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Traditional Chinese medicine, a solution for reducing dual stroke risk

factors at once?w
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Based on genome wide association studies (GWAS), the activities of phosphodiesterase 4D

(PDE4D) and 5-Lipoxygenase activating protein (ALOX5AP) were suggested as two of the major

factors involved in ischemic stroke risks. Uncontrolled PDE4D activities often lead to

cAMP-induced stroke and cardiovascular diseases. Overexpression of ALOX5AP, on the other

hand, had been shown to play a major role in inflammation pathway that could induce the

development of atherosclerosis and stroke. To eliminate the risk factors that lead to stroke, we

reported the identification and analysis of dual-targeting compounds that could reduce PDE4D

and ALOX5AP activities from traditional Chinese medicine (TCM). We employed world’s largest

TCM database, TCM Database@Taiwan, for in silico drug identification. We also introduced

machine learning predictive models, as well as pharmacophore model, for characterizing the

drug-like candidates. Both myristic acid and pentadecanoic acid were identified. The follow-up

analysis on molecular dynamics simulation further determined the major roles of the carboxyl

group for forming stable molecular interactions. Intriguingly, the carboxyl group demonstrated

different bonding patterns with PDE4D and ALOX5AP, through electrostatic interaction and

hydrogen bonds, respectively. In addition, the large volume occupied by the ligand hydrophobic

regions could achieve inhibition through occupying the vacant spaces in the binding site. These

pharmacophores held true for both candidates against each protein targets. Hence, we proposed

the presence of the carboxyl group and hydrophobic regions as potent dual targeting features

that inhibit both PDE4D and ALOX5AP activities.

Introduction

The World Health Organization (WHO) recognized stroke

and cerebrovascular diseases, which cause 5.71 million people

death in 2004, as the second leading cause of death worldwide.1

Moreover, strokes are not only life threatening, but can also

lead to severe brain damage and disabilities.2 A recent study

from the Icelandic Decode group has identified 2 novel

stroke-related genes, phosphodiesterase 4D (PDE4D) and

5-Lipoxygenase activating protein (ALOX5AP), by using a

genome-wide association screen.3,4 PDE4D is one of the cyclic

nucleotide phosphodiesterases that plays an important role in

cell metabolism by hydrolysis, which subsequently regulates

the concentration of second messenger cyclic AMP (cAMP).

Low cAMP concentration could lead to proliferation and

migration of smooth muscle cells, which could result in the

thickening of blood vessel walls and could confer risks in

the development of atherosclerosis, which is associated with

ischemic stroke.5 On the other hand, ALOX5AP actively

converts arachadonic acid to potent inflammatory factor,

leukotriene A4, which is further hydrolyzed into leukotriene

B4. Intriguingly, these leukotriene products from the ALOX5AP

pathway were associated with the development of athero-

sclerosis, and have been reported to be involved in obstructive

sleep apnoea and ischemic strokes.6 Furthermore, leukotriene

induced the leukocyte chemotaxis and inflammatory responses,

which are key processes in stroke-associated atherosclerosis.5

To eliminate stroke-linked factors, we aimed to identify

compounds that may reduce PDE4D and ALOX5AP activa-

tion through in silico drug discovery methods. Moreover, we

focused on the stroke reducing potentials of traditional

Chinese medicine (TCM). TCM is a well-known medical

practice that has been used for thousands of years. Our past
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studies in drug discovery have identified potential therapeutic

TCM compounds for a wide range of diseases, including

anti-viral, anti-inflammatory, and anti-tumor agents.7–13 Our

previous report on the identification of PDE4D inhibitors has

suggested some potential TCM inhibitors, as well as some key

binding features in the PDE4D binding site.14 Additionally,

we have developed world’s largest 3D small molecule TCM

Database, TCMDatabase@Taiwan,15 which further enhances

the in silico drug discovery process. All compounds were tested

through the ADMET for drug safety profiling.16 Quantitative

structure–activity relationship (QSAR) models and molecular

dynamics (MD) simulations were employed to identify and

characterize potent dual target inhibitors against PDE4D as

well as ALOX5AP.

Materials and methods

Data collection

The crystal structures of PDE4D (PDB ID: 3G4G)17 and

ALOX5AP (PDB ID: 2Q7M)18 were obtained from RCSB

Protein Data Bank. For training QSAR models, structure and

activity data of PDE4D inhibitors from Aspiotis’ study19 and

ALOX5AP inhibitors from Stock’s study20 were obtained. For

pharmacophore models, PDE4D ligands from three different

studies,19,21,22 and the ALOX5AP ligands from Stock’s

study20 were employed. All TCM 3D small molecules from

TCM Database@Taiwan15 were obtained for screening. All

compounds were tested by Lipinski’s Rule of Five23 and their

ionization states were adjusted to physiological pH using

Accelrys Discovery Studio 2.5 (DS 2.5).

Virtual screening and ADMET

The virtual screening step was performed by LigandFit

module24 of DS 2.5 with the CHARMm force field.25 The

cAMP binding site for PDE4D was defined by ligands,

RS-25344, and the binding site for ALOX5AP was defined

by the inhibitor MK-591. L-45456026 andMK591 were treated

as the control compounds with respect to their targets. The

ADMET tests were evaluated by DS 2.5.

QSAR modeling

The non-linear SVM and the linear MLR machine learning

algorithms were employed to construct QSAR models. SVM

model was established using LibSVM.27 MLRmodel was built

using MATLAB modules.28 The regression version of SMV

(SVR)29 was established using gridregression.py program in

the libsvm-2.91 package.27

Training data for QSAR models were built separately for

each receptor. For building inhibitor QSAR models for

PDE4D and ALOX5AP, 17 PDE4D inhibitors from Aspiotis’

study19 and 30 ALOX5AP inhibitors from Stock’s study

[Stock, 2010 #19] were employed for training, respectively.

Genetic function approximation (GFA)30 module from DS2.5

was employed to identify representative molecular descriptors.

The square correlation coefficient (R2) to pIC50 values was

assessed to determine the accuracy of each model. The

descriptors identified were NPlusO_Count, Num_H_Accep-

tors, and Jurs_PPSA_3 for PDE4D; and ES_Sum_dssC,

Num_ExplicitHydrogen, Jurs_PPSA_3, Jurs_RASA, Jurs_TASA,

Jurs_WNSA_3, JX for ALOX5AP. Five-fold cross validations

were performed for both MLR and SVM models.

Pharmacophore modeling

62 PDE4D ligands19,21,22 and 30 ALOX5AP ligands20 were

employed for building pharmacophore models. Molecules

from the training sets were modified to low-energy conforma-

tions using FAST generation module in DS2.5. Common

ligand features were identified by the HipHop algorithm.31

HypoGen algorithm32 then constructed the 3D-QSAR models

based on the common pharmacophore features identified.

Molecular dynamics simulation

DS2.5 Simulation package was employed for MD simulation.

A 7 Å radius solvation shell was created and ionically balanced

for each simulation system. 6000 cycles of each Steepest

Descent33 with restricted protein and Conjugate Gradient34

with flexible protein were performed for minimization. All

hydrogen-linked bonds were fixed by the SHAKE algorithm.

The long-range electrostatics was treated by the PME method.

The simulation system was heated to 310 K in 50 ps intervals,

followed by 200 ps of equilibration. For the production step, a

constant temperature ensemble (NVT) with 0.4 ps of tempera-

ture coupling decay time was maintained. The time step was

set to 0.002 ps throughout the simulation. MD simulation was

performed for 22 ns.

Results and discussion

Screening and modeling

Virtual screening. Virtual screening identified 9 compounds

that have higher Dock Scores24 than both controls, L-454560

and MK-591 (Table 1). In addition, the ADMET test results

suggested that all candidates could be carried by plasma

proteins and could cause little interference in metabolism

based on their probability of inhibiting cytochrome P450

(Table 1). Intriguingly, the absorption model suggested all

candidates have good absorption probability (Fig. S1, ESIw).

Table 1 Docking results for the top TCM candidates and controls.
The distribution and metabolism evaluation were included

Name
PPBc

Level
CYP2D6d

Probability

Dock score

PDE4D ALOX5AP Total

Myristic acid 1 0.138 655.663 93.792 749.455
Pentadecanoic acid 1 0.386 652.648 91.21 743.858
2-pentadecenoic acid 1 0.386 646.995 90.1 737.095
2-hexadecenoic acid 1 0.386 644.702 90.28 734.982
9,12-Octadecadienoic
acid

1 0.386 634.929 97.48 732.409

Hexadecanoic acid 1 0.386 640.171 90.234 730.405
11-hexadecenoic acid 1 0.386 640.956 86.888 727.844
Palmitoleic acid 1 0.386 638.934 87.454 726.388
Punicic acid 1 0.386 631.541 94.217 725.758
L-454560a 1 0.485 130.067 — —
MK-591b 2 0.306 — 84.995 —

a Control for PDE4D. b Control for ALOX5AP. c Plasma Protein

Binding: 1 = Binding > 90%; 2 = Binding > 95%. d Inhibition

probability of Cytochrome P450 2D6 enzyme.
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Comparatively, both controls were less likely to be absorbed

through the human digestive system.

QSAR modeling. MLR and SVM prediction models

were built based on the training data with 5-fold validation.

The R2 of MLR and SVM models for PDE4D inhibitors were

0.8445 and 0.8440, respectively (Fig. 1). The same modeling

process was applied for ALOX5AP, and the R2 of MLR and

SVM models were 0.7153 and 0.6589, respectively (Fig. S2,

ESIw). The MLR prediction models with optimized property

descriptors were described as the following:

PDE4D:

predicted_pIC50 = 3.890 � 2.1921 � NPlusO_Count

+ 2.8165 � Num_H_Acceptors

+ 0.0790 � Jurs_PPSA_3

ALOX5AP:

predicted_pIC50 = 43.786 + 3.2581 � ES_Sum_dssC

� 0.3154 � Num_ExplicitHydrogen

� 0.1923 � Jurs_PPSA_3 � 78.1368

� Jurs_RASA + 0.0579 � Jurs_TASA

+ 0.0837 � Jurs_WNSA_3 + 6.4741 � JX

Fig. 1 Comparative plots of MLR (top) and SVM (bottom) models

for PDE4D inhibitors. Correlation trend (black line) and 95%

confidence regions (enclosed by magenta lines) were shown. Training

set (blue dots) was presented.

Table 2 Predicted pIC50 for top TCM candidates and controls for
each target protein

Name

PDE4D ALOX5AP

MLR SVM MLR SVM

Myristic acid 6.13 8.19 7.12 6.68
Pentadecanoic acid 6.16 8.19 7.87 6.46
2-pentadecenoic acid 6.26 8.16 8.35 6.55
2-hexadecenoic acid 6.27 8.16 8.63 6.47
9,12-Octadecadienoic acid 6.36 8.02 7.35 6.53
Hexadecanoic acid 6.26 8.20 8.38 6.64
11-hexadecenoic acid 6.36 8.24 8.08 6.81
Palmitoleic acid 6.17 8.22 7.29 6.70
Punicic acid 6.44 8.23 9.81 6.42
L-454560a 7.92 7.92 — —
MK-591b — — 4.75 8.36

a Control for PDE4D. b Control for ALOX5AP.

Fig. 2 The molecular structures of (a) L-454560, (b) MK-591,

(c) Myristic acid, and (d) Pentadecanoic acid.

Fig. 3 CatScramble validation plot for PDE4D that compares total

costs between the initial and randomized HypoGen hypothesis.
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The models were further validated by predicting the bio-

activities of L-454560 and MK-591. The predicted pIC50 of

L-454560 were 7.92 for both models, where the experimental

IC50 was 1.2 nM,26 which corresponds to a pIC50 of 8.92. With

regard to MK-591, MLR and SVM showed diverse results of

4.75 and 8.36, respectively. Intriguingly, the experimental data

for MK-591 also showed a wide range of pIC50 values,

including 8.80 (IC50 = 1.6 nM),35,36 8.70 (IC50 =

2.0 nM),37–39 8.64 (IC50 = 2.3 nM),40 6.70 (IC50 = 200 nM),41

and 5.10 (IC50 = 8000 nM).41 Hence, all bioactivity predic-

tions for each inhibitor were within the acceptable range. Both

models were employed to evaluate the compounds from

screening results (Table 2). The predicted pIC50 for each

candidates indicated that these candidates were potential dual

target inhibitors for both PDE4D and ALOX5AP.

Pharmacophore models. In this study, we aimed to investi-

gate the candidacies of the top two compounds, myristic acid

(top1) and pentadecanoic acid (top2) based on the screening

and QSAR modeling results. The structures of L-454560,

Fig. 4 HypoGen results of (a) pharmacophores map with labelled

distances for PDE4D inhibitors, (b) mapping with L-454560, (c)

mapping with Myristic acid, and (d) mapping with Pentadecanoic

acid. The hydrophobic region (blue sphere), hydrogen bond acceptor

region (green sphere) and hydrogen bond partner direction (green

arrow) are presented.

Fig. 5 HypoGen results of (a) pharmacophores map with labelled

distances for ALOX5AP inhibitors, (b) mapping with MK-591, (c)

mapping with Myristic acid, and (d) mapping with Pentadecanoic

acid. The hydrophobic region (blue sphere), hydrogen bond acceptor

region (green sphere) and hydrogen bond partner direction (green

arrow) are presented.

Fig. 6 Docking poses of PDE4D with (a) L-454560, (b) Myristic

acid, and (c) Pentadecanoic acid in cAMP binding site. Residues of

binding site (dark green), active site (cyan), and other residues (gray)

were shown. Electrostatic interactions (green line), p–p interactions

(red line) and hydrogen bond interactions (brown dashed line) are

presented.
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MK-591, and the top two common candidates, myristic acid

and pentadecanoic acid, were shown in Fig. 2. We further built

a HypoGen model for characterizing the pharmacophores

based on the 3D structures of the candidates and the controls.

The best pharmacophore hypothesis for each PDE4D

and ALOX5AP has obtained over 190 and over 40 in cost

difference, respectively (Table S1 and S2, ESIw). The results

suggested the HypoGen models had more than 75% prob-

ability in representing a true correlation to the data. In

addition, the R values for PDE4D and ALOX5AP pharma-

cophore models were 0.842 and 0.768, respectively. The

CatScramble plots for PDE4D (Fig. 3) also implied the

confidence of the HypoGen predictive models. Similarly,

the ALOX5AP CatScramble plot suggested a representative

HypoGen model (Fig. S3, ESIw). Final HypoGen models were

hypothesized to have one hydrogen bond (H-bond) acceptor

and 4 hydrophobic regions (Table S1 and S2, ESIw). By mapping

each TCM candidate to the HypoGen models, the candidates

and the controls showed satisfactory structures and features that

matched with the given pharmacophore profiles (Fig. 4 and 5).

The hydrophobic chains on the ligands mapped well with the

hydrophobic regions defined by the models. In addition, carboxyl

groups on candidates, as well as the oxygen atoms on the

controls, mapped to the H-bond acceptor.

Docking conformations

Fig. 6 demonstrates the docking conformations of L-454560

and the top two TCM candidates. As shown in the figure, only

L-454560 had one stabilizing H-bond, which interacted with

Thr499. Additionally, the p–p interaction with Phe506 also

Fig. 7 Docking poses of ALOX5AP with (a) MK-591, (b) Myristic

acid, and (c) Pentadecanoic acid. Residues for protein chain D

(dark green) and protein chain E (gray) are shown. Electrostatic

interactions (green line), p–cation interactions (red line) and hydrogen

bond interactions (brown dashed line) are presented.

Fig. 8 MD dynamics trajectories of (a) whole molecule RMSD,

(b) ligand RMSD, and (c) total energy of PDE4D in complex with

each candidate and L-454560.

Fig. 9 MD dynamics trajectories of (a) whole molecule RMSD,

(b) ligand RMSD, and (c) total energy of ALOX5AP in complex with

each candidate and MK-591.
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contributed to the binding affinity (Fig. 6a). On the other

hand, the top two candidates had carboxyl groups that had

electrostatic interactions with the two divalent metal cations,

Zn2+ and Mg2+, which mediated the binding to key residues,

Asp367 and Asp484 (Fig. 6b and c).

Additionally, the aliphatic tail of each candidate was held at

close approximation with the key residue Gln535, from which

the binding function may be interfered. Fig. 7 shows the

intermolecular interactions between ligands and ALOX5AP.

The control MK-591 had high binding affinity to Lys116 with

H-bond, pi–cation interaction, and electrostatic interaction on

chain D, based on crystalized ALOX5AP structure. In addition,

MK-591 also formed an H-bond Thr66 on Chain D that

enhanced binding affinity. Comparatively, both candidates

formed a stabilizing H-bond with Lys29 on chain E. Intri-

guingly, the aliphatic tail of each candidate reached to the key

residues Lys116 as well as Thr66, and might inhibit the

residues’ activities.

Molecular dynamics simulation

MD simulation was employed to validate the binding stabi-

lities of each protein–ligand interaction. The root mean square

deviation (RMSD) trajectories were evaluated. We also keep

track of the changes in the total energy of each binding pose

during the simulation process. These trajectory data suggested

Fig. 10 The docking poses for PDE4D with (a) L-454560, (b)

Myristic acid, and (c) Pentadecanoic acid at 22 ns of MD. Residues

of binding site (dark green), active site (cyan), and other residues

(gray) are shown. Electrostatic interactions (green line), p–p inter-

actions (red line) and hydrogen bond interactions (brown dashed line)

are presented.

Fig. 11 The docking poses for ALOX5AP with (a) MK-591, (b)

Myristic acid, and (c) Pentadecanoic acid at 22 ns of MD. Residues

for protein chain D (dark green) and protein chain E (gray) are shown.

Electrostatic interactions (green line), p–cation interactions (red line)

and hydrogen bond interactions (brown dashed line) are presented.
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that all PDE4D–ligand interactions (Fig. 8) and all ALOX5AP–

ligand (Fig. 9) interactions stabilized after approximately

14 ns. Both L-454560 and MK-591 had ligand RMSDs of

approximately 1.5 Å. However, MK-591 fluctuated between

two RMSDs, which may imply alternative binding poses. The

top1 candidate stabilized in PDE4D and ALOX5AP at ligand

RMSD of 2.4 Å and 7 Å, respectively, and the top2 candidate

stabilized at 2.4 Å ligand RMSD in both targets. Although all

of the binding conformations stabilized relatively early,

occasional fluctuations were observed in some trajectories.

Intriguingly, the controls L-454560 and MK-591 showed more

frequent fluctuation rates at ligand RMSD. In comparison,

top1 and top2 ligands were relatively stable, with a fluctuation

range of less than 1 Å.

Snapshots of each docking pose at 22 ns of simulation are

presented in Fig. 10 for PDE4D and Fig. 11 for ALOX5AP.

At the end of the MD simulation, L-454560 maintained tight

cation-mediated (Zn2+ and Mg2+) binding to Asp367 and

ASP484 as well as the H-bond at Thr499 (Table 3 and

Table S3, ESIw). Newly formed p-mediated bindings were

Table 3 H-bonds of PDE4D–ligand complexes for L-454560

Ligand H-bond Ligand atom Amino acid Max. distance Average distance Min. distance H-bond occupancya

L-454560 1 O22 His370:HD1 5.16 2.97 2.02 2.41%
2 O40 Thr499:HG1 3.91 2.07 1.58 78.41%

a H-bond occupancy cutoff: 2.5 Å.

Table 4 H-bonds of ALOX5AP–ligand complexes for the top two candidates and MK-591

Ligand H-bond Ligand atom Amino acid Max. distance Average distance Min. distance H-bond occupancya

Myristic acid 1 O13 E:Lys29:HZ1 4.03 2.35 1.63 90.91%
2 O14 E:Lys29:HZ1 5.10 2.73 1.73 71.50%
3 O13 E:Lys29:HZ2 4.13 3.13 1.76 56.95%
4 O14 E:Lys29:HZ2 5.35 3.80 1.63 14.09%
5 O13 E:Lys29:HZ3 3.67 2.30 1.61 2.00%
6 O14 E:Lys29:HZ3 4.96 3.29 1.68 76.86%
7 O13 E:Gln95:HE22 7.66 3.23 2.48 12.23%
8 O14 E:Gln95:HE22 5.69 2.36 1.85 0.05%

Pentadecanoic acid 1 O16 E:Lys29:HZ1 3.77 2.61 1.55 42.51%
2 O17 E:Lys29:HZ1 5.23 4.03 1.85 0.68%
3 O16 E:Lys29:HZ2 3.92 2.61 1.59 43.46%
4 O17 E:Lys29:HZ2 5.39 4.00 1.76 0.36%
5 O16 E:Lys29:HZ3 3.75 2.67 1.60 39.51%
6 O17 E:Lys29:HZ3 5.31 4.07 1.82 0.59%

MK-591 1 O4 D:Lys116:HZ1 4.49 2.63 1.63 37.82%
2 O5 D:Lys116:HZ1 3.81 2.52 1.62 48.50%
3 O4 D:Lys116:HZ2 4.87 2.60 1.59 39.82%
4 O5 D:Lys116:HZ2 3.92 2.53 1.61 50.45%
5 O4 D:Lys116:HZ3 4.65 2.64 1.64 36.86%
6 O5 D:Lys116:HZ3 3.93 2.57 1.63 45.32%

a H-bond occupancy cutoff: 2.5 Å.

Fig. 12 Distance in Å of hydrogen bonds between ALOX5AP and (a) MK-591, (b)(c) Myristic acid, and (d) Pentadecanoic acid.
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observed, including p–p interactions at His326 and p–sigma

interactions at Phe538 (Fig. 10a). In addition, the binding

poses showed that an additional H-bond was formed at

His370, which supported the pharmacophore hypothesis at

the H-bond acceptor region (Fig. 4b). With regard to the

candidates, the carboxyl groups maintained stable electrostatic

interactions with the abovementioned cations, which held the

key residues Asp367 and Asp484 in close approximation.

Throughout the simulation, the aliphatic tails of the candi-

dates were maintained within the PDE4D ligand binding site,

which interfere with the key residue Gln535 (Fig. 10b and c).

All ALOX5AP–ligand interactions maintained the binding

stabilities through H-bonds (Table 4, Fig. 12). The control

MK-591 was held at close approximation to Lys166 at chain D

by H-bonds throughout the simulation (Fig. 12a). Based on

the snapshots, a new p–p interaction was formed between

MK-591 and His28 at chain E (Fig. 11a). For both candidates,

the carboxyl groups presented in the snapshots maintained

stable electrostatic interactions and H-bonds with Lys29

(Table 4, Fig. 11b and c). Moreover, the top1 candidate

formed a new H-bond with Gln95 at chain E, as well as a

new p–sigma interaction with Phe25, which further contrib-

uted to the protein–ligand binding stabilities.

Conclusion

Based on the analysis, the binding poses of both top1 and top2

candidates suggested common interaction patterns that fitted

in both the PDE4D and ALOX5AP binding sites. As

suggested by the screening results, TCM compounds that

contained an acidic carboxyl group could lead to better

target–ligand interactions. The pharmacophore models

further hypothesized that the presence of an H-bond donor

as well as the presence of high volumes of hydrophobic regions

were the key features for a potent ligand. As demonstrated in

the MD simulation, the carboxyl group showed particularly

interesting features for binding to the targets PDE4D and

ALOX5AP. For PDE4D, the carboxyl group in each candi-

date showed strong binding affinities to the divalent cations

(Zn2+ and Mg2+), which bridged the binding stability to the

key residues Asp367 and ASP484. For ALOX5AP, the

carboxyl group formed stabilizing H-bonds with the receptor.

The potent interaction between the ligand carboxyl group and

the binding site allowed the hydrophobic volume to both fill

the binding site and subsequently block the access to the key

residues. Hence, as the analysis on the TCM candidates

suggested, the presence of the carboxyl group and high

hydrophobic volume were the key features for a dual-targeting

inhibitor against PDE4D and ALOX5AP, which the proteins

had critical roles as stroke risk factors.
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