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a b s t r a c t

A novel gait recognition method for biometric applications is proposed. The approach has the following
distinct features. First, gait patterns are determined via knee acceleration signals, circumventing difficul-
ties associated with conventional vision-based gait recognition methods. Second, an automatic procedure
to extract gait features from acceleration signals is developed that employs a multiple-template classifi-
cation method. Consequently, the proposed approach can adjust the sensitivity and specificity of the gait
recognition system with great flexibility. Experimental results from 35 subjects demonstrate the poten-
tial of the approach for successful recognition. By setting sensitivity to be 0.95 and 0.90, the resulting
specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The goal of a biometric system is to identify or verify a person
using individual physiological or behavioral characteristics (Jain,
Ross, & Prabhakar, 2004; Xiao, 2007; Zhang & Zuo, 2007). Many
biometric features, such as electrocardiograms (Chan, Hamdy, Bad-
re, & Badee, 2005), fingerprints (Girgis, Sewisy, & Mansour, 2009;
Hong, Min, Cho, & Cho, 2008), gait (Lee, Hong, & Kim, 2009; Tao,
Li, Wu, & Maybank, 2007), heart sound (Phua, Chen, Dat, & Shue,
2008), iris (Chen & Chu, 2009; Rakshit & Monro, 2007), palmprint
(Huang, Jia, & Zhang, 2008; Su, 2009), signature (Impedovo & Pirlo,
2008; Nanni, Maiorana, Lumini, & Campisi, 2010), typing dynamics
(Araújo, Sucupira, Liźarraga, Ling, & Yabu-Uti, 2005), vein (Wang,
Leedham, & Cho, 2008; Wu & Ye, 2009) and voice (Wahab, Ng, &
Dickiyanto, 2005; Wang, Yang, Wang, & Lee, 2007) have been pro-
posed. Among these biometric features, gait has the following dis-
tinct properties. First, gait recognition can be processed
unobtrusively. Second, gait is difficult to disguise. Third, since the
mean comfortable walking speed is approximately 51.5 strides
per minute (Bussmann, Damen, & Stam, 2000), one can obtain hun-
dreds of gait cycle samples in a few minutes. This feature is signif-
icant since the success of the design and validation of a pattern
recognition system depends strongly on the sample size (Dass,
Zhu, & Jain, 2007; Raudys & Jain, 1991; Sordo & Zeng, 2005).

Most current gait biometric systems use cameras to capture gait
information (Boulgouris & Chi, 2007; Boulgouris, Hatzinakos, &
Plataniotis, 2005; Lee et al., 2009; Nixon & Carter, 2006; Sarkar

et al., 2005; Tao et al., 2007; Xu et al., 2006; Zhang, Vogler, &
Metaxas, 2007). After separating the walking person from the
background, gait features are extracted from the image sequence.
The success of these vision-based gait recognition systems depends
on several critical factors. First, to be most effective, the subject
needs to walk in a direction perpendicular to the optical axis of
the camera (Boulgouris et al., 2005). Second, to achieve accurate
person-environment separation, the background needs to be as
uniform and as time-invariant as possible (Sarkar et al., 2005).
Imperfect person-environment separation introduces noise into
the gait features that degrades the recognition rate. Third, the
accuracy of the gait recognition is significantly limited by the dis-
tance between the subject and the camera (Zhang et al., 2007). In
summary, the sensitivity to environmental variations, capturing
angle of the camera, and the distance between the subject and
camera make vision-based gait recognition systems difficult to
implement in many real-world situations.

In additional to the optical motion analysis methods, acceler-
ometers have been used in gait research in many studies to deter-
mine kinematic and kinetic information (Bogert van den, Read, &
Nigg, 1996; Hayes, Gran, Nagurka, Feldman, & Oatis, 1983; Kava-
nagh, Morrison, James, & Barrett, 2006). Accelerometer-based gait
recognition methods have also been proposed (Gafurov, Snekk-
enes, & Bours, 2007; Mäntyjärvi, Lindholm, Vildjiounaite, Mäkelä,
& Ailisto, 2005). By directly measuring the hip acceleration, these
approaches acquire gait features without the need for cumbersome
image processing techniques. The sensitivity to the environmental
factors, such as background complexity and the appearance of
other persons, is thus avoided.

In comparison to methods that utilize hip acceleration signals,
this study relies on knee acceleration information to characterize
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the gait pattern. This change gives rise to two additional benefits.
First, accelerometer-measured knee signals can be used to diagnose
the health of the knee joint (Krishnan, Rangayyan, Bell, & Frank,
2000; McCoy, McCrea, Beverland, Kernohan, & Mollan, 1987). This
can be a significant advantage since the knee joint is the most com-
monly injured or diseased joint in the body (Rangayyan & Wu,
2008). Second, knee-mounted devices have been developed to har-
vest energy from a person’s stride (Andrysek & Chau, 2007; Donelan
et al., 2008). By collecting the kinetic energy that would otherwise
be dissipated at the end of the swing phase, such devices can gen-
erate an average of 5 W of electricity from each leg. (Such power
is sufficient to operate 10 typical cell phones simultaneously.) By
integrating such a device with an accelerometer, one can easily de-
sign a self-charging sensor that can simultaneously perform long-
term knee health monitoring and identity verification.

Another important unique feature of this study is the use of a
hyperspherical classifier (Telfer & Casasent, 1993) to explore the
potential of drawing on a large number of gait samples to enhance
the recognition accuracy. By varying its parameters, the sensitivity
and specificity of the hyperspherical classifier can be systemati-
cally adjusted to improve the overall gait recognition rate.

The paper is organized as follows. The following section de-
scribes the hardware setup and introduces the proposed feature
extraction method. Section 3 illustrates a systematic approach for
hyperspherical classifier design. Section 4 presents the experimen-
tal results, and a discussion and conclusion are given in Section 5.

2. Gait feature extraction

2.1. Hardware setup

The motion sensor employed in this work is a three-dimen-
sional accelerometer (Analog Devices ADXL330, ±3 g range, sensi-
tivity 330 mV/g). The size of the accelerometer is 4 mm �
4 mm � 1.45 mm. In attaching the accelerometer to the knee of
all tested subjects, the x, y and z-axes of the sensor were aligned
with the anterior-posterior, medial-lateral and proximal-distal
directions, respectively. The acceleration signal was transmitted
wirelessly to a notebook computer. The z-axis component of the
acceleration (denoted as Az hereafter) was recorded with a 12-bit
National Instruments (NI) USB-6008 data acquisition card at a
1 kHz sampling rate. In every recording session, each subject was
asked to walk approximately forty steps. The data was recorded in-
doors in a 40 m tiled hallway. Fig. 1 depicts a typical example of Az

after removing the DC component of the signal.

2.2. Extraction process

The first part of the feature extraction process is to remove the
transitional part of the Az which consists of the initial and final por-
tions of each walking session. This is accomplished by the follow-
ing procedure.

(1) By observing the peaks of Az in every gait cycle, determine a
parameter P to represent the nominal value of such peaks.

(2) Find every local maximum for Az.
(3) Determine the first local maximum that is larger than P and

remove the portion of Az that comes ahead of this local
maximum.

(4) Similarly, determine the last local maximum that is larger
than P and remove the portion of Az that comes after this
local maximum.

The second part of the feature extraction process is to divide Az

into a number of gait cycles by finding the end of the swing phase

in every gait cycle. This is accomplished by applying the following
procedure:

(1) Filter Az by removing its frequency component above 1.5 Hz.
Fig. 2a and b depict a typical Az before and after such an
operation, respectively. Note that the peaks that appear in
every gait cycle of the original Az correspond to heel-strike.

(2) Determine the local maxima for the filtered Az. These local
maxima correspond to the end of the swing phase in every
gait cycle. However, as shown in Fig. 2b, the low-pass filter-
ing operation has suppressed the magnitude and shifted the
time-of-occurrence of the heel-strike peaks. The goal of the
following two steps is to recover the true time-of-occurrence
of these peaks in order to accurately divide Az into a number
of gait cycles.

(3) After finding the time differences between every pair of
neighboring local maxima of the filtered Az, find the median
(denoted as L) of these time differences.

(4) Let ti represent the time associated with the ith local max-
ima for the filtered Az. Find an absolute maximum of the ori-
ginal Az from the time interval ti � 0.2L 5 t 5 ti + 0.2L, where
t is the time variable. The time associated with such an abso-
lute maximum is denoted as Ti.

(5) Assign the time interval between every pair of Ti and Ti+1 as a
gait cycle.

(6) Normalize each gait cycle to 1000 sampling points via linear
interpolation. The ith time-normalized gait cycle is denoted
as Gi in the remaining part of this paper.

(7) The variation of many uncontrollable factors such as shoes
and walking surface may alter the magnitude of Az.
Therefore, the third step of the feature extraction process

Fig. 1. A typical accelerometer output time response.

Fig. 2. The accelerometer output responses before and after the low-pass filtering
operation.
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is to normalize Az so that the average power of every Gi is
equal to unity for every gait recording session.

The final part of the proposed feature extraction method is to
determine the feature vector by finding the region of interest
(ROI) for each gait cycle. In this study, ROI is selected from the por-
tion of Az near the heel-strike since the interpersonal differences of
such an interval seem to be more significant than the remaining
part of Az. As shown in Fig. 3, heel-strike occurs at the central part
of the gait cycle. Therefore, the time of heel-strike can be deter-
mined by finding the maximum value of Az between the 250th
and the 750th sampling points of the time-normalized Gi. With
the time of heel-strike as the center, the ROI is selected as a 501-
sample-point subinterval of the normalized gait cycle. After down-
sampling this ROI with a factor of 10, an ROI vector of dimension
50 can be acquired from each gait cycle. Finally, to enhance the
reliability of the recognition system, a gait feature vector is ob-
tained by averaging the ROI vectors from five walking steps.

3. Hyperspherical classifier design

Previously reported accelerometer-based gait recognition sys-
tems used template-based techniques to perform gait recognition.
By comparing the similarity between the tested feature vector and
a pre-stored template, the decision of rejection or acceptance is
made based on a ‘‘matching score’’ between these two vectors.
However, considering the magnitude and diversity of the possible
variations of human biometric traits, accurate recognition may re-
quire multiple templates (Jain et al., 2004).

Fig. 4 presents an example of the distribution pattern of an arti-
ficial two-dimensional biometric feature vector that illustrates the

advantages of multiple templates. With the mean of the samples as
the template and the Euclidean distance as the similarity measure,
the acceptance region is constructed as a circle. The false accep-
tance (rejection) error can be improved (degenerated) by decreas-
ing (increasing) the radius of this circle. As a result, the sensitivity
and specificity of this recognition system can be adjusted system-
atically. The key weakness of this single-template approach is the
redundancy of the acceptance region since, as shown in Fig. 4a,
the shape of the true acceptance region is very different from a
circle.

This problem can be partially resolved by using two templates,
as demonstrated in Fig. 4b. When circles can be properly placed,
the redundancy of the acceptance region can be reduced further
by increasing the number of circles. Based on this concept, several
hyperspherical classifier design methods have been proposed to
tackle classification problems of higher dimension (Telfer & Casa-
sent, 1993; Yen & Liu, 1997). A drawback of these approaches is
that their algorithms require the setting of a number of ad hoc
parameters which may influence the convergence of the design
process. Another challenge of these methods is in the difficulty in
balancing the sensitivity and specificity of the classifiers.

The remaining part of this section introduces a conceptually
simple hyperspherical classifier design method that circumvents
convergence problems. The proposed approach also provides a sys-
tematic procedure for fine-tuning the sensitivity and specificity of
the gait recognition system. The design process consists of two
phases. The first phase generates a number of hyperspheres to cov-
er all the samples of an enrolled user. The second phase revises the
hyperspherical classifier to reduce false rejection error. The proce-
dure for the first phase is:

(1) Divide the samples of the enrolled user (enrolled samples)
into two clusters by using the conventional k-means
method.

(2) Find the cluster that has the largest number of samples.
Replace this cluster by two new clusters which are obtained
by clustering the samples associated with the cluster to be
replaced into two groups.

(3) With the appearance of new clusters, use the nearest neigh-
bor rule to rearrange the contents of each cluster by comput-
ing the distances between every sample and every cluster
center.

(4) Continue the process from step 2 until a sufficient number of
clusters has been generated.

(5) By using the cluster center as the center and the largest dis-
tance between the center and samples belonging to this
cluster as the radius, the approach constructs one hyper-
sphere from one cluster. The space occupied by the hyper-
spheres is chosen as the acceptance region for the enrolled
user.

The radius and the center for the ith hypersphere are denoted as
Ri and Ci, respectively, in the rest of the paper.

Without considering false acceptance errors, the above proce-
dure achieves a zero false rejection error (and hence, 100% sensitiv-
ity) for the training samples. With this result as the starting point,
by controlling the false acceptance error, the focus of the second
phase of the design process is specificity. By assuming that a suffi-
cient number of samples have been collected from persons that are
not enrolled in the biometric system, the following procedure uses
such an intruder dataset to refine the hyperspherical classifier.

(1) Let Ei represents the union of the enrolled samples that are
encircled by Ci.

(2) Let Ii represents the union of the intruder samples that are
contained in Ci.

Fig. 3. Determining the region of interest (ROI) from the neighborhood region of
heel strike.

Fig. 4. Acceptance regions for (a) a single hypersphere and (b) two hypersphere
classifiers.
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(3) Let i = 1.
(4) Denote Pi as the distance between the center of Ci and the

sample contained in Ei that is second farthest away from
the center of Ci.

(5) Determine the number of intruder samples that can be
removed from Ii if the radius of Ci is reduced to Pi. Note that
this operation also excludes the enrolled sample this that is
farthest away from Ci from the acceptance region.

(6) Let i = i + 1 and continue the process from step 4 until the
radius contraction action has been tested for all the
hyperspheres.

(7) By assuming CJ to be the hypersphere that has rejected the
largest number of intruder samples, reduce the radius of CJ

from RJ to PJ.
(8) After updating the contents of Ei and Ii for every hyper-

sphere, repeat this one-hypersphere-at-a-time radius con-
traction process from step 3 until all the intruder samples
have been excluded from the acceptance region encircled
by the hyperspheres.

Essentially, the above procedure tries to optimize the cost-
effective tradeoffs between sensitivity and specificity. Specifically,
by sacrificing one enrolled sample at a time, the method tries to re-
ject as many intruder samples as possible.

In step 7 above, two exceptions require additional treatment.
The first exception occurs when more than one hypersphere has
rejected the largest number of intruder samples. In this case, the
hypersphere that results in the largest reduction of the acceptance
region is selected. Theoretically, such a reduction can be measured
by RM � PM, where R and P represent the radii before and after the
contraction, respectively, and M is the dimension of the feature
space. However, this measure becomes very sensitive to the actual
content of the samples when M is large. Therefore, instead of using
M = 50, which is the dimension of the feature vector employed in
this study, M is chosen to be 8 after a number of trial-and-error
tests.

The second exception occurs when none of the hyperspheres
can reject any intruder sample. In this case, the approach contracts
the hypersphere further by choosing parameters Pi as the distance
between the center of Ci and the sample contained in Ei that is
‘‘third’’ farthest away from the center of Ci. A similar technique
can be repeatedly applied until at least one intruder sample can
be rejected from any of the hyperspheres.

4. Experimental results

Knee acceleration signals were collected from 35 subjects di-
vided into user group (5 persons) and intruder group (30 persons).
In each data-recording session, the tested subjects were asked to
walk normally for forty steps. Members of the intruder group par-
ticipated in only one data-recording session. Five gait cycles were
chosen randomly from these forty steps for fifty times, from which
fifty gait feature vectors were generated for each intruder.

Considering the possible day-to-day variation of the walking
pattern, members of the enrolled group participated in ten data-
recording sessions which were separated by at least one day. By
randomly choosing five gait cycles from the 400 recorded gait cy-
cles of each enrolled user for 200 times, 200 gait feature vectors
were generated for each member of the user group.

The design process for the hyperspherical classifier was re-
peated fifty times for each enrolled user. The training dataset con-
sisted of 100 randomly chosen gait samples of the enrolled user
and gait samples from 20 randomly selected intruders. The testing
dataset included the remaining 100 gait samples of the enrolled
user and the gait samples from the remaining ten intruders. Tables

1 and 2 summarize the averaged experimental results associated
with the testing datasets obtained by a single hypersphere classi-
fier (SHC) and a multiple hypersphere classifier (MHC) using 20
hyperspheres. The tables also show how the specificity of the rec-
ognition system varies with the sensitivity.

The results of Tables 1 and 2 demonstrate that the MHC outper-
forms the SHC. For example, by requiring the false rejection error
to be no larger than 5% (sensitivity of 0.95), the specificity achieved
by the SHC varies from 1.000 to 0.152. In contrast, the specificity of
the MHC ranges from 1.000 to 0.783. If we try to improve the spec-
ificity by downgrading the sensitivity requirement to 0.80, the
specificity of the SHC varies from 1.000 to 0.363, which is still
not very satisfactory, but for the MHC the resulting specificity var-
ies from 1.000 to 0.945, which is excellent.

5. Conclusion

This paper presents a gait recognition system for biometric
applications based on knee acceleration signals. A feature extrac-
tion method has been developed to characterize the walking pat-
tern of different individuals. To distinguish the differences in the
walking patterns, a hyperspherical classifier is employed to per-
form gait recognition. A systematic design method for the hyper-
spherical classifier has also been developed. The potential of the
proposed approach for biometric applications has been demon-
strated by experimental results.

To further improve the performance of the gait recognition sys-
tem, the following directions may be pursued. First, the proposed
approach uses a fixed set of feature variable generation rules for
every person. To reflect interpersonal differences, a walker-depen-
dent gait feature generation method has the potential to improve
the gait recognition rate. Second, this study has not considered
the influences of different shoes and different walking surfaces.
In order to study the robustness of the gait recognition system, fu-
ture work may investigate the sensitivity of the performances the

Table 1
Summary of experimental results for one-hypersphere gait recognition system.

Sensitivity Specificity of the enrolled users

1 2 3 4 5

0.95 1.000 0.152 0.277 0.356 0.117
0.90 1.000 0.242 0.359 0.492 0.390
0.85 1.000 0.320 0.417 0.504 0.511
0.80 1.000 0.363 0.446 0.509 0.599
0.75 1.000 0.390 0.489 0.510 0.683
0.70 1.000 0.420 0.569 0.567 0.736
0.65 1.000 0.470 0.745 0.716 0.767
0.60 1.000 0.525 0.889 0.807 0.779
0.55 1.000 0.573 0.943 0.849 0.795
0.50 1.000 0.728 0.960 0.896 0.834

Table 2
Summary of experimental results for 24-hypersphere gait recognition system.

Sensitivity Specificity of the enrolled users

1 2 3 4 5

0.95 0.999 0.783 0.887 0.834 0.835
0.90 1.000 0.897 0.962 0.894 0.890
0.85 1.000 0.931 0.975 0.950 0.946
0.80 1.000 0.945 0.984 0.967 0.965
0.75 1.000 0.952 0.984 0.975 0.992
0.70 1.000 0.955 0.987 0.980 0.993
0.65 1.000 0.956 0.988 0.981 0.994
0.60 1.000 0.962 0.988 0.983 0.994
0.55 1.000 0.964 0.988 0.985 0.994
0.50 1.000 0.970 0.989 0.986 0.994

L.W. Hang et al. / Expert Systems with Applications 38 (2011) 14550–14554 14553



gait recognition system with respect to these uncertainties. Finally,
the number of the tested subjects and the time periods for the gait
data collection process could be investigated further to fully test
the performance of the proposed approach.
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