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Human epidermal growth factor receptor type 2 (HER2) overexpression, which has been reported to increase the
malignancy of human ovarian cancer cells and the metastatic potential of human breast cancer cells, is an important factor in
tumour formation and tumour growth. However, currently available HER2 inhibitors, such as Lapatinib, for cancer therapy
cause adverse side effects including diarrhoea, rash and possible liver toxicity. We hoped to find novel agents that cause less
adverse side effects by performing virtual screening process on the world’s largest traditional Chinese medicine compound
database. The results thus obtained were then validated using 3D quantitative structure–activity relationship model. Top
three candidates were selected from the docking results. The top three candidates and the control both formed a hydrogen
bond with the key residue, Lys724. This showed that the candidates and the control have similar binding effects to HER2.
These candidates were investigated using comparative molecular field analysis and comparative molecular similarity indices
analysis models. The results from these models showed high correlation coefficients (r 2) of 0.9547 and 0.9226, respectively.
All top three candidates had high docking scores, favourable pharmacophores and functional groups forming stable
hydrogen bonds with HER2. These properties suggested stable binding affinities and favourable interaction with HER2.
We concluded that these candidates may be further investigated as potential HER2 inhibitors.

Keywords: traditional Chinese medicine; 3D-quantitative structure–activity relationship; comparative molecular field
analysis; comparative molecular similarity indices analysis

1. Introduction

Human epidermal growth factor receptor type 2 (HER2) is

a member of the human epidermal growth factor receptor

(EGFR) tyrosine kinases, which is a protein family

consisting of HER1/EGFR, HER2/Erb2, HER3/ErbB3 and

ErbB4 [1]. HER2 forms heterodimer with other EGFR

members. HER2-containing heterodimer is stimulated

by ligand binding, which then autophosphorylates and

activates downstream signalling pathways associated

with cellular proliferation, differentiation and regulation.

Excessive signalling caused by inappropriate gene

amplification and/or HER2 overexpression triggers

uncontrolled cell growth pathway. Many types of cancer

exhibit inappropriate HER2/neu proto-oncogene amplifi-

cation and overexpression, including breast cancer,

ovarian cancer, gastric cancer and prostate cancer [2–6].

Hence, the abnormal increase of HER2 expression is an

important factor in tumour formation and growth. As a

result, inhibiting the expression or function of HER2 has

become an important target for cancer treatment.

Lapatinib (Tykerbw) is a bioactive HER2 inhibitor

that competitively inhibits HER2/EGFR protein at the

ATP-binding site of the kinase domain. This drug has been

used in breast cancer chemotherapy. However, Lapatinib

may cause adverse side effects such as diarrhoea, rash and

possibly liver toxicity [7,8]. Also, another HER2 inhibitor,

Trastuzumab, has been reported to cause drug resistance

after prolonged treatment [9]. Hence, this research sought

to develop novel therapeutic agents with reduced adverse

side effects as well as decreased possibility of inducing

drug resistance. This may contribute to increased

compliance and clinical benefit for cancer patients.

We combined both structure-based and ligand-based

approaches to screen for optimal HER2 inhibitors from

the world’s largest traditional Chinese medicine (TCM)

database that we have constructed [10]. For the structure-

based approach, we utilised virtual screening methods to

filter through more than 20,000 compounds in the TCM

database. TCM has been practiced in East Asia for

thousands of years. Recent scientific research projects had

isolated a large number of TCM compounds for the

development of novel therapeutic agents. Several novel

anti-cancer or anti-inflammatory compounds have been

reported from Refs [11–13]. Molecular simulation
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techniques have been successfully implemented in drug

design [14–23], and we have already employed these

techniques [24–44]. In this study, we sought to establish

the statistical relationship between the bioactivity data,

pIC50 and the various molecular fields defined in the

comparative molecular field analysis (CoMFA) and

comparative molecular similarity indices analysis (CoM-

SIA) models.

2. Materials and methods

2.1 Docking

The structure of the HER2 protein was constructed from

protein homology. The target sequence, which was

downloaded from Swiss-Prot (ERBB_HUMAN, P04626)

and Protein Data Bank (PDB: 2ITY and 2J5E), was

subjected to sequence comparison. For homology model-

ling templates, we used EGFR kinase domain structures,

2ITY and 2J5E, which have high sequence identity and

high sequence similarity of 67.0 and 76.3%, respectively

(Figure 1). The structure that was constructed validated

with Ramachandran plot (Figure 2), which had best carbon

torsion angles in 91.8% alpha carbons, and Profile-3D

(Figure 3), which suggested reasonable binding site

conformation at residues 726–734.

Figure 1. Sequence alignment of HER2 and two template structures, 2ITY and 2J5E. The sequence identity is 67.0% and the sequence
similarity is 76.3%.
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Figure 2. Ramachandran plot of HER2 modelling structure.
The results show that 91.8% of the residuals were located in
favoured region (cyan area), 6% of the residuals were located in
semi-favoured region (magenta area) and only 2.2% of the
residuals were located in disfavoured region (colour online).
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More than 20,000 compounds from the TCM database

(http://tcm.cmu.edu.tw/) [10] and controls (Lapatinib and

ATP) were analysed. In the Discovery Studio (DS) 2.5

0.9164 (Accelrys, Inc., San Diego, CA, USA) operation

environment, Prepare Ligand module with Lipinski’s rule

of five was first operated. The Chemistry at HARvard

Macromolecular Mechanics (CHARMm) force field was

applied to each ligand before docking (LigandFit program)

[45] was executed. Monte-Carlo algorithm was employed

to generate several energy-minimised conformations for

the binding site using docking simulation. Eleven scoring

functions, such as LigScore1, LigScore2 [46], PLP1, PLP2

[47,48], Jain [49], PMF, PMF04 [50,51], Ludi Energy

Estimate 1, Ludi Energy Estimate 2, Ludi Energy Estimate

3 [52] and DockScore, were applied to evaluate the

docking results.

2.2 3D-Quantitative structure–activity relationship
model

A collection of 36 protein kinase inhibitor ligands [53] was

used to establish the 3D-quantitative structure–activity

relationship (3D-QSAR) model. The software ChemBioOf-

fice was used to draw 2D and 3D structure of the ligands.

Molecular mechanics 2 (MM2) force field was applied for

structural optimisation. (Table 1). The software Sybyl 8.0

was then used to randomly select 31 ligands for structural

alignment to create the training set (Figure 4). 3D-QSAR

models were subsequently created using CoMFA and

CoMSIA techniques. Using partial least squares (PLSs)

statistical method, correlation coefficients, q2CV and r 2 were

calculated for cross validation (CV) and no validation (NV),

Table 1. Molecular structures for constructing CoMFA and
CoMSIA models.
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Name R1 R2 R3

1 H Cl 4-F-Ph
2 H Br 4-F-Ph
3 H Me 4-F-Ph
4 Cl Cl 4-F-Ph
5 Br Br 4-F-Ph
6 Me Me 4-F-Ph
7 H Cl 4-HO-Ph
8 H Br 4-HO-Ph
9 H Me 4-HO-Ph
10 Cl Cl 4-HO-Ph
11 Br Br 4-HO-Ph
12a Me Me 4-HO-Ph
13a H Cl Propyl
14 H Br Propyl
15 H Me Propyl
16a Cl Cl Propyl
17 Br Br Propyl
18 Me Me Propyl
19 H Cl 4-F-Ph
20 H Br 4-F-Ph
21 H Me 4-F-Ph
22 Cl Cl 4-F-Ph
23a Br Br 4-F-Ph
24 Me Me 4-F-Ph
25 H Cl 4-HO-Ph
26 H Br 4-HO-Ph
27 H Me 4-HO-Ph
28 Cl Cl 4-HO-Ph
29a Br Br 4-HO-Ph
30 Me Me 4-HO-Ph
31 H Cl Propyl
32 H Br Propyl
33 H Me Propyl
34 Cl Cl Propyl
35 Br Br Propyl
36 Me Me Propyl

a Test set.
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Figure 3. Profile-3D results of HER2 and two template
structures (2ITY and 2J5E).
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Figure 4. Structural alignment of all training models.
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respectively. NV model was used to predict the bioactivity

pIC50 and to generate pharmacophore models based on the

structures and molecular properties of the 31 training set

ligands. Bioactivity pIC50 of the five ligands from the test set

was predicted based on the model.

3. Results and discussion

3.1 Docking

Molecular docking on TCM database identified three

compounds, 2-O-caffeoyl tartaric acid, 2-O-feruloyl

tartaric acid and salvianolic acid C, which all had

significantly higher dock scores than the control,

Lapatinib (Table 2). Structures shown in Figure 5

demonstrated that all top 3 ligands possess higher

concentration of carboxyl and hydroxyl groups than

control, suggesting potential sites for hydrogen bonds. For

Lapatinib, the binding conformation showed that the SO2

subgroup forms hydrogen bonds with the key binding

residue Lys724 and the NH subgroup forms hydrogen

bonds with Leu726. Additionally, the phenyl ring and Lys

753 formed a p-cation interaction, which further increases

the binding stability of Lapatinib (Figure 6(a)). The top 1

ligand, 2-O-caffeoyl tartaric acid, has a carboxyl subgroup

that forms a hydrogen bond with Lys724. The candidate’s

hydroxyl group on the phenyl ring formed hydrogen bonds

with Cys805 and Asp808, which increase the binding

stability (Figure 6(b)). Similarly, the top 2 and top 3

compounds, 2-O-feruloyl tartaric acid and salvianolic

acid C, each also had a carboxyl subgroup that forms a

hydrogen bond with the key residue Lys724. Additionally,

the conformations of these two compounds were

further stabilised with the formation of hydrogen bonds

with Cys805 (Figure 6(c)) and p-cation interaction with

Lys724 (Figure 6(d)), respectively. According to the dock

score, 2-O-caffeoyl tartaric acid, 2-O-feruloyl tartaric acid

and salvianolic acid C all have good binding poses at the

HER2 ligand-binding site.
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Figure 5. Molecular structure of (a) Lapatinib, (b) 2-O-caffeoyl tartaric acid, (c) 2-O-feruloyl tartaric acid and (d) salvianolic acid C.

Table 2. Results from docking.

Names Dock score PLP1 PLP2 PMF

2-O-Caffeoyl tartaric acid 121.870 52.06 59.59 35.32
2-O-Feruloyl tartaric acid 121.483 15.05 22.70 35.44
Salvianolic acid C 104.833 70.02 75.59 36.02
Linoleic acid 97.428 41.24 43.69 49.55
5-O-Caffeoylshikimic acid 95.520 31.44 31.24 41.20
Brucine 92.335 45.10 44.77 90.10
4-O-Caffeoylquinic acid 91.467 33.18 30.98 40.56
Isochlorogenic acid 89.884 52.53 50.87 38.85
Emetine 88.568 43.74 37.64 102.08
Capillartemisin B 85.496 40.94 41.80 25.92
ATPa 75.759 44.76 32.72 100.95
Lapatiniba 67.330 68.43 70.93 95.28

Notes: Ten compounds having highest dock scores were displayed. DockScore (forcefield) ¼ 2(ligand/receptor interaction energy þ ligand internal
energy).a Control.
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3.2 3D-QSAR model

Table 3 represents the result of CoMFA and CoMSIA.

CoMFA is calculated by PLS. The steric field represents

absolute superiority because the numeral of electrostatic

field is 0. Setting the component as 6, the cross-validated

correlation coefficient (q 2) and non-cross-validated

correlation coefficient (r 2) individually acquire 0.725

and 0.955, which suggested the most reliable model.

Figure 6. Docking conformations of (a) Lapatinib, (b) 2-O-caffeoyl tartaric acid, (c) 2-O-feruloyl tartaric acid and (d) salvianolic acid
C. Bar and stick model of cyan represents the ligand. Hydrogen bonds and p-cation interaction are shown in green dashed and orange
solid line.

Table 3. Evaluation of CoMFA and CoMSIA models.

Cross validation Non-cross validation

CoMFAa CoMSIA ONC q2CV r 2 SEE F

ONC 6 S 5 0.721 0.876 0.253 35.428
q2CV 0.725 H 4 0.670 0.853 0.270 37.663
SEE 0.156 D 6 0.581 0.822 0.309 18.486
r 2 0.955 A 6 0.361 0.714 0.392 9.999
F 84.112 S þ H 3 0.716 0.823 0.291 41.914

S þ D 6 0.728 0.901 0.231 36.382
S þ A 6 0.719 0.918 0.210 44.799
H þ D 5 0.666 0.876 0.253 35.383
H þ A 6 0.670 0.907 0.224 39.007
D þ A 5 0.594 0.807 0.316 20.890
S þ H þ D 5 0.706 0.893 0.235 41.929
S þ H þ A 5 0.655 0.879 0.250 36.266
S þ D þ Aa 6 0.744 0.891 0.242 32.837
H þ D þ A 6 0.694 0.892 0.241 32.991
S þ H þ D þ A 6 0.634 0.903 0.288 37.391

Note: ONC, optimal number of components; SEE, standard error of estimate; F, F-test value; PLS, partial least squares; S, steric; H, hydrophobic;
D, hydrogen bond donor; A, hydrogen bond acceptor. a Prediction model.
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Furthermore, the standard error of estimate (SEE) is small,

and the F-test value is big. CoMSIA is also calculated by

PLS; the steric field, hydrophobic and hydrogen bond

donor/acceptor were evaluated. By setting components as

6, CoMSIA gave the best prediction model with the highest

cross-validated correlation coefficient (q 2) 0.744 and non-

cross-validated correlation coefficient (r 2) 0.891 by

evaluating steric field and hydrogen bond donor/acceptor

traits. Both the above-mentioned models are according to

high q 2 numeral to get high reliance. The observed,

predicted and residual pIC50 are given in Table 4. In the

CoMSIA model, the numeral of the residual ranges from 0

to 0.313, where 22 compounds have values less than 0.15.

In the CoMSIA model, the numeral of the residual is from

0.006 to 0.395. And there are 17 compounds in which the

numeral is lower than 0.15 in CoMSIA. These numbers

suggested that the models have low prediction errors

in which most were ranged under 0.15 pIC50. Figure 7

shows 95% prediction bands meaning 95% confidence

of reliable predictions at this black line. In the CoMFA

model, the relationship of experimental pIC50 and

forecasted pIC50 acquired R 2 of 0.9547 in the training

set. It represented that this model has very high reliance.

Similarly, in CoMSIA_S þ D þ A model, the relationship

of experimental pIC50 and forecasted pIC50 acquires R
2 of

0.9226 in the training set. It also represented that this

model has very high reliance. In the CoMFA model, only

the steric field was evaluated because the detection

numeral of electrostatic field was 0. Figure 8 shows the

CoMSIA_S þ D þ A model, where the favour and

disfavour of steric field and hydrogen bond donor/acceptor

are represented in colour scheme. In Figure 8(a), Lapatinib

had steric bulk region, hydrogen bond between SO2

subgroup and Lys724, and hydrogen bond between NH

subgroup and Leu726, which all mapped well with the

prediction model. The above-mentioned traits support

Lapatinib effectiveness in stable binding. In Figure 8(b),

(c), 2-O-caffeoyl tartaric acid and 2-O-feruloyl tartaric

acid showed the steric bulk region and hydrogen bond

fields mapped well with the CoMSIA model. The

hydrogen bonds formed between carboxyl group and

Lys724 on the top 1 compound, and between hydroxyl
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Figure 7. Comparative plot between observed activity (pIC50)
and predicted activity (pIC50) of (a) CoMFA model and
(b) CoMSIA models.

Table 4. Validation of CoMFA and CoMSIA models by
predicting ligand activities of the training set.

CoMFA CoMSIA

Comp. pIC50 Predicted Residual Predicted Residual

1 5.462 5.358 0.104 5.210 0.252
2 5.287 5.254 0.033 5.256 0.031
3 4.418 4.533 20.115 4.499 20.081
4 5.016 5.147 20.131 4.999 0.017
5 4.906 4.716 0.190 4.818 0.088
6 4.301 4.301 0.000 4.116 0.185
7 5.644 5.822 20.178 5.775 20.131
8 5.575 5.290 0.285 5.565 0.010
9 4.735 4.826 20.091 4.939 20.205
10 5.656 5.656 0.000 5.587 0.069
11 5.344 5.384 20.040 5.574 20.230
14 4.301 4.278 0.023 4.451 20.150
15 4.301 4.310 20.009 4.280 0.021
17 4.301 4.271 0.030 4.278 0.023
18 4.301 4.393 20.092 4.027 0.274
19 5.851 5.734 0.117 5.575 0.276
20 5.728 6.020 20.292 5.617 0.111
21 4.805 4.946 20.141 4.946 20.141
22 5.188 5.244 20.056 5.393 20.205
24 4.422 4.306 0.116 4.599 20.177
25 6.456 6.143 0.313 6.061 0.395
26 6.181 6.201 20.020 6.017 0.164
27 5.147 5.235 20.088 5.360 20.213
28 5.910 5.712 0.198 5.904 0.006
30 5.024 5.197 20.173 5.341 20.317
31 4.488 4.571 20.083 4.619 20.131
32 4.403 4.560 20.157 4.580 20.177
33 4.301 4.149 0.152 4.214 0.087
34 4.400 4.389 0.011 4.464 20.064
35 4.301 4.299 0.002 4.388 20.087
36 4.301 4.208 0.093 3.997 0.304
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group and Asp808 on the top 2 compound suggested

enhanced binding stability. In Figure 8(d), the mapping of

steric bulk and hydrogen bond between carboxyl group and

each Lys724 and Lys726, as well as between hydroxyl

group and Asp808 also suggested binding stability.

4. Conclusion

From the binding properties suggested by 3D-QSAR, the

candidates favoured steric bulk and hydrogen bond

donor/acceptor fields as indicated in the prediction models.

All 2-O-caffeoyl tartaric acid, 2-O-feruloyl tartaric acid

Figure 8. CoMSIA S þ D þ A model of (a) Lapatinib, (b) 2-O-caffeoyl tartaric acid, (c) 2-O-feruloyl tartaric acid and (d) salvianolic
acid C. The favour/disfavour fields of steric (green/yellow), hydrogen bond donor (cyan/red) and hydrogen bond acceptor
(magenta/orange) are shown (colour online).

Figure 9. Structure–activity relationship demonstration of (a) Lapatinib, (b) 2-O-caffeoyl tartaric acid, (c) 2-O-feruloyl tartaric acid and
(d) salvianolic acid C, where similar subgroup (blue) and the same subgroup (green) are shown (colour online).
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and salvianolic acid C formed stable hydrogen bond

with Lys724 as the control Lapatinib. Furthermore, all

candidate compounds formed additional stable hydrogen

bonds with Asp808. These properties summarised in

Figure 9 suggested that the candidates bind stably with

HER2. Hence, based on the molecular properties and

3D-QSAR modelling, we suggest that all three TCM

candidates may be used as potential treatment options for

HER2 inhibition.
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