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In silico pharmacology suggests ginger extracts may reduce stroke risksw
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Aberrations in cyclic adenosine monophosphate (cAMP) signaling cascade has been linked to the

allergic responses that associate with the risks of stroke or cardiovascular diseases.

Phosphodiesterase 4D (PDE4D) has been shown to be highly involved in cAMP regulation and is

hence implied to be a potential drug target in stroke prevention. To identify potential PDE4D

inhibitors from traditional Chinese medicine (TCM), we employed machine learning modeling

techniques to screen a comprehensive TCM database. The multiple linear regression (MLR) and

support vector machine (SVM) models constructed have correlation coefficients of 0.8234 and

0.7854 respectively. Three candidates from the ginger family were identified based on the

prediction models. Molecular dynamics simulation further validated the binding stabilities of each

candidate in comparison to the control inhibitor L-454560. The intermolecular distances

suggested that the candidates could hinder PDE4D from binding to cAMP. Furthermore, the

HypoGen validation suggested that top2, top3, and the control L-454560 mapped with the

predicted pharmacophores. The results suggested that the 3 compounds identified from the ginger

family were capable in inhibiting cAMP binding and hydrolysis by PDE4D. We further identified

and characterized the ligand binding properties that are associated with the inhibition of PDE4D.

Introduction

Stroke is one of the leading causes of death worldwide.

However, available medications remain extremely limited.

For example, the commercialized stroke drug, Actilyses, is

only effective within 3 hours of the stroke onset,1,2 which

makes the treatment less applicable in many cases. Other

common treatments, including administering aspirin and

injecting tissue plasmogen activators, are blood thinning

agents that have been reported causing internal bleeding as a

side effect. Hence, developing additional effective treatments

with minimal side effects is of crucial importance.

By looking into the signaling cascades of the cyclic adenosine

monophosphate (cAMP) pathway, deregulation of such second

messenger has been linked with many diseases or disorders,

including inflammation,3 cancer,4 and mental disorders.5 Recent

genome-wide association study (GWAS) on stroke-inducing

factors has identified phosphodiesterase 4D (PDE4D),

which has a key role in regulating cAMP concentration.6

GWAS replications on different ethnic groups also suggested

relationships between PDE4D and stroke.7 Worrall and

Mychaleckyj’s study indicated the indirect effect of PDE4D

on stroke or cardiovascular biomarkers. Moreover, PDE4D

is responsible for at least 80% of PDE enzyme activity,

which predominate cAMP metabolism in inflammatory and

injury responses that could have an implicit effect on stroke

risks.8 For this reason, the effects of PDE4D enzymatic

activities support the relationship between PDE4D protein

and stroke. Hence, the development of novel PDE4D inhibitors

could lower the stroke risk that was induced by abnormally

upregulated PDE4D.

We focused our attention in discovering PDE4D inhibitors

from Traditional Chinese medicine (TCM), which is a popular

East Asia medical study that has been practiced over

thousands of years. Scientific investigations on this class of

medicine have further identified multiple therapeutic values,

from inflammation, neurological diseases, to cancer.9,10 TCM

has also been demonstrated to be a resourceful databank for

in silico drug discovery. Many potential drugs or precursor
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compounds have, therefore, been identified.11–17 To determine

the potential PDE4D inhibitors, we employed the most

comprehensive 3D small molecule TCM database, TCM

Database@Taiwan,18 for screening. In the past, we had

established the PDE4D researches about screening potential

candidates based on docking for stroke17,19 and Alzheimer’s

disease.20 In those studies, difficulties in matching the descriptors

of top candidate descriptors for prediction models with training

set descriptors were experienced. In this study, we screened

potential candidates based on the prediction models. Two

quantitative structure–activity relationship (QSAR) models,

support vector machine (SVM) and multiple linear regressions

(MLR) models, were applied to screen the TCM database and

predict their activities. The docking simulation was performed

to identify docking poses of the common candidates from

QSAR models. Molecular dynamics (MD) simulations followed

by HypoGen modeling were used to validate the screening

results.

Materials and methods

Fig. 1 summarized the general in silico drug identification

protocol used in this study.

Data collection

The crystal structure of PDE4D was obtained from RCSB

Protein Data Bank (PDB ID: 3G4G).21 For establishing

QSAR prediction models, 62 compounds from three different

studies were obtained.22–24 More than 20 000 TCM 3D small

molecules were obtained from TCM Database@Taiwan.18

Ionization states of the ionizing functional groups were

adjusted using Accelrys Discovery Studio 2.5 (DS 2.5).25

QSAR modeling

The non-linear SVM and the linear MLR machine learning

algorithms were employed to construct QSAR models. The

SVM model was established using LibSVM.26 The MLR

model was built using MATLAB.27 The regression model

of SMV (SVR)28 was established using gridregression.py

program in the libsvm-2.91 package.26

The prediction modeling protocol built from the last study17

was applied. 62 compound structures and activity properties

gathered from Card et al.,22 Aspiotis et al.,23 and Naganuma

et al.24 were obtained and randomly selected for training

(51 compounds) and testing (11 compounds) the QSAR

models. A genetic function approximation (GFA)29 module

from DS2.5 was employed to identify representative molecular

descriptors. The square correlation coefficient (R2) of pIC50

values was assessed to determine the accuracy of each model.

The descriptors identified using GFA were Dipole mag,

Dipole Y, Jurs FNSA, Jurs PPSA3, Jurs RASA, Jurs RNCG,

Fig. 1 Schematic flowchart of the screening protocols.

Fig. 2 Comparative plots of MLR (top) and SVM (bottom) models.

Correlation trend (black line) and 95% confidence regions (enclosed

by magenta lines) are shown. Training set (blue dots) and testing set

(red triangle) data are presented.
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Jurs TASA, Jurs WPSA3, shadow X length, and shadown Y

length. Five-fold cross validation was performed for both

MLR and SVM models.

Docking

CHARMm force field30 was applied to the receptor as well

as each ligand in the TCM database. The DS2.5 Flexible

Docking module31 was employed for virtual docking, which

screens for the ligand compatibilities to the cAMP binding

site defined by the co-crystallized compound on the 3G4G

structure. The PDE4 inhibitor, L-454560,32 was used as control.

Binding Energy (BE) of each protein–ligand binding pose was

evaluated using the Calculate Binding Energies module33 of

DS 2.5.

Table 1 Docking results and predicted pIC50 for top TCM candi-
dates and L-454560

Name

Predicted pIC50

Binding energyMLR SVM

(5S)-7-(4-Hydroxy-phenyl)-5-
methoxy-1-phenylheptan-3-one

7.56 6.62 �140.02

(4E)-7-(4-Hydroxyphenyl)-1-
phenylhept-4-en-3-one

7.72 6.34 �133.80

Demethoxy-[6]-shogaol 7.52 6.34 �128.50
L-454560a 8.42 9.04 �127.55
Fipronil 8.28 6.26 �101.78
Dracorhodin perchlorate 7.83 6.59 �80.98
a-Asarone 9.14 6.35 �54.24
a Control.

Fig. 3 The molecular structures of (a) top1, (b) top2, (c) top3, and

the control (d) L-454560.

Fig. 4 Docking poses of PDE4D with (a) top1, (b) top2, (c) top3, and (d) L-454560 in the cAMP binding site. Residues of the binding site (green),

active site (blue), and other residues (brown) are shown. Electrostatic interactions (magenta line), pi–pi interactions (red line), hydrogen bond

interactions (pink dashed line) are presented.

Fig. 5 MD dynamics trajectories of (a) Ca RMSD, (b) ligand

RMSD, and (c) total energy of PDE4D in complex with each

candidate and L-454560.
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Molecular dynamics simulation

DS2.5 Simulation package25 was employed for MD simulation

CHARMm force field.30 A 7 Å solvation shell of TIP3P water

was created and balanced with sodium cations for the simulation

system. For minimization, 6000 cycles of Steepest Descent34

with restricted protein followed by 6000 cycles of Conjugate

Gradient35 with flexible protein were performed. Time steps

were set to 0.002 ps throughout the simulation. All bonds

involving hydrogen atoms were fixed with the SHAKE

algorithm. The long-range electrostatics were treated by the

PME method. Each simulation system was heated from 51 K

to 310 K in a 50 ps interval, then followed by a 200 ps

equilibration phase. For the production step, constant

temperature ensemble (NVT) with 0.4 ps of temperature

coupling decay time. MD simulation was performed for 24 ns.

Pharmacophore modeling

Training set data used to train the machine learning QSAR

models were modified to low-energy conformations using a

FAST generation module in DS2.5. Common ligand features

were identified by the HipHop algorithm.36 The HypoGen

algorithm37 then construct the 3D-QSAR models based on the

common pharmacophore features identified.

Results and discussions

QSAR modeling

The R2 of MLR and SVM prediction models were 0.78 and

0.89 respectively (Fig. 2). The MLR prediction model with

optimized property descriptors was described as the following:

predicted_IC50 = �23.43 + 0.1383 � Dipole_mag + 0.0921

� Dipole_Y � 31.708 � Jurs_FNSA3

� 0.2866 � Jurs_PPSA3 + 28.543

� Jurs_RASA + 20.607 � Jurs_RNCG

� 0.0330 � Jurs_TASA + 0.691

� Jurs_WPSA3 + 0.428 � Shadow_Xlength

+ 0.528 � Shadow_Ylength

Table 2 H-bonds of PDE4D–ligand complexes for the top 3 compounds and L-454560

Ligand H-bond Ligand atom Amino acid Max. distance Average distance Min. distance H-bond occupancya (%)

Top 1 1 H44 Asp367:OD1 3.88 3.12 1.83 18.54
2 H44 Glu396:OE1 4.12 2.83 2.08 34.42
3 H44 Asp438:OD1 6.69 3.70 1.77 52.79

Top 2 1 H41 Asp367:OD1 3.46 2.69 1.85 43.67
2 H41 Asp367:OD2 4.96 3.66 2.47 0.08
3 H41 Glu396:OE1 5.02 3.89 2.50 0.04
4 H41 Thr437:O 4.75 2.82 1.87 51.67

Top 3 1 O19 Tyr325:HH 3.66 2.75 2.07 13.33
2 H43 His370:NE2 4.05 2.23 1.85 95.96

L-454560 1 O22 His370:HD1 5.16 2.97 2.02 3.00
2 O40 Thr499:HG1 3.91 2.15 1.58 72.13

a H-bond occupancy cutoff: 2.5 Å.Top 1: (5S)-7-(4-hydroxy-phenyl)-5-methoxy-1-phenylheptan-3-one.Top 2: (4E)-7-(4-hydroxyphenyl)-1-

phenylhept-4-en-3-one.Top 3: Demethoxy-[6]-shogaol.

Fig. 6 The docking poses for PDE4D with (a) top1, (b) top2,

(c) top3, and (d) L-454560 at 24 ns of MD. Residues of the binding

site (green), active site (orange), and other residues (blue) are shown.

Electrostatic interactions (red line), pi–pi interactions (magenta line),

hydrogen bond (yellow dashed line) are presented.

Fig. 7 Distance in Å of hydrogen bonds between PDE4D and (a)

top1, (b) top2, (c) top3, and (d) L-454560.
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Most residuals between the prediction and observation

qwere within a range of 1.5 suggesting that the prediction

models were reliable (Table S1, ESIw, for predicted pIC50 of

MLR and SVM models). The accuracies of MLR and SVM

Table 3 Residues close to each candidate and control (cutoff: 3.5 Å)

Residue Val193 Phe196 Ile197 Thr200 Phe201 Tyr325 His326 His330 Asp367 His370 Gly372 Val373
Top 1 + + + + + +
Top 2 + + + + + +
Top 3 + + + + + +
Control + + + + + + + + + + +
Residue Ser374 Asn375 Leu395 Glu396 Thr437 Asp438 Met439 Asp484 Leu485 Asn487 Pro488 Tyr495
Top 1 + + + + + + + +
Top 2 + + + + + +
Top 3 + + + + + + + + +
Control + + + + + + + + + +
Residue Trp498 Thr499 Ile502 Met503 Phe506 Met523 Ser534 Gln535 Gly537 Phe538 Ile542 Total

Top 1 + + + + + + 20
Top 2 + + + + 16
Top 3 + + + + + + + 22
Control + + + + + + + + + 30

Fig. 8 Relative residue positions compared to (a) top1, (b) top2, (c) top3, and (d) L-454560 based on the center of mass.
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models were also validated by predicting pIC50 of L-454560,

which were 8.42 and 9.04 with respect to the actual value

of 8.92 (IC50 = 1.2 nM). Both models were employed to

screen the TCM database for potential PDE4D inhibitors. The

top candidates that are common in both models indicate

the potential inhibitor according to these 10 training set

descriptors. For the binding affinity, the ligand docking poses

were assessed using the docking algorithm and ranked using

BE. Six top candidates are shown in Table 1.

Docking

The docking results identified 3 candidates, which have higher

BE than L-454560 (Table 1). These candidates were (4E)-7-

(4-hydroxyphenyl)-1-phenylhept-4-en-3-one (top1), (5S)-7-(4-

hydroxy-phenyl)-5-methoxy-1-phenylheptan-3-one (top2), and

demethoxy-[6]-shogaol (top3). The top1 and top2 candidates

were isolated from Alpinia officinarum. The top3 candidate

was isolated from Zingiber officinale. Interestingly, all top

three compounds came from the ginger family. According to

the Compendium of Materia Medica, ginger is documented to

promote circulatory functions as well as anti-inflammation

and anti-plaque properties.38 These effects may correlate to the

anticipated effects from administering drug-form PDE4D

inhibitors for stroke prevention. Hence, the TCM candidates

originated from ginger may be some of the active compounds

contributing to the observed healing functions of ginger since

ancient times.

The structure of each candidate has a phenol group on one

end and a relatively less polar group on the other end (Fig. 3).

From the docking poses shown in Fig. 4, all phenyl groups

have pi–cation interaction with Zn2+. In addition, the hydroxyl

group on the phenyl structure formed hydrogen bonds (H-bonds)

with nearby residues, Glu396 or Thr437. Comparatively, the

control L-454560 formed an ionic interaction with Zn2+. A

stabilizing pi–pi interaction is also observed in each binding

complex, with either Phe506 on top1, top2, and control, or

Tyr325 on top3. Additionally, the phenyl group on the top1

candidate also has pi–cation interaction with the Mg2+. These

observations suggested high binding affinities in all candidates

and the control.

Molecular dynamics simulation

The stability of each complex was assessed through MD

simulation. Root mean square deviation (RMSD) trajectories

of each ligand and the corresponding protein (Ca) were

calculated individually for each protein–ligand interaction

(Fig. 5). Total energy for each binding pose was also calculated.

All candidates were stabilized after 18 ns of simulation.

L-454560, on the other hand, stabilized after 21 ns. Intriguingly,

all ligands, including the control, experienced sudden confor-

mational changes within first 2 ns, implying possible alliteration of

the similar binding features. The snapshot of each docking

pose at the 24 ns of simulation was presented in Fig. 6. The

frequency of H-bond occurrences during MD further sug-

gested the presence of stable H-bonds that held the ligands in

close approximation to the key residues Asp367 and Asp484

(Table 2). Additionally, the top1 candidate maintained the

pi–cation interactions with the divalent metal cation, Zn2+,

which further stabilized the ligand within the docking

site (Fig. 6(a)). Intriguingly, the end group of each ligand

near the key residue Gln535 formed new interaction patterns

in place of the bindings before the simulation. The pi–pi

interactions with Phe538 (top1 and control) and Phe196

(top2) as well as the H-bond with Tyr325 (top3) were observed

(Fig. 6).

According to the distance trajectory of the H-bond during

MD shown in Fig. 7, the top1 candidate formed H-bonds with

Asp367, Glu396, and Asp438 after 10 ns; the top2 candidate

Fig. 9 Distance distribution (in Å) of all residues near to the candi-

dates and the control L-454560.

Fig. 10 Relative distance distribution that compares all candidate

ligands and the control L-454560.
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formed more H-bonds with Asp367, Glu396, and Thr437

when the protein–ligand complex stabilized after 18 ns of

simulation. On the other hand, the top3 ligand and

L-454560 have H-bonds with His370 (Fig. 7). According to

the H-bond trajectory, the control ligand formed a longer

H-bond (43 Å) with Thr499, which also contributes to the

binding stabilities. We further determined the positioning of

each ligand within the binding site. All nearby residues at a

range of 3.5 Å to a ligand were monitored (Table 3). Center of

mass was identified for monitoring the distances between

ligands and nearby residues during 20–24 ns simulation

(Fig. 8). For top1, most distances lay at 5.25 Å, 7.75 Å, 9.25 Å,

and 11.75 Å (Fig. 9(a)). For top2, three peaks were observed

at 5.75 Å, 8.25 Å, and 11.25 Å, for which the distribution

was more concentrated (Fig. 9(b)). The top3 ligand was

slightly farther from the nearby residues, where most distances

were distributed at 7.75 Å, 8.75 Å, 10.25 Å, and 13.25 Å

(Fig. 9(c)). Similar distance distribution peaks were observed

for L-454560, at 7.75 Å, 8.75 Å, 10.75 Å, and 12.75 Å

(Fig. 9(d)).

As summarized in Fig. 10, the distances between the ligand

and nearby residues were in the range of 5 Å to 14 Å, where

several distances existed more frequently than others. All

peaks presented indicated that most distances were below

10 Å. Short intermolecular distances implied that all candidates

had strong protein–ligand interactions that prohibit the

natural substrate cAMP from binding. Furthermore, top1

had the shortest intermolecular distance to the binding site

whereas top3 was slightly distant from the receptor (Fig. 10).

As shown in Fig. 11, all ligands had relatively stable poses

within the binding site that is in close approximation to the key

binding residues Asp367, Asp484, and Gln535, as well as

the activity residue His326 though no direct bonding was

observed. This suggested all candidates were ‘‘locked’’ within

the binding site and prevent the PDE4D from interacting with

its natural substrate cAMP.

Pharmacophore modeling

We further built a HypoGen model for validating the candidates.

Variations in modeling features (Table 4) and CatScramble

plot (Fig. 12) were assessed to identify a validation model that

best represents the pharmacophores of a potential ligand. The

most fitting HypoGen model, which had an R value of 0.870,

comprised with 2 H-bond receptor components and 3 hydro-

phobic regions that most of which were 3 Å apart from each

other (Table 4, Fig. 13(a)). By mapping each TCM candidate

to the HypoGen model, the top2, top3, and control com-

pounds showed satisfactory features that matched with the

given pharmacophore profiles (Fig. 13(b)–(d)). The ring struc-

tures and the hydrophobic chains on the ligands mapped well

with the hydrophobic regions defined by the model. In addi-

tion, carbonyl groups on top2 and top3, as well as the oxygen

atoms on the control mapped to the H-bond acceptors. On the

other hand, the top1 compound did not fit with the pharma-

cophore arrangements due to an additional ether group

(R–O–R0) within the hydrophobic regions.

Fig. 11 Approximated distance between key residues and (a) top1, (b) top2, (c) top3, and (d) L-454560 in the stabilized binding conformation.

The relative positions of the binding residues (blue) and the active residues (red) are presented.

Table 4 The results of pharmacophore hypothesis generation

Hypothesis
Total
cost

Cost
difference

Error
cost RMS

R
value Feature

1 295.85 200.58 278.63 1.504 0.870 AAHHH
2 308.53 187.90 291.32 1.634 0.844 AAHHH
3 309.95 186.48 292.74 1.648 0.841 AHHHH
4 310.36 186.07 293.03 1.651 0.841 AAHHH
5 311.06 185.37 293.86 1.659 0.839 AHHHH
6 312.24 184.19 295.10 1.671 0.836 AHHHH
7 312.90 183.53 295.71 1.677 0.835 AAHHH
8 313.16 183.27 295.97 1.679 0.834 AHHHH
9 313.27 183.16 295.83 1.678 0.835 AAHHH
10 315.64 180.79 298.32 1.702 0.830 AHHHH

Null cost: 496.43. Fixed cost: 225.66. Configuration cost: 15.99.

Hydrogen bond acceptors (A) and hydrophobic features (H) were

identified and analyzed for modeling.
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Pharmacophore results complement the findings in MD

simulation. As shown in Fig. 13, the phenol group in control,

top 2, and top 3 compounds formed H-bonds with Asp367,

matching the H-bond acceptor feature in the pharmacophore

model. Top 3 also formed an additional H-bond with Tyr325,

matching the second H-bond acceptor feature in pharma-

cophore modeling.

Conclusion

By screening the TCM database with MLR and SVM models

followed by docking algorithm, we identified three potential

PDE4D inhibitors from the ginger family. These ligands had

similar molecular structures. BE evaluations on all 3 candidates

further suggested potentially higher binding compatibilities to

the cAMP dock site in PDE4D. The MD simulation further

identified stable binding conformation of each ligand, though

differed from the initial docking conformations. Analysis of

the intermolecular bonding suggested interference of cAMP

binding and hydrolysis activities of PDE4D. HypoGen validation

determined that the top1 candidate may not fit with the

desired pharmacophore regions. However, top1 may still be

considered as a potent PDE4D inhibitor based on other

validations. Hence, we propose that all top1, top2 and top3

compounds from the ginger family could be further analyzed

for their therapeutic potentials in lowering stroke risks.
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