which were

		No. (%) of	E. coli isolates	
Gana	Eacol isolatas	Cystitis	Pyelonephritis	Urosepsis
Gene	(n=8)	isolates	isolates	isolates
	(11-0)	(n=12)	(n=10)	(n=10)
cjrA	2 (25)	5 (42)	6 (60)	7 (70)
cjrB	2 (25)	5 (42)	6 (60)	7 (70)
cjrC	2 (25)	5 (42)	6 (60)	7 (70)
senB	2 (25)	5 (42)	6 (60)	7 (70)
sivH	2 (25)	5 (42)	8 (80)*	7 (70)
shiA	4 (50)	8 (67)	9 (90)	9 (90)
eco274	2 (25)	8 (67)	7 (70)	6 (60)
fbpB	4 (50)	8 (67)	8 (80)	8 (80)

466 potentially associated with UTIs

467 * P < 0.05, pairwise comparisons between the indicated UTI-associated source group

468 with the fecal source group.

470) Tab	le 3. '	The	potential	functi	ions o	f the	MI	Gs
-----	-------	---------	-----	-----------	--------	--------	-------	----	----

Gene	Designation in microarray ^a	Potential function of the gene $\text{product}^{\text{b}}$	Accession no. in the representative UPEC strains ^c	Completely genome-sequenced UPEC strains harboring the genes	
cjrA	cjrA	Putative inner membrane protein	YP_538626	UTI89, UMN026	
cjrB	cjrB	TonB-like protein	YP_538627	UTI89, UMN026	
cjrC	cjrC	Putative TonB-dependent receptor	YP_538628	UTI89, UMN026	
senB	senB	Enterotoxin Tie protein	YP_538629	UT189, UMN026	
sivH ^d	eco293	Putative intimin or invasin protein	NP_754913	UTI89, CFT073, UMN026, 536, IAI39	
shiA	eco294	Potential suppressor of innate immune response	NP_755432 and NP_756354	CFT073, UMN026, IAI39,	
eco274	eco274	Potential transcriptional regulator	YP_002410135	UMN026, IAI39	
fbpB	eco288	Potential iron-chelating protein	NP_752239	UTI89, CFT073, 536	

472 ^a The gene's designation used in the microarray described previously (27).

473 ^b The potential functions of all the genes are based on the BLAST search, except for that of *shiA*, which is based on the finding of Lloyd *et*

474 *al.*(22).

475 ^c The accession no. indicates UTI89-derived *cjrA*, *cjrB*, *cjrC*, and *senB*; CFT073-derived *shiA*, *sivH*, and *fbpB*;

476 IAI39-derived *eco274*, respectively.

477 ^d sivH is also named sinH.

478 Table 4. Distributions of the MIGs among 342 Escherichia coli isolates in different source groups

	No. (%) of E. coli isolates						P^{a}			
Gana	Fecal	Cystitis	Pyelonephritis	Urosepsis	BTI	Fecal	Fecal	Fecal	Fecal	
Gene	isolates	isolates	isolates	isolates	isolates ^b	vs	vs	vs	vs	
	(n=115)	(n=67)	(n=72)	(n=64)	(n=24)	Cystitis	Pyelonephritis	Urosepsis	BTI	
cjrABC-senB	23 (20)	24 (36)	32 (44)	23 (36)	2 (9)	0.023	0.001	0.031	-	
sivH	21 (18)	36 (54)	37 (51)	30 (47)	4 (13)	< 0.001	< 0.001	< 0.001	-	
shiA	40 (35)	47 (70)	62 (86)	54 (84)	6 (25)	< 0.001	< 0.001	< 0.001	-	
sisA	35 (30)	45 (67)	61 (85)	51 (80)	5 (22)	< 0.001	< 0.001	< 0.001	-	
sisB	10 (9)	19(28)	16(22)	20 (31)	3 (13)	0.001	0.016	< 0.001	-	
eco274	31 (27)	22 (33)	31 (43)	30 (47)	7(38)	-	0.026	0.009	-	
fbpB	18 (16)	30 (45)	32 (44)	32 (50)	3 (9)	< 0.001	< 0.001	< 0.001	-	

479

480 Table 4 continued on next page

481

483 Table 4, co	ontinued
-----------------	----------

			P^{a}			
Cono	Cystitis	Cystitis	Pyelonephritis	BTI	BTI	BTI
Gene	vs	vs	vs	vs	vs	VS
	Pyelonephritis	Urosepsis	Urosepsis	Cystitis	Pyelonephritis	Urosepsis
cjrABC-senB	-	-	-	0.016	0.001	0.015
sivH	-	-	-	0.002	0.004	0.013
shiA	0.025	-	-	< 0.001	< 0.001	< 0.001
sisA	0.017	-	-	< 0.001	< 0.001	< 0.001
sisB	-	-	-	-	-	_
eco274	-	-	-	-	-	_
fbpB	-	-	-	0.006	0.006	0.001

484

485 ^a Only *P* values of <0.05 (by Fisher's exact test) are shown.

486 ^b "BTI isolates" indicates BTI-associated bacteremia isolates.

488 Table 5. Phylogenetic distribution of the MIGs in the 342 E. coli isolates from all	the source groups
---	-------------------

		No.(%) of E	. coli isolates				P^{a}		
Gene	Group A (n=61)	Group B1 (n=15)	Group B2 (n=185)	Group D (n=81)	A vs B2	A vs D	B1 vs B2	B1 vs D	B2 vs D
cjrABC-senB	6 (10)	0 (0)	60 (32)	38 (47)	< 0.001	< 0.001	0.006	< 0.001	0.028
sivH	0 (0)	0 (0)	126 (68)	2 (2)	< 0.001	-	< 0.001	-	< 0.001
shiA	14 (23)	1 (7)	138 (75)	56 (69)	< 0.001	< 0.001	< 0.001	< 0.001	-
sisA	7(11)	0 (0)	137 (74)	53 (65)	< 0.001	< 0.001	< 0.001	< 0.001	-
sisB	8 (13)	1 (7)	40 (22)	19 (23)	-	-	-	_	-
eco274	2 (3)	0 (0)	53 (29)	66 (81)	< 0.001	< 0.001	0.013	< 0.001	< 0.001
fbpB	0 (0)	0 (0)	111 (60)	4 (5)	< 0.001	-	< 0.001	-	< 0.001

490 ^a Only *P* values of <0.05 (by Fisher's exact test) are shown.

493	Table 6. Prevalence of the MIGs stratified by phylogeny

	No.(%) of E. coli isolates					P^a			
Gene	Fecal isolates	Cystitis isolates	Pyelonephritis isolates	Urosepsis isolates	Cystitis vs Fecal	Pyelonephritis vs Fecal	Urosepsis vs Fecal		
Group B2	n=42	n=45	n=48	n=45					
cjrABC-senB	10 (24)	14 (31)	18 (38)	17 (38)	_	-	-		
sivH	21 (50)	35 (78)	36 (75)	30 (67)	0.008	0.017	_		
shiA	19 (45)	34 (76)	45 (94)	39 (87)	0.005	< 0.001	< 0.001		
sisA	19 (45)	33 (73)	45 (94)	39 (87)	0.009	< 0.001	< 0.001		
sisB	1(2)	14 (31)	12 (25)	13 (29)	< 0.001	0.002	0.001		
eco274	15(36)	10 (22)	12 (25)	15 (33)	-	-	-		
fbpB	17 (40)	29 (64)	30 (63)	32 (71)	0.032	-	0.005		
Group D	n=25	n=13	n=20	n=16					
cjrABC-senB	8 (32)	10 (77)	14 (70)	6 (38)	0.016	0.017	-		
sivH	0 (0)	1 (8)	1 (5)	0 (0)	-	-	_		
shiA	12 (48)	12 (92)	17 (85)	13 (81)	0.012	0.013	-		
sisA	11 (44)	12 (92)	16 (80)	12 (75)	0.005	0.018	_		
sisB	4 (16)	4 (31)	4 (20)	5 (31)	-	-	-		
eco274	16 (64)	12 (92)	17 (85)	15 (94)	-	_	-		
fbpB	1(4)	1 (8)	2 (10)	0 (0)	-	-	-		

495 ^a Only *P* values of < 0.05 (by Fisher's exact test) are shown.

Identified	cjrABC-senB	eco274	sivH	fbpB	<i>sisA</i>	sisB
cjrABC-senB	NA	++	(++)	-	+	-
eco274	++	NA	(++)	-	-	-
sivH	(++)	(++)	NA	++	++	-
fbpB	-	-	++	NA	+	+
sisA	+	-	++	+	NA	-
sisB	-	-	-	+	-	NA
Known						
papG I	-	-	-	-	-	-
papG II	-	-	-	-	++	-
papG III	-	-	-	+	-	-
chuA	++	-	++	++	++	-
ompT	++	++	-	++	-	+
afa/draBC	-	-	-	-	-	-
sat	++	++	(++)	-	++	++
iha	++	++	(++)	-	++	++
cnf1	-	(++)	++	++	-	++
usp	-	(++)	++	++	++	-
ireA	(++)	(++)	++	-	++	-
iroN	(++)	(++)	++	++	-	-
sfaS	-	(+)	++	++	-	-
ibeA	-	-	+	+	(+)	-
hlyA	-	-	+	++	-	++

498 virulence genes in the 231 UTI-associated E. coli isolates.

Note. Significant codes: -, $P \ge 0.01$; +, P < 0.01; ++, P < 0.001. Because of multiple comparisons, P value < 0.01 was arbitrarily set as the threshold for statistical significance, with P value < 0.05 as borderline statistical significance (12, 14). Parentheses indicate negative associations. "Identified" and "Known" indicate the MIGs and selected known virulence genes in this study, respectively.

505 References

506	1.	Alteri, C. J., E. C. Hagan, K. E. Sivick, S. N. Smith, and H. L. Mobley.
507		2009. Mucosal immunization with iron receptor antigens protects against
508		urinary tract infection. PLoS Pathog 5:e1000586.

- Brzuszkiewicz, E., H. Bruggemann, H. Liesegang, M. Emmerth, T.
 Olschlager, G. Nagy, K. Albermann, C. Wagner, C. Buchrieser, L. Emody,
 G. Gottschalk, J. Hacker, and U. Dobrindt. 2006. How to become a
 uropathogen: comparative genomic analysis of extraintestinal pathogenic
 Escherichia coli strains. Proc Natl Acad Sci U S A 103:12879-12884.
- Chapman, T. A., X. Y. Wu, I. Barchia, K. A. Bettelheim, S. Driesen, D.
 Trott, M. Wilson, and J. J. Chin. 2006. Comparison of virulence gene
 profiles of *Escherichia coli* strains isolated from healthy and diarrheic swine.
 Appl Environ Microbiol 72:4782-4795.
- Chen, S. L., C. S. Hung, J. Xu, C. S. Reigstad, V. Magrini, A. Sabo, D.
 Blasiar, T. Bieri, R. R. Meyer, P. Ozersky, J. R. Armstrong, R. S. Fulton, J.
 P. Latreille, J. Spieth, T. M. Hooton, E. R. Mardis, S. J. Hultgren, and J. I.
 Gordon. 2006. Identification of genes subject to positive selection in
 uropathogenic strains of *Escherichia coli*: a comparative genomics approach.
 Proc Natl Acad Sci U S A 103:5977-5982.
- 524 5. Clermont, O., S. Bonacorsi, and E. Bingen. 2000. Rapid and simple
 525 determination of the *Escherichia coli* phylogenetic group. Appl Environ
 526 Microbiol 66:4555-4558.
- 527 6. Cusumano, C. K., C. S. Hung, S. L. Chen, and S. J. Hultgren. 2010.
 528 Virulence plasmid harbored by uropathogenic *Escherichia coli* functions in
 529 acute stages of pathogenesis. Infect Immun 78:1457-1467.

- 530 7. Goullet, P., and B. Picard. 1986. Highly pathogenic strains of *Escherichia*531 *coli* revealed by the distinct electrophoretic patterns of carboxylesterase B. J
 532 Gen Microbiol 132:1853-1858.
- 533 8. Gruneberg, R. N. 1969. Relationship of infecting urinary organism to the
 534 faecal flora in patients with symptomatic urinary infection. Lancet 2:766-768.
- 535 9. Hagan, E. C., A. L. Lloyd, D. A. Rasko, G. J. Faerber, and H. L. Mobley.
 536 2010. *Escherichia coli* global gene expression in urine from women with
 537 urinary tract infection. PLoS Pathog 6:e1001187.
- Ingersoll, M. A., J. E. Moss, Y. Weinrauch, P. E. Fisher, E. A. Groisman,
 and A. Zychlinsky. 2003. The ShiA protein encoded by the *Shigella flexneri*SHI-2 pathogenicity island attenuates inflammation. Cell Microbiol
 5:797-807.
- Ingersoll, M. A., and A. Zychlinsky. 2006. ShiA abrogates the innate T-cell
 response to *Shigella flexneri* infection. Infect Immun 74:2317-2327.
- Johnson, J. R., P. Delavari, M. Kuskowski, and A. L. Stell. 2001.
 Phylogenetic distribution of extraintestinal virulence-associated traits in *Escherichia coli.* J Infect Dis 183:78-88.
- Johnson, J. R., N. Kaster, M. A. Kuskowski, and G. V. Ling. 2003.
 Identification of urovirulence traits in *Escherichia coli* by comparison of
 urinary and rectal *E. coli* isolates from dogs with urinary tract infection. J Clin
 Microbiol 41:337-345.
- Johnson, J. R., T. T. O'Bryan, M. Kuskowski, and J. N. Maslow. 2001.
 Ongoing horizontal and vertical transmission of virulence genes and *papA*alleles among *Escherichia coli* blood isolates from patients with
 diverse-source bacteremia. Infect Immun 69:5363-5374.

- Johnson, J. R., and T. A. Russo. 2005. Molecular epidemiology of
 extraintestinal pathogenic (uropathogenic) *Escherichia coli*. Int J Med
 Microbiol 295:383-404.
- Johnson, J. R., and A. L. Stell. 2000. Extended virulence genotypes of *Escherichia coli* strains from patients with urosepsis in relation to phylogeny
 and host compromise. J Infect Dis 181:261-272.
- 561 17. Kingsley, R. A., A. D. Humphries, E. H. Weening, M. R. De Zoete, S.
- Winter, A. Papaconstantinopoulou, G. Dougan, and A. J. Baumler. 2003.
 Molecular and phenotypic analysis of the CS54 island of *Salmonella enterica*serotype typhimurium: identification of intestinal colonization and persistence
 determinants. Infect Immun **71**:629-640.
- Klein, T., D. Abgottspon, M. Wittwer, S. Rabbani, J. Herold, X. Jiang, S.
 Kleeb, C. Luthi, M. Scharenberg, J. Bezencon, E. Gubler, L. Pang, M.
 Smiesko, B. Cutting, O. Schwardt, and B. Ernst. 2010. FimH antagonists
 for the oral treatment of urinary tract infections: from design and synthesis to
 in vitro and in vivo evaluation. J Med Chem 53:8627-8641.
- 571 19. Langermann, S., S. Palaszynski, M. Barnhart, G. Auguste, J. S. Pinkner, J. 572 Burlein, P. Barren, S. Koenig, S. Leath, C. H. Jones, and S. J. Hultgren. 573 1997. Prevention of mucosal Escherichia coli infection by 574 FimH-adhesin-based systemic vaccination. Science 276:607-611.
- 575 20. Lloyd, A. L., T. A. Henderson, P. D. Vigil, and H. L. Mobley. 2009.
 576 Genomic islands of uropathogenic *Escherichia coli* contribute to virulence. J
 577 Bacteriol 191:3469-3481.
- 578 21. Lloyd, A. L., D. A. Rasko, and H. L. Mobley. 2007. Defining genomic
 579 islands and uropathogen-specific genes in uropathogenic *Escherichia coli*. J

- 580 Bacteriol **189:**3532-3546.
- Lloyd, A. L., S. N. Smith, K. A. Eaton, and H. L. Mobley. 2009.
 Uropathogenic *Escherichia coli* Suppresses the host inflammatory response
 via pathogenicity island genes *sisA* and *sisB*. Infect Immun 77:5322-5333.
- 584 23. Marrs, C. F., L. Zhang, and B. Foxman. 2005. *Escherichia coli* mediated
 585 urinary tract infections: are there distinct uropathogenic *E. coli* (UPEC)
 586 pathotypes? FEMS Microbiol Lett 252:183-190.
- 587 24. McClelland, M., K. E. Sanderson, J. Spieth, S. W. Clifton, P. Latreille, L.
- 588 Courtney, S. Porwollik, J. Ali, M. Dante, F. Du, S. Hou, D. Layman, S.
- 589 Leonard, C. Nguyen, K. Scott, A. Holmes, N. Grewal, E. Mulvaney, E.
- Ryan, H. Sun, L. Florea, W. Miller, T. Stoneking, M. Nhan, R. Waterston,
 and R. K. Wilson. 2001. Complete genome sequence of *Salmonella enterica*serovar Typhimurium LT2. Nature 413:852-856.
- 593 25. Moss, J. E., T. J. Cardozo, A. Zychlinsky, and E. A. Groisman. 1999. The
 594 *selC*-associated SHI-2 pathogenicity island of *Shigella flexneri*. Mol Microbiol
 595 33:74-83.
- Nataro, J. P., J. Seriwatana, A. Fasano, D. R. Maneval, L. D. Guers, F.
 Noriega, F. Dubovsky, M. M. Levine, and J. G. Morris, Jr. 1995.
 Identification and cloning of a novel plasmid-encoded enterotoxin of
 enteroinvasive *Escherichia coli* and *Shigella* strains. Infect Immun
 600
 63:4721-4728.
- Palaniappan, R. U., Y. Zhang, D. Chiu, A. Torres, C. Debroy, T. S.
 Whittam, and Y. F. Chang. 2006. Differentiation of *Escherichia coli*pathotypes by oligonucleotide spotted array. J Clin Microbiol 44:1495-1501.
- 604 28. Parham, N. J., S. J. Pollard, R. R. Chaudhuri, S. A. Beatson, M. Desvaux,

605 M. A. Russell, J. Ruiz, A. Fivian, J. Vila, and I. R. Henderson. 2005. 606 Prevalence of pathogenicity island IICFT073 genes among extraintestinal 607 clinical isolates of Escherichia coli. J Clin Microbiol 43:2425-2434. 608 29. Perna, N. T., G. Plunkett, 3rd, V. Burland, B. Mau, J. D. Glasner, D. J. 609 Rose, G. F. Mayhew, P. S. Evans, J. Gregor, H. A. Kirkpatrick, G. Posfai, J. Hackett, S. Klink, A. Boutin, Y. Shao, L. Miller, E. J. Grotbeck, N. W. 610 611 Davis, A. Lim, E. T. Dimalanta, K. D. Potamousis, J. Apodaca, T. S. Anantharaman, J. Lin, G. Yen, D. C. Schwartz, R. A. Welch, and F. R. 612 613 Blattner. 2001. Genome sequence of enterohaemorrhagic Escherichia coli 614 O157:H7. Nature 409:529-533. 615 30. Picard, B., J. S. Garcia, S. Gouriou, P. Duriez, N. Brahimi, E. Bingen, J. Elion, and E. Denamur. 1999. The link between phylogeny and virulence in 616 617 Escherichia coli extraintestinal infection. Infect Immun 67:546-553. 618 31. Seed, P. C., and S. J. Hultgren. 2005. Blueprinting the regulatory response of 619 Escherichia coli to the urinary tract. Trends Microbiol 13:246-248. 620 32. Smajs, D., and G. M. Weinstock. 2001. The iron- and temperature-regulated 621 cjrBC genes of Shigella and enteroinvasive Escherichia coli strains code for 622 colicin Js uptake. J Bacteriol 183:3958-3966. 623 33. Soto, S. M., E. Guiral, J. Bosch, and J. Vila. 2009. Prevalence of the set-1B 624 and astA genes encoding enterotoxins in uropathogenic Escherichia coli 625 clinical isolates. Microb Pathog 47:305-307. 626 34. Touchon, M., C. Hoede, O. Tenaillon, V. Barbe, S. Baeriswyl, P. Bidet, E. 627 Bingen, S. Bonacorsi, C. Bouchier, O. Bouvet, A. Calteau, H. Chiapello, O. 628 Clermont, S. Cruveiller, A. Danchin, M. Diard, C. Dossat, M. E. Karoui, E. 629 Frapy, L. Garry, J. M. Ghigo, A. M. Gilles, J. Johnson, C. Le Bouguenec,

- 630 M. Lescat, S. Mangenot, V. Martinez-Jehanne, I. Matic, X. Nassif, S. 631 Oztas, M. A. Petit, C. Pichon, Z. Rouy, C. S. Ruf, D. Schneider, J. Tourret, 632 B. Vacherie, D. Vallenet, C. Medigue, E. P. Rocha, and E. Denamur. 2009. 633 Organised genome dynamics in the *Escherichia coli* species results in highly 634 diverse adaptive paths. PLoS Genet 5:e1000344. Tseng, C. C., J. J. Huang, W. C. Ko, J. J. Yan, and J. J. Wu. 2001. 635 35. 636 Decreased predominance of papG class II allele in Escherichia coli strains 637 isolated from adults with acute pyelonephritis and urinary tract abnormalities. 638 J Urol 166:1643-1646. 639 Vokes, S. A., S. A. Reeves, A. G. Torres, and S. M. Payne. 1999. The 36. 640 aerobactin iron transport system genes in Shigella flexneri are present within a 641 pathogenicity island. Mol Microbiol 33:63-73. 642 37. Wang, M. C., C. C. Tseng, A. B. Wu, J. J. Huang, B. S. Sheu, and J. J. Wu. 643 2009. Different roles of host and bacterial factors in Escherichia coli 644 extra-intestinal infections. Clin Microbiol Infect 15:372-379. 645 38. Welch, R. A., V. Burland, G. Plunkett, 3rd, P. Redford, P. Roesch, D. 646 Rasko, E. L. Buckles, S. R. Liou, A. Boutin, J. Hackett, D. Stroud, G. F. 647 Mayhew, D. J. Rose, S. Zhou, D. C. Schwartz, N. T. Perna, H. L. Mobley, 648 M. S. Donnenberg, and F. R. Blattner. 2002. Extensive mosaic structure 649 revealed by the complete genome sequence of uropathogenic Escherichia coli. 650 Proc Natl Acad Sci U S A 99:17020-17024. 651 39. Xie, Y., V. Kolisnychenko, M. Paul-Satyaseela, S. Elliott, G. Parthasarathy, 652 Y. Yao, G. Plunkett, 3rd, F. R. Blattner, and K. S. Kim. 2006. Identification 653 and characterization of Escherichia coli RS218-derived islands in the
- 654 pathogenesis of *E. coli* meningitis. J Infect Dis **194:**358-364.