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Abstract

The relationship between abnormal HER2 expression and cancer is important in cancer therapeutics. Formation and spread of
cancer cells may be restricted by inhibiting HER2. We conducted ligand-based and structure-based studies to assess the
potency of natural compounds as potential HER2 inhibitors. Multiple linear regression (MLR) and support vector machine (SVM)
models were constructed to predict biological activities of natural compounds, and molecular dynamics (MD) was used to
assess their stability with HER2 under a dynamic environment. Predicted bioactivities of the natural compounds ranged from
6.014–9.077 using MLR (r2 = 0.7954) and 5.122–6.950 using SVM (r2 = 0.8620). Both models were in agreement and suggest
bioactivity based on candidate structure. Conformation changes caused by MD favored the formation of stabilizing H-bonds. All
candidates had higher stability than Lapinatib, which may be due to the number and spatial distribution of additional H-bonds
and hydrophobic interactions. Amino acids Lys724 and Lys736 are critical for binding in HER2, and Thr798, Cys805, and Asp808
are also important for increased stability. Candidates may block the entrance to the ATP binding site located within the inner
regions and prevent downstream activation of HER2. Our multidirectional approach indicates that the natural compounds have
good ligand efficacy in addition to stable binding affinities to HER2, and should be potent candidates of HER2 inhibitors. With
regard to drug design, designing HER2 inhibitors with carboxyl or carbonyl groups available for H-bond formation with Lys724
and Lys736, and benzene groups for hydrophobic contact with Cys805 may improve protein-ligand stability.
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Introduction

HER2 are members of the epidermal growth factor receptor

tyrosine kinase protein family which includes HER1/EGFR,

HER2/ErbB2, HER3/ErbB3, and ErbB4. These proteins form

various homo- and hetero- dimer receptors on human cell

membranes. When these receptors bind with ligands, autophos-

phorylation will occur and activate P13k/Akt and Ras/Raf

signaling pathways, stimulating signal transduction of downstream

cell growth and differentiation [1,2]. Clinically, abnormalities in

HER2 gene regulation will cause receptor over-production,

resulting in various cancers including breast cancer, ovarian

cancer, gastric cancer, and prostate cancer [3–7]. Therefore,

inhibiting HER2 expression and function is critical in treating

cancer and preventing the spread of cancerous cells.

Trastuzumab (HerceptinH) and Lapatinib (TykerbH) are two

drugs used clinically in breast cancer. Trastuzumab inhibits over-

expression of HER2 [8], and Lapatinib inhibits HER2 autophos-

phorylation by competing with ATP for the HER2 protein kinase

domain, thus preventing further signal transduction [9]. Drug

resistance issues have been reported for Trastuzumab [10].

Synergistic effects on breast cancer is observed when Lapatinib

is used with Capecitabine, but side effects such as nausea,

vomiting, and diarrhea have been recorded [11].

Computer-aided drug design is widely used in developing new

drugs and has been integrated in this laboratory with our self-

developed TCM Database@Taiwan [12] to design and develop

novel drugs from traditional Chinese medicine [13–17]. Much

research has proven that traditional Chinese herb compounds

exhibit antioxidation and anti-inflammation effects and have

therapeutic effects on cancer [18–20]. A preliminary experiment

conducted in this laboratory identified several natural compounds

from traditional Chinese herbs as HER2 inhibitors through

docking and 3D-QSAR evaluation [21]. However, as static state

docking does not necessarily equal stability in a dynamic state (ie.

body), further evaluation is required. This research aims to predict

biological activity with different statistical models, and evaluate

candidate-HER2 complex stability under a dynamic state.

Materials and Methods

Candidate Compounds and Docking Site
Based on our previous findings [21], natural compounds 2-O-

caffeoyl tartaric acid, 2-O-feruloyl tartaric acid, and salvianolic
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acid C exhibited good docking characteristics and were selected as

candidates for further investigation. Lapatinib was used as the

control. The HER2 docking site was constructed through

sequence homology and detailed elsewhere [21].

Biological Activity Prediction using Multiple Linear
Regression (MLR) and Support Vector Machine (SVM)
Models

A total of 298 HER2 ligands were adapted to construct activity

(pIC50) prediction models [22–35]. Descriptors of each ligand were

calculated using the Calculate Molecular Properties module in

Discovery Studio 2.5 (DS 2.5; Accelrys, San Diego, CA) and

plugged into the Genetic Approximation (GA) algorithm to select 12

optimum descriptors for predicting pIC50. The selected descriptors

were used to construct MLR and SVM models using Matlab

Statistics Toolbox and libSVM, respectively. Descriptors were

normalized between [21,+1] before SVM model training. Gaussian

radial basis function was selected as the kernel function for SVM

model generation. The HER2 ligands were randomly divided into a

238 ligand training set and a 60 ligand test set for validation.

Prediction results were validated with 5-fold cross validation. The

constructed models were applied to predict biological activities

(pIC50) of the control and top 3 natural compounds.

Molecular Dynamics (MD) Simulation
The HER2 protein structure used within this study was

constructed through homology modeling using EGFR kinase

domain structures found in Protein Data Bank (PDB: 2ITY and

2J5E). Modeling details and validity testing are detailed in our

previous study [21]. Molecular dynamics simulation was carried

out using DS 2.5 Standard Dynamics Cascade package with the

following settings: [minimization] steepest descent, [conjugate

gradient] maximum steps of 500, [heating time] 50 ps, [equili-

bration time] 200 ps, [total production time] 20 ns with NVT,

[constant temperature dynamics] Berendsen weak coupling

method, [temperature coupling decay time] 0.4 ps with the

Figure 1. Correlation of observed and predicted activity (pIC50) by different prediction models. (A) MLR and (B) SVM.
doi:10.1371/journal.pone.0028793.g001

Table 1. DockScore and predicted activities of candidate
compounds using MLR and SVM.

Compounds Dock Scorea MLR SVM

2-O-Caffeoyl tartaric acid 121.870 6.879 5.339

2-O-Feruloyl tartaric acid 121.483 6.014 5.122

Salvianolic acid C 104.833 9.077 6.950

Lapatinib* 67.330 7.640 7.058

a: scores adapted from Sun et al. [21].
*: control.
doi:10.1371/journal.pone.0028793.t001

Figure 2. Trajectory profiles of RMSD and total energy during
molecular dynamics simulation. (A) Complex RMSD, (B) ligand
RMSD, and (C) total energy.
doi:10.1371/journal.pone.0028793.g002
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Figure 3. Hydrogen bond distance (Å) of candidates during MD simulation. (A) Lapatinib, (B) 2-O-Caffeoyl tartaric acid, (C) 2-O-Feruloyl
tartaric acid, and (D) Salvianolic acid C.
doi:10.1371/journal.pone.0028793.g003

Figure 4. Structural scaffolds of candidate compounds. (A) Lapatinib, (B) 2-O-Caffeoyl tartaric acid, (C) 2-O-Feruloyl tartaric acid, and (D)
Salvianolic acid C. Locations of importance during MD are denoted by numbers.
doi:10.1371/journal.pone.0028793.g004
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Berendsen thermal coupling method, and [target temperature]

310 K. Hydrogen bonds, distance of hydrogen bond, root mean

square deviations (RMSD) of complex, RMSD of ligand, total

energy of complex, and torsion angles were analyzed by the

analyze trajectory protocol of DS 2.5 following MD simulation.

Protein-ligand interactions were analyzed with the LIGPLOT

program [36].

Results and Discussion

Biological Activity Predictions using MLR and SVM
The following MLR model was generated utilizing the GA

descriptors and 238 training-set ligands:

E1~2:1339z0:092423|NumExplicitBondsz0:37231|NumRings6

{0:25576|NumStereoAtomsz0:19439|NumAtomClassesz0:30864

|NumH{Acceptors{0:014194|MolecularSurfaceArea

z1:5485|CHI3cz1:3483|CHI3F {0:40743|SC2

{2:7921|JursFPSA{zz0:066095|JursPPSA{s

{0:00094984|PMI X

Correlation of actual and predicted activities of HER2 ligands

based on the generated MLR are shown in Figure 1A and the

residual plot indicating the goodness-of-fit is shown in Figure S1.

Majority of the predicted values are within the 95% prediction

bands, indicating acceptable correlation of the MLR model

(r2 = 0.7954). Similarly, the SVM model was generated using

identical GA descriptors and the results are illustrated in Figure 1B.

Acceptable correlation was also observed (r2 = 0.8620). Based on

these results, the models are acceptable models for predicting

activity of HER2 ligands.

Table 1 summarizes the predicted biological activities for

Lapatinib and the candidate compounds using MLR and SVM

models. All compounds were predicted as biologically active and

are in agreement with 3D-QSAR results previously reported [21].

In contrast to descriptive bioactivity predictions based on 3D-

QSAR results, MLR and SVM predictions allow quantitative

predictions on the strength of bioactivity in each compound.

Salvianolic acid C showed the highest bioactivity among TCM

candidates.

Molecular Dynamics Simulation
Stability of Lapatinib and the TCM candidates were achieved

after 10 ns in a dynamic environment (Figure 2). The RMSD of

whole complexes was approximately 1.6 Å (Figure 2A). The

smallest RMSD was observed in 2-O-caffeoyl tartaric acid (0.6 Å).

The RMSD of the other compounds were ca. 1.3 Å (Figure 2B).

The small variation of 2-O-caffeoyl tartaric acid suggests a stable

state within the receptor site. Total energy trajectories indicate

that the candidates form complexes with lower energy compared

Figure 5. Binding pose of candidate compounds in HER2. (A) Lapatinib, (B) 2-O-Caffeoyl tartaric acid, (C) 2-O-Feruloyl tartaric acid, and (D)
Salvianolic acid C. Differences from the docking pose are specified by the red circle. Hydrogen-bond interactions (green dashed line), Pi interactions
(orange line). The three H atoms of Lys 724 amine subgroup are labeled as HZ1, HZ2, and HZ3.
doi:10.1371/journal.pone.0028793.g005
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to the control. The higher stability further supports the potential of

the candidates as drug alternatives to Lapatinib.

The amine residue on Lys724 in HER2 protein is important to

form hydrogen bonds (H-bond) with ligands. Each ligand formed

at least one stable H-bond with Lys724 throughout the MD

simulation (Figure 3). The amine residue constantly rotates when

bound to Lapatinib. Overlapping of the indicator lines suggests the

existence of multiple H-bonds at Lys724 with 2-O-caffeoyl tartaric

acid after 10 ns. H-bonds with 2-O-feruloyl tartaric acid and

salvianolic acid C were fairly stable. Rotation was observed with

salvianolic acid C from 14–20 ns.

Stability mechanisms of each candidate can be provided by MD

simulation trajectories. For clarification purposes, specific locations

are denoted by Roman numerals and torsion angle locations are

designated by Arabic numerals in Figure 4. In Lapatinib, the bond

between Lys724 and the SO2 residue in docking was substituted by

the NH group (red circle) at the beginning of MD (Figure 5A,

S1A). The shift occurred because the bond between NH3
+-N is

stronger than that of NH3
+-SO2, and might have been triggered

by procedures (minimization, heating, and equilibration) prior to

MD production. During MD, Lapatinib formed stable H-bonds

with Lys724 and Leu726 at I, and a stable pi-cation interaction

with Lys753 at II (Figure 4A). Torsion angles indicate bonds 1–5
were stable, most likely due to the H-bond at I. Moieties II and III
were also important to the stability of Lapatinib. At approximately

0.16 ns, II rotated to being perpendicular to IV. The conforma-

tion change may have contributed to the decrease in total energy

by reducing strain on the connecting O atom. The rotation of III
to being perpendicular to V also coincided with the reduction of

total energy in Figure 2C.

Differences from docking were also observed for 2-O-caffeoyl

tartaric acid. Cys805-Asp808 formed a helix structure during

docking (Figure S2B). During MD, a fold in the original helix (red

circle, Figure 5B) enabled formation of stable H-bonds between

Asp808 and VI. In addition, 2-O-caffeoyl tartaric acid was

anchored to the binding site by multiple H-bonds formed through

VII and VIII with Lys724, VIII and IX with Lys736, and X with

Cys805. Similar to being locked-down, movement of the ligand was

limited except at XI. Additional evidence is provided by the small

torsion angles recorded for the backbone structure of 2-O-caffeoyl

tartaric acid. Changes in torsion were generally small, and notable

movement was only observed on hydroxyl side residues 6, 7, 13
(Figure 4B). These observations can explain the low ligand RMSD

(Figure 2B) and support the stability of the formed complex.

Figure 6. Protein-ligand interaction analysis by LIGPLOT. (A) Lapatinib, (B) 2-O-Caffeoyl tartaric acid, (C) 2-O-Feruloyl tartaric acid, and (D)
Salvianolic acid C.
doi:10.1371/journal.pone.0028793.g006

Figure 7. Centroid distance between candidates and proximate HER2 amino acids. (A) Lapatinib, (B) 2-O-Caffeoyl tartaric acid, (C) 2-O-
Feruloyl tartaric acid, and (D) Salvianolic acid C. Centroids of the ligands and amino acids are represented in yellow and green, respectively.
doi:10.1371/journal.pone.0028793.g007
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A ca. 180 degree rotation of the benzene on 2-O-feruloyl tartaric

acid was observed during MD (Figure 5C, S1C). The rotation

flipped XII towards Lys736, and H-bonds were formed.

Additional H-bonds were formed at XIII with Lys724 and at

XIV with Cys805. All formed H-bonds were stable throughout

MD. Small torsion changes were observed for 2-O-feruloyl tartaric

acid except at 16 which was not restricted by any bond formation

(Figure 4C). The compact structure and the even distribution of

the H-bond formation locations may be the reason 2-O-feruloyl

tartaric acid has the highest stability (ie. lowest total energy) among

all the tested compounds (Figure 2C).

Conformational changes contributing to higher stability was

also observed in salvianolic acid C (Figure 5D, Figure S2D). The

benzene structure XV on salvianolic acid C torqued nearly 90

degrees during MD (red circle, Figure 5D), and the pi-interaction

originally observed during docking was lost. The rotation relocated

available residues to favorable H-bond forming locations, and H-

bonds were formed between XVI and Lys736 and XVII and

Thr798. The pi-cation interaction with Lys724 was replaced by

the H-bonds formed at XVIII with the three available H atoms

from Lys724. Small torsion angles (Figure 4D) provide evidence of

the ligand stability.

Hydrophobic interactions determined for each ligand at the end

of MD are illustrated in Figure 6. In addition to the previously

discussed H-bonds, Lapatinib was further stabilized through

hydrophobic interaction with Gly727, Val734, Ile752, Lys753,

and Leu807 (Figure 6A). Lys724 and Leu726 were important in

forming hydrophobic interactions with 2-O-caffeoyl tartaric acid

(Figure 6B) and 2-O-feruloyl tartaric acid (Figure 6C). An

additional hydrophobic interaction with Tyr803 was observed in

2-O-feruloyl tartaric acid. Eight amino acids were detected as

exhibiting hydrophobic interaction on Salvianolic acid C

(Figure 6D). Majority of the cyclic carbon moieties were stabilized

through these interactions.

The spatial location and distances of nearby amino acids with

the centroid of each candidate ligand are depicted in Figures 7 and

8. A bimodal distribution of amino acid distances was observed for

Lapatinib. On the other hand, the distance of nearby amino acids

from the centroid of the TCM candidates were more uniform. The

distance distribution (Figure 9) suggests that all test ligands were

tightly fitted within the binding site and can effectively block ATP

from binding. Furthermore, the candidates were more closely

bound to the binding site than Lapatinib, indicating another

advantage of the candidates as a potential Lapatinib substitute.

MD observations indicate that the candidate compounds are

more stable within the HER2 binding site than Lapatinib. The

stability could be explained in part by the multiple H-bonds

formed with the binding site. Conformational changes induced by

the MD simulation were favorable in forming additional H-bonds

that contributed to overall stability of the candidates.

Possibility of the natural compound candidates as alternatives to

Lapatinib was supported by the ligand based analysis and MD

simulation. Candidates were predicted as biologically active by the

constructed MLR (r2 = 0.7954) and SVM (r2 = 0.8620) models

based on their ligand characteristics. Molecular simulation

revealed that candidates formed more stable complexes with the

HER2 binding site (ie. lower in total energy) than Lapatinib. This

increased stability may be explained by the formation of additional

stabilizing H-bonds and hydrophobic contacts. Figure 10 summa-

rizes the key conclusions from the preliminary study [21] and this

current investigation. Amino acids that are critical for HER2-

ligand interaction include Lys724, Lys736, and Cys805. As

illustrated in Figure 10, binding at the key amino acids results in

blocking of the ATP binding site entrance, and may result in

inhibition of HER2 activity. Analysis of the candidates indicates

that carbonyl, carboxylic acid, and hydroxyl groups are critical

moieties for stable binding. Based on the results of this study, the

natural compound candidates have potential as biologically active

compounds with improved stability in HER2. Designing HER2

inhibitors with carbonyl, carboxyl, and hydroxyl groups available

for H-bond formation may improve protein-ligand stability.

Figure 8. Distribution of centroid distance (Å) between ligand
and proximate residues.
doi:10.1371/journal.pone.0028793.g008

Figure 9. Population of centroid distance (Å) between ligand
and proximate residues.
doi:10.1371/journal.pone.0028793.g009
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Supporting Information

Figure S1 Residual plot indicating the goodness-of-fit
for the constructed MLR model.
(TIF)

Figure S2 Docking pose of TCM candidates in HER2. (A)

Lapatinib, (B) 2-O-Caffeoyl tartaric acid, (C) 2-O-Feruloyl tartaric

acid, and (D) Salvianolic acid C. Green dashed lines and orange

lines refer to H-bonds and p-interactions, respectively, Illustration

adapted from Sun et al. [21] with the permission of the authors.

(TIF)
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