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Upregulated phosphodiesterase 4D (PDE4D) disrupts the regulation of calcium ion channel in the central nerve system, and
hence it is considered as one of the causes of Alzheimer’s disease. We employed structure-based drug design techniques and
the world’s largest traditional Chinese medicine (TCM) database for identifying potential TCM-based PDE4D inhibitors.
We then applied multiple linear regression (MLR) and support vector machine (SVM) for quantitative structure–activity
relationship model, as well as for molecular dynamics simulation analysis. Screening results suggested that metal cations,
Zn2þ and Mg2þ, played key roles in mediating stable protein–ligand interactions with the ligand-binding residues, Asp367
and Asp484. In addition, each ligand was shown to interfere with the active residue His326 that suggested inhibitory effects.
The MLR and SVM prediction models further implied the PDE4D inhibitory effect of each TCM compound. The molecular
simulation further suggested the binding stability of each compound in the PDE4D binding site. We identified three TCM
compounds, such as mumefural, 2-O-feruloyl tartaric acid and kainic acid, as potential PDE4D inhibitors. In addition,
we further identified the key interaction features associated with the protein–ligand-binding stabilities.

Keywords: traditional Chinese medicine; docking; support vector machine; molecular dynamics; Alzheimer’s disease

1. Introduction

Phosphodiesterase 4D (PDE4D) is a key regulator of cell

growth, differentiation, survival and inflammatory pro-

cesses [1]. The protein hydrolyses intracellular cyclic

adenosine monophosphate (cAMP) which is a key second

messenger involved in numerous hormones and neuro-

transmitter signalling cascades [2]. The cAMP is an

important second messenger which, in response to various

hormone stimuli, regulates the protein kinase A-dependent

signalling pathways as well as the Ca2þ ion channel.

Hence, the inhibition of PDE4D affects cAMP concen-

tration, which subsequently affects the downstream

biological pathways such as proliferation, metabolism,

signalling transduction and neurotransmission. PDE4D

inhibitors have been developed in an attempt to resolve

inflammatory diseases such as chronic obstructive

pulmonary disease, bronchopulmonary dysplasia and

asthma, as well as neurodegenerative diseases such as

Alzheimer’s disease [3,4]. This study focuses on the

discovery and potential application of novel PDE4D

inhibitors as a cure for Alzheimer’s disease.

Computer-aided drug design (CADD) has been used

to screen, design and analyse various drugs or drug leads

from a selected compound database. In this study, we

investigated the drug research potentials of traditional

Chinese medicine (TCM) using the CADD methods.

Although TCM has been recognized as an alternative

treatment, individual TCM compounds were less studied.

Nevertheless, previous reports further supported the

TCM drug research potentials on anti-viral, anti-

inflammatory and anti-tumour [5–16]. Hence, we

employed CADD and the world’s largest TCM database

[17] to investigate TCM-based PDE4D inhibitors for

Alzheimer’s disease treatment caused by an abnormal

PDE4D upregulation. Hence, we employed the com-

pounds from the TCM Database@Taiwan [17], the

current world’s largest small molecule database on TCM,

for the identification of potential PDE4D inhibitor

compounds. The activities of each compound were

validated with two quantitative structure – activity

relationship (QSAR) models and supported by molecular

dynamics (MD) simulations.

2. Materials and methods

2.1 Data collection

The X-ray structure of the PDE4D complex (PDB ID:

3G4G) [4] and more than 20,000 TCM compounds

ISSN 0892-7022 print/ISSN 1029-0435 online

q 2011 Taylor & Francis

DOI: 10.1080/08927022.2011.577074

http://www.informaworld.com

*Corresponding author. ycc@mail.cmu.edu.tw; ycc929@mit.edu

Molecular Simulation

Vol. 37, No. 11, September 2011, 923–931

D
ow

nl
oa

de
d 

by
 [

C
hi

na
 M

ed
ic

al
 U

ni
ve

rs
ity

],
 [

C
al

vi
n 

Y
u-

C
hi

an
 C

he
n]

 a
t 0

7:
58

 0
5 

Se
pt

em
be

r 
20

11
 



downloaded from the TCM database [17] were used for

virtual screening. The predictive models were established

with a total of 16 compounds from Card’s study [18]. The

ionisation state of the ionising functional groups for all

compounds was modified using Accelrys Discovery

Studio 2.5 (DS 2.5) [19].

2.2 Docking

The docking simulation with the CHARMm force field

[20] was performed by the Flexible Docking module [21]

of DS 2.5, and the cAMP binding site was defined by

the volume of co-crystallised compound, RS-25344.

The natural substrate of the PDE4D, cAMP, was also

used as control. Binding energy was calculated by the

Calculate Binding Energies module [22] of DS 2.5.

Table 1. Docking results and predicted pIC50 for the top TCM
compounds and cAMP.

Predicted pIC50

Name Binding energy SVMa MLR

Mumefural 2460.19 Active 5.92
2-O-Feruloyl tartaric acid 2443.67 Active 4.25
Kainic acid 2393.02 Active 7.76
cAMPb 2347.35 Active 8.62
4-O-Caffeoylquinic acid 2335.37 Active 4.64
4-O-Feruloylquinic acid 2330.58 Active 2.01
Digallic acid 2328.18 Active 8.49

a Active when predicted pIC50 . 4.
b Control.

O

O
–O

–O

OH

Mumefural

(a) (b)

(c) (d)

(e)

(g)

(f)

Kainic acid

4-O-Caffeoylquinic acid

Cyclic AMP

4-O-Feruloylquinic acid

Digallic acid

2-O-Feruloyl tartaric acid

O
O O

O

O

OH

O

O

O–O

–O

O

OH

+H2N

–O

O

O

O–

OH

OH

O

–O

O

O OH

OH

OH

OH

OH

O

O–

HO

O

O

OH

OH O

OHO

O

O
–O

HO

HO OH

N N

N

N

NH2

O

OH

O
P

O
O

–O

Figure 1. The scaffold of (a) mumefural, (b) 2-O-feruloyl tartaric acid, (c) kainic acid, (c) digallic acid, (e) 4-O-caffeoylquinic acid,
(f) 4-O-feruloylquinic acid and control and (g) cAMP.
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2.3 QSAR modelling

The QSAR prediction models were established using both

support vector machine (SVM) and multiple linear

regressions (MLRs) to predict the bioactivity of TCM

compounds. The SVM model was established using

LibSVM constructed by Chang and Lin [23], and the MLR

function was established using MATLAB [24].

Sixteen compounds from Card’s study [18] were used as

a training set of prediction models with activity descriptor

of pIC50 (log(1/IC50). The genetic function approximation

(GFA) module [25] of DS 2.5 was used to select the suitable

molecular descriptors for the prediction models with the

training set of 16 molecules. The fitness of individual model

for all the possible QSAR models was estimated by the

squared correlation coefficient (R 2). Cross-validation test

was used to validate the prediction model.

The support vector regression (SVR) model was

established using the regression of continuous data with

SVM and the gridregression.py program in the libsvm-

2.91 package based on the radial basis function [23].

Figure 2. Docking poses of (a) mumefural (b) 2-O-feruloyl tartaric acid (c), kainic acid and (d) cAMP in the PDE4D cAMP binding site.
The residues for ligand-binding site (blue) and active site (orange), as well as the electrostatic interactions (light blue line), pi–pi
interactions (red line) and hydrogen bond interactions (purple dashed line), were illustrated (colour online).

Table 2. Predicted pIC50 of the MLR and SVM models.

MLR SVM

Compound pIC50 Prediction Residual Prediction Residual

1 4.09 4.36 0.27 4.34 0.25
2 4.72 4.71 20.01 4.97 0.25
3 6.57 6.75 0.18 6.82 0.25
4 6.06 6.33 0.27 5.81 20.25
5 4.72 5.92 1.20 4.91 0.19
6 4.3 4.24 20.06 4.55 0.25
7 4.01 3.69 20.32 4.26 0.25
8 5.34 5.58 0.24 5.09 20.25
9 4.68 4.98 0.30 4.93 0.25

10 4.85 4.65 20.20 4.60 20.25
11 5.04 4.97 20.07 5.28 0.24
12 5.7 5.32 20.38 5.93 0.23
13 6 6.85 0.85 6.25 0.25
14 6.8 6.28 20.52 6.55 20.25
15 7.72 7.10 20.62 7.47 20.25
16 7.68 6.55 21.13 6.30 21.38
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2.4 MD simulation

The CHARMM force field [20] was applied for the MD

simulation using the Simulation package of DS 2.5 [19].

A 7 Å solvation shell was created with TIP3P water and

neutralised by the additional sodium cations using the

Solvation module in DS 2.5. Two minimisation steps were

performed with restrained and flexible proteins in

sequence. A maximum of 6000 cycles with Steepest

Descent [26] and then with Conjugate Gradient [27] was

performed in each minimisation step. The time steps for all

MD stages were set to 0.002 ps. The SHAKE algorithm

was used to fix all bonds involving hydrogen atoms.

The long-range electrostatics throughout the MD simu-

lation was treated by the PME method. In the heating

procedure, the system was gradually heated from 51 to

310 K within 50 ps and the followed by a 200 ps

equilibration phase. In the production procedure, the

NVT canonical ensemble was performed with 0.4 ps of

temperature coupling decay time for the Berendsen

thermal coupling method for 20 ns. The post-processing

of the trajectory after MD was analysed using the Analyze

Trajectory module in DS 2.5.

3. Results and discussions

3.1 Docking

Table 1 shows the docking results and the predicted

activity of top six compounds and cAMP ranked by the

binding energy. The scaffold of top six compounds such as

mumefural, 2-O-feruloyl tartaric acid, kainic acid, 4-O-

caffeoylquinic acid, 4-O-feruloylquinic acid, digallic acid

and control cAMP is shown in Figure 1. From the docking

pose as shown in Figure 2, the scaffolds of top compounds

showed that each compound had at least one carboxyl

group that had electrostatic interaction with the two

divalent metal cations, Zn2þ and Mg2þ, which mediated

the binding to key residues, Asp367 and Asp484. For

mumefural, a hydrogen bond (H-bond) with His326

Table 3. Squared correlation coefficients (R 2) for each cross-validation test in the MLR model.

Group All 1 2 3 4 5

Squared correlation coefficient (R 2) 0.7801 0.7567 0.7619 0.8268 0.8538 0.766
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Figure 4. Molecular simulation trajectories of (a) RMSD of
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energy of each complex.
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increased the inhibition potential by blocking the access to

this active residue (Figure 2(a)). For 2-O-feruloyl tartaric

acid and kainic acid, the H-bonds with Asp484 and other

residues in the binding domain further stabilised the

binding with PDE4D (Figure 2(b), (c)). For the control

cAMP-binding conformation, the key binding residue,

Gln535, has an H-bond with cAMP. The two divalent

metal cations, Zn2þ and Mg2þ, mediated the binding

between cAMP and the other two key binding residues,

Asp367 and Asp484, through electrostatic interactions.

In addition, the cAMP positioned right by the key active

residue, His326, suggesting the compound was ready for

hydrolysis (Figure 2(d)). This implied that the docking

algorithm was reliable by identifying the actual cAMP-

binding conformation. Although all compounds did not

interact with the key binding residue, Gln535, the metal

ion mediated interactions with the residues Asp367 and

Asp484, as well as the interaction with the active residue

His326, contributed to the binding stabilities.

3.2 QSAR modelling

GFA was used to select the most representative descriptors

to build QSAR models. The selected representative

descriptors are Num_RingAssemblies, Jurs_FNSA_1,

Jurs_WNSA_1 and Shadow_XY. Each predicted pIC50

and prediction residual are listed in Table 2. A training set

of 16 compounds with the four aforementioned descriptors

was used to establish an MLR model. The MLR model was

cross-validated (Table 3) and the modelling formula was

Figure 5. The docking pose snapshots at the 20-ns MD simulation for PDE4D with (a) mumefural, (b) 2-O-feruloyl tartaric acid,
(c) kainic acid and (d) cAMP. Residues for binding site (blue) and active site (orange), as well as electrostatic interactions (cyan line) and
hydrogen bond interactions (purple dashed line), were illustrated (colour online).
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Figure 6. Distance (Å) of hydrogen bonds between PDE4D and (a,b) mumefural, (c) 2-O-feruloyl tartaric acid, (d) kainic acid and
(e,f) cAMP.

Figure 7. RMSF (Å) of PDE4D with mumefural, 2-O-feruloyl tartaric acid, kainic acid and cAMP during the 18–20-ns MD simulation
for residue numbers (a) 256–570, (b) 315–380, (c) 455–505 and (d) 505–550.

M.-F. Sun et al.928
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obtained as follows:

Predicted pIC50 ¼ 213:4556þ 2:6445

£ Num_RingAssembliesþ 51:0269

£ Jurs_FNSA_12 0:1611

£ Jurs_WNSA_1þ 0:1371

£ Shadow_XY:

Same training set of 16 compounds was also used to

establish the SVM model. The squared correlation

coefficients (R 2) were 0.78 and 0.89 for the MLR and

SVM models, respectively. Figure 3 shows the statistical

significance of each model. The predicted pIC50 using

MLR and SVM models showed that all compounds except

4-O-feruloylquinic acid were potent inhibitors (Table 1).

3.3 MD simulation

The MD simulation was performed for further analysis on

each protein–ligand interaction. The whole molecule

RMSD and ligand RMSD trajectories displayed the atomic

fluctuations during the MD simulation (Figure 4). All

ligands tended to stabilise after 14 ns of MD. The trend

was also observed in the total energy deviation, in which

each complex tended to stabilise after 14 ns of MD (Figure

4(c)). An exception was observed on the top one ligand,

mumefural, which was stabilised after 17 ns of simulation.

Nevertheless, the trajectory changes between the 14 and

17 ns time points could be neglected in terms of binding

stability. In addition, the snapshot of each ligand at 20 ns

of MD (Figure 5) indicated that the two divalent metal

cations, Zn2þ and Mg2þ, acted as a bridge for coordinating

ligand interactions to Asp367 and Asp484. Consequently,

the electrostatic interactions shown in the docking pose of

each complex became more stabilised. For all compounds,

stabilised H-bonds were observed during the 20-ns MD

simulation (Figure 6). In addition to the common metal

cation-mediated bonding, mumefural had an additional

stable H-bond with His326 during the MD simulation.

Similarly, an H-bond with Asp367 was observed, which

further stabilise the binding pose (Figure 6(b)). 2-O-

Feruloyl tartaric acid showed H-bonds with Tyr325 and

Asn375 during the MD simulation, which indicated the

increase in stable position that may interfere the activity of

active residue, His326 (Figure 6(c)). Kainic acid had

stabilised H-bonds with Asp484 as well as Thr437 during

the MD simulation (Figure 6(d)). For cAMP, the H-bonds

were stabilised during the MD simulation (Table 4 and

Figure 6(e), (f)). In the same way, cAMP gained H-bond

interaction with Tyr495 during the MD simulation,

suggesting a stabilising docking pose. According to theT
ab
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RMSF in 18–20 ns (Figure 7), Asp367, Asp484 and

Gln535 were stabilised after binding with the compounds

as well as with the cAMP; each had a value of RMSF under

0.2 Å. In addition, three compounds also reacted with

His326, in which the value of RMSF was reduced from

0.44 Å (for cAMP) to under 0.2 Å.

4. Conclusion

Nowadays, molecular simulation is widely used in material

science and drug design [28–44]. We applied this

technology in this study. The residues Asp367, Asp484

and Gln535 were the key binding residues for the cAMP-

binding domain, and the residue His326 was the active

residue for PDE4D. According to the analysis each of the

TCM compounds, a binding pattern was demonstrated that

involved with metal ions, Zn2þ and Mg2þ, observed from the

docking pose of each TCM compound as well as the

corresponding MD simulation. The divalent metal cations

were the interaction bridges between compounds and

residues, Asp367 and Asp484. The carboxyl groups on

each ligand formed stable electrostatic interactions with the

divalent metal cations. These stable interactions held the

compounds in close approximation to Asp367 and Asp484

and suggested potential PDE4D inhibition. Additionally, all

three TCM compounds were bound close to the active

residue, His326, for cAMP hydrolysis and consequently

interrupted the catalytic process of PDE4D. The inhibition

efficacy of TCM compounds was supported by the predicted

pIC50 of MLR and SVM models. Hence, we suggested these

TCM compounds, mumefural, 2-O-feruloyl tartaric acid,

and kainic acid, as potential PDE4D inhibitors.
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