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ABSTRACT
Motivation: Monoclonal antibodies (mAb) are among the most
powerful and important tools in biology and medicine. MAb
development is of great significance to many research and clinical
applications. Therefore, objective mAb classification is essential for
categorizing and comparing mAb panels based on their reactivity
patterns in different cellular species. However typical flow cytometric
mAb profiles present unique modeling challenges with their non-
Gaussian features and inter-sample variations. It makes accurate
mAb classification difficult to do with the currently used kernel based
or hierarchical clustering techniques.
Results: To address these challenges, in the present study
we developed a formal 2-step framework called mAbprofiler for
systematic, parametric characterization of mAb profiles. Further, we
measured the reactivity of hundreds of new antibodies in diverse
tissues using flow cytometry, which we successfully classified using
mAbprofiler.

First, mAbprofiler fits a mAb’s flow cytometric histogram with a
finite mixture model of skew t distributions that is robust against
non-Gaussian features, and constructs a precise, smooth and
mathematically rigorous profile. Then it performs novel curve
clustering of the fitted mAb profiles using a nonlinear regression of
skew t mixture models that is robust against inter-sample variation.
Thus mAbprofiler provides a new framework for identifying robust
mAb classes, all well-defined by distinct parametric templates, which
can be used for classifying new mAb samples. We validated our
classification results both computationally and empirically using mAb
profiles of known classification.
Availability and Implementation: A demonstration code in R is
available at the journal website. The R code implementing the full
framework is available from the author website – http://amath.

nchu.edu.tw/www/teacher/tilin/software

Contact: Saumyadipta Pyne@dfci.harvard.edu
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1 INTRODUCTION
Monoclonal antibodies (mAb) are among the most powerful,
popular and important tools in a biomedical laboratory for probing
different cellular types, states and functions. Research in the past
decades has led to the development of large collections of mAb
for specific binding to cell surface antigens, which facilitated
purification and functional characterization of a variety of cell
populations. It also unlocked the great potential of using mAb for
therapy in many serious diseases such as cancer. Using platforms
such as flow cytometry, one can measure quantitatively the binding
of a mAb, in single-cell resolution, to the corresponding antigen
whose expression may serve as a marker of cellular characteristics
for a given specimen, see Herzenberg et al., 2001. Therefore it is
important to characterize mAb reactivity patterns in different cell
types and tissues with analytical precision and rigor so that both
known and new mAb can be categorized and compared accurately
and objectively.

MAb classification is of great practical importance to many fields
in bio-medicine such as immunology, hematology, pathology and
clinical immunotherapy. Large-scale attempts at analyzing mAb
to identify new molecules were pioneered in the human leukocyte
differentiation antigens (HLDA) workshops (see review in Zola and
Swart, 2005) where the reactivities of large panels of mAb were
measured against widely available cell lines. The reactivity was
given a binary assignment compared to a negative control – either
the antibody bound to its antigen on a given cell, or it did not – as
measured by fluorescence intensity. The frequency with which this
occurred over a cell population was then recorded, and hierarchical
clustering was employed to group similar reactivity - thus was born
the “Clusters of Differentiation” (CD) classes, widely used today to
identify various cell populations (Bernard and Boumsell, 1984).

In recent years, the workshop approach for identifying new
molecules to define cell types has become less applicable due to the
current capabilities of molecular identification at gene level (Zola
and Swart, 2005). An alternative approach for mAb characterization
involves the use of primary cell populations that are derived
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systematically from different tissues in selected species (e.g. Pratt
et al., 2009). Typically mAb reactivity patterns, as measured with
cytometric density histograms, can present jagged non-smooth
curves with features in the form of peaks and shapes that are difficult
to characterize analytically. Inter-sample variation in cytometric
data makes the modeling problem even more challenging. Not only
do these make accurate binary percent positive/negative calls harder
but also render ineffective the current clustering approaches that are
poorly-suited to model or classify such noisy curve profiles.

In general, analytical characterization of mAb reactivity patterns
has received limited attention in statistics and computer science
(Spiegelhalter and Gilks, 1987; Gilks and Shaw, 1995; Kim et al.,
2002; Zeng et al., 2002; Salganik et al., 2005; Zeng et al.,
2007; Pratt et al., 2009 and references therein). As shown in
Pratt et al. (2009), mAb classification faces technical challenges
at multiple levels. Single parameter flow cytometric histograms
used for measuring mAb reactivity often have multiple peaks with
non-Gaussian features and irregular shapes. Few of the known
algorithms can model the underlying distributions and their key
features precisely and robustly. In addition, due to cytometric
platform noise, the measurements of peak features tend to vary in
terms of both significance and location, making direct comparison
of samples challenging. Moreover, standard clustering approaches
meant for multivariate points, such as hierarchical clustering, are
not well-suited for grouping curves, which in this case represent
histogram profiles. Histogram profiles, when viewed as points, can
vary considerably with different choices of binning parameters,
producing jagged patterns. Hence a new clustering approach is
necessary that can robustly detect the characteristic features lying
within every mAb’s noisy curve profile, which is not merely a
multivariate point. Simultaneously the approach must also account
for the cytometric inter-sample variation among the curve features
across mAb profiles to achieve accurate classification.

To address these challenges, in the present study we generated
(a) new data for a large collection of mAb, and (b) developed
mAbprofiler, a new general framework to characterize and cluster
mAb profiles systematically and rigorously. More than 1000
subcloned murine hybridomas, made against sheep cell membrane
antigens, were considered for analysis. A subset of mAb were
selected for inclusion in this study based on their distinctive staining
profile and surface expression in six diverse tissues (splenocytes,
lymph node cells, alveolar macrophages, efferent lymphocytes, fetal
thymus and thymocytes). Further, in mAbprofiler, we present a 2-
step framework based on new parametric modeling algorithms. In
the first step, it profiles every mAb defined by its flow cytometric
histogram with a finite mixture model of skew t distributions that
is robust against both outliers and asymmetry, which are often
responsible for producing non-Gaussian features. An Expectation-
Maximization (EM) algorithm is used for fitting every pattern
with a smooth and mathematically rigorous profile that specifies
all key features precisely, with the help of a probability density
function. In the second step, for each tissue, mAbprofiler performs
curve clustering of the fitted mAb profiles with a novel nonlinear
regression of skew t mixture models that is robust against inter-
sample variation. We used an effective criterion, the Jump Statistic,
for model selection with the optimal number of clusters (or mAb
classes). In addition to these robust tissue-specific mAb classes,
our framework uncovered new group structures among profiles
undetected by traditional approaches like hierarchical clustering.

Importantly, mAbprofiler also generates class-specific parametric
signatures that can be used for (a) comparing and categorizing
mAb classes, and (b) classifying new mAb panels. Finally,
we validated our classification results for different tissues both
computationally and empirically using mAb profiles of previously
known classification.

2 MATERIALS AND METHODS
MAb production and sample generation: We followed the system of
mAb cloning and harvesting using protocols developed in our lab
and described in Li et al. (1995), Pratt et al. (2009) and references
therein. The panel of anti-sheep mAb were tested for reactivity
against 6 different sheep tissues: splenocytes, lymph node cells,
alveolar macrophages, efferent lymphocytes, fetal thymus cells and
thymocytes. The cells were washed and fixed before they were
analyzed with an Epics XL flow cytometer (Beckman Coulter,
Miami, FL). After quality control by human expert inspection,
we generated 561 mAb reactivity patterns categorized by tissue:
spleen, lymph node, lung lavage, bone marrow, fetal thymus, and
thymocytes. The fitted mAb profiles are available from the authors
upon request.

Cytometric data preparation: Each flow cytometric sample
was represented as a 3-column matrix, where columns contained
forward-scatter, side-scatter and the fluorescence intensity for a
particular fluorophore tagged antibody, and each row represented a
single cell (or event). The data were pre-processed to remove debris
and dead cells. 98% of the data consisted of experiments where
10,000 events were captured. After log10 transformation of the data,
we performed multi-step cleanup and filtering: first, we removed
points from samples whose maximum intensity value was populated
by more than 25% of cells. Such spikes are signs of poor calibration
during data acquisition. Second, we filtered zero fluorescent values
which might also represent possible calibration problems. Finally,
we removed extreme outliers in data (points more than 3 standard
deviations away from the sample mean) that are most likely due to
platform noise. After filtering, the median number of events for each
sample was approximately 9390.

Step 1 of mAbprofiler (histogram profiling): After filtering, the
resulting histogram of each antibody’s fluorescence intensity was
fitted with a finite mixture model of univariate skew t distributions
using an EM algorithm described in Supplementary material. Since
Bayesian Information Criterion (BIC) is known to select restrictive
models which may be inadequate for feature detection in our non-
smooth data, we instead used the well known Integrated Completed
Likelihood (ICL) criterion for our model selection (McLachlan and
Krishnan, 2008). ICL scores for optimal models showed no further
improvement for most samples beyond 10 components, which was
the maximum number of components fit by the mixture model.
Figure 1 shows a sample histogram and the fitted profile with a
grey curve. Clearly the optimal model produced a smooth and
accurate profile, and all the significant features and their locations
are captured and specified by the model parameters. Since the model
is a univariate version of Pyne et al. (2009) approach, we have
described it along with its EM algortithm in the Supplementary
Information for completeness.

Step 2 of mAbprofiler (profile clustering): Here we present a new
and robust model-based curve clustering approach using non-linear
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regression of skew t mixture models. The model along with the EM
algorithm for clustering of the mAb profiles (which were fitted in
Step 1) are described below.

Following Azzalini and Dalla-Valle (1996), a random vector Z
is said to follow the multivariate skew normal (MSN) distribution,
denoted by Z ∼ SNp(µ,Σ,λ), if its density takes the form

f(z) = 2ϕp(z|µ,Σ)Φ(λTΣ−1/2(z − µ)),

where ϕp(z|µ,Σ) denotes the pdf of p-variate normal distribution
with mean vector Σ and covariance matrix Σ, Φ(·) represents
the cdf (short for cumulative distribution function) of the standard
normal distribution and Σ−1/2 is the square root matrix of Σ−1

satisfying Σ−1/2Σ−1/2 = Σ−1. If λ = 0, then the distribution of
Z reduces to Np(µ,Σ).

For the ease of theoretical and computational developments,
Arellano-Valle et al. (2005) gave the following stochastic
representation for the MSN distribution:

Z = µ+Σ1/2[δ|U0|+ (Ip − δδ⊤)1/2U1

]
, U0 ⊥ U1, (1)

where δ = λ/
√

1 + λ⊤λ, U0 ∼ N(0, 1), U1 ∼ Np(0, Ip) and
the symbol ‘⊥’ indicates independence.

The multivariate skew t (MST) distribution was proposed by
Azzalini and Capitaino (2003), which is related to the MSN
distribution as follows:

Y = µ+ τ−1/2Z, Z ⊥ τ, (2)

where Z ∼ SNp(0,Σ,λ) and τ ∼ Gamma(ν/2, ν/2). It follows
from (2) that Y | τ ∼ SNp(µ,Σ/τ,λ). By Proposition 1 of Lin
et al. (2007), integrating out τ from the joint density of (Y , τ)
yields the marginal density of Y

f(Y ) = 2 tp(Y |µ,Σ; ν)T
(
λ⊤Σ−1/2(Y −µ)

√
ν + p

ν +∆

∣∣∣ν+p),
(3)

where tp(·|µ,Σ, ν) denotes the pdf of p-variate t distribution with
location vector µ, scale matrix Σ and degrees of freedom (df) ν ∈
(0,∞); T (·|ν) represents the cdf of Student’s t distribution with
df ν, and ∆ = (Y − µ)⊤Σ−1(Y − µ). We shall denote Y ∼
STp(µ,Σ,λ, ν) if Y has density given in (3).

Suppose we have a set of m input profiles {yj}mj=1 and each
response vector yj consists of nj consecutive observations. We
assume the response vector yj ∈ Rnj is generated from

yj = µ(β,xj) + εj ; (j = 1, . . . ,m),

where β is a p×1 vector of regression coefficients related to design
matrix Xj = [xj1 · · ·xjnj ]

T with xjk = (xjk1, . . . , xjkp)
T;

µj ≡ µ(β,xj) is a vector-valued nonlinear (differentiable)
function of β governing within-profile behavior, and εj is the
resulting error vector equal to the discrepancy between yj and µj .

A skew-t based nonlinear regression model is defined by
assuming εj ∼ Stnj (0,Σj ,λj , ν). Depending on the context,
various assumptions should be made on Σj and λj to reduce the
number of parameters to be estimated. Following De la Cruz (2008),
we set Σj = σ2Inj to reflect the assumption of exchangeable errors
among individuals and λj = λ1nj , where 1nj is an nj × 1 unit
vector for ensuring an identifiable model. In some circumstances, it

is quite common to assume a time series like dependence structure
for Σj , which is a function of a small number of free parameters
and depends on j only through its dimension nj . Note that the skew
t can be reduced to the following particular models that enhance
the ease of implementation: the skew normal (ν → ∞), Student’s t
(λ→ 0) and the most common normal (λ→ 0; ν → ∞) models.

From (2), it can be verified that

yj | (γj , τj) ∼ Nn

(
µj +

λγj
(1 + njλ2)

1nj ,

σ2

τj
(In + λ21nj 1⊤

nj
)−1

)
,

γj | τj ∼ TN
(
0,
σ2

τj
(1 + njλ

2); (0,∞)
)
,

τj ∼ Γ
(ν
2
,
ν

2

)
. (4)

Applying Bayes’ rule yields

γj | (τj ,yj) ∼ TN
(
Aj ,

σ2

τj
; (0,∞)

)
, (5)

f(τj | yj) =
Φ(τ

1/2
j σ−1Aj)

T (c0j |ν + nj)

× g
(
τj

∣∣∣ν + nj

2
,
ν + σ−2∆j

2

)
, (6)

where ∆j = ε⊤
j εj , Aj = λ1⊤

nj
εj and crj = Aj [(ν + nj +

r)/(σ2ν+∆j)]
1/2. According to (5) and (6), it suffices to compute

the following conditional expectations:

E(γj | yj) = Aj + σ
( ν + nj − 2

ν + σ−2∆j

)−1/2

× t(c−2,j |ν + nj − 2)

T (c0j |ν + nj)
,

E(τj | yj) =
ν + nj

ν + σ−2∆j

T (c2j |ν + nj + 2)

T (c0j |ν + nj)
,

E(τjγj | yj) = Aj E(τj | yj)

+σ
( ν + nj

ν + σ−2∆j

)1/2 t(c0j |ν + nj)

T (c0j |ν + nj)
,

E(τjγ
2
j | yj) = σ2 +Aj E(τjγj | τj ,yj), (7)

where t(·|ν) is the pdf of the Student’s t distribution with df ν.
Finite mixture models are commonly used for model-based

clustering (McLachlan and Basford, 1988; Banfield and Raftery,
1993). Let a curve profile be given by a sequence yj of observations
at nj (time) points xj and assumed to be generated by one and only
one cluster (i.e. a mAb class). Then our goal is to partition {yj}mj=1

into g homogeneous groups (or classes). For notational convenience,
let µij = µ(βi,xj), eij = yj − µij , Aij = λi1⊤

nj
eij ,

∆ij = e⊤
ijeij and crij = Aij [(νi + nj + r)/(σ2

i νi + ∆ij)]
1/2

for i = 1, . . . , g and j = 1, . . . ,m. Define

ψnj

(
yj

∣∣xj ,θi

)
= 2 tnj

(
yj

∣∣µij , σ
2
i Inj , νi

)
T
(
c0ij

∣∣νi + nj

)
,

the density of a cluster-specific skew-t nonlinear regression model
that relates (yj ,xj) to θi = (βi, σ

2
i , λi, νi).

3



E. Rossin, T.I. Lin et al

The mixture model for profile clustering is written as:

yj ∼
g∑

i=1

wi ψnj

(
yj

∣∣xj ,θi

)
, (8)

where wi’s are mixing proportions which are constrained to be non-
negative and

∑g
i=1 wi = 1 and Θ = (w1, . . . , wg−1,θ1, . . . , θg)

represents all unknown parameters. The observed data log-
likelihood function of Θ is

ℓ(Θ|y) =
N∑

j=1

log f(yj |Θ). (9)

In general, there are no explicit analytical solutions for computing
the ML estimator of Θ. The EM algorithm (Dempster et al., 1977)
is considered as a standard tool when applied for mixture models. In
the EM framework for supporting the interpretation of incomplete
data, it is convenient to introduce a set of allocation variables Zj =
(Z1j , . . . , Zgj)

T, j = 1, . . . ,m. The element Zij is taken to be
one or zero to indicate if yj does or does not come from the i-th
component. This implies that Zj follows a multinomial distribution
with 1 trial and cell probabilities w1, . . . , wg , denoted by Zj ∼
M(1;w1, . . . , wg). Then, a hierarchical formulation of (8) obtained
in conjunction with (4) is

yj | (γj , τj , Zij = 1) ∼ Nnj

(
µij +

λiγj1nj

(1 + njλ2
i )
,

σ2
i

τj
(Inj + λ2

i 1nj 1⊤
nj
)−1

)
,

γj | (τj , Zij = 1) ∼ TN
(
0,
σ2
i

τj
(1 + njλ

2
i ); (0,∞)

)
,

τj | (Zij = 1) ∼ Γ
(νi
2
,
νi
2

)
,

Zj ∼ M(1;w1, . . . , wg). (10)

Let y = (y1, . . . ,ym),γ = (γ1, . . . , γm), τ = (τ1, . . . , τm)
and Z = (Z1, . . . ,Zm). It follows from (10) that the complete
data log-likelihood function of Θ given (γ, τ ,Z,y) is

ℓc(Θ | Z,γ, τ ,y)

=
m∑

j=1

g∑
i=1

Zij

{
logwi −

nj + 1

2
log σ2

i − 1

2σ2
i

[
Υ1ij +Υ2ij

]

+
(νi
2

)
log

(νi
2

)
− log Γ

(νi
2

)
+

(νi
2

)
(log τj − τj)

}
, (11)

where Υ1ij = τj(yj − µij)
⊤(yj − µij) and Υ2ij = τj

[
γj −

λi1⊤
nj
(yj − µij)

]2.
The EM algorithm proceeds by alternately repeating the E- and

M- steps where, at the k-th iteration, the E-step involves the
calculation of the Q-function, which is the expected value of the
complete data log-likelihood (11) conditional on y and the current

estimate Θ̂
(k)

for Θ, is given by

Q(Θ | Θ̂(k)
) = E

(
ℓc(Θ | y,γ, τ ,Z) | y, Θ̂(k))

. (12)

To evaluate (12), the necessary conditional expectations include

τ̂
(k)
ij = E(τj | · · · ), κ̂

(k)
ij = E(log τj | · · · ),

γ̂
(k)
1ij = E(τjγj | · · · ), γ̂

(k)
2ij = E(τjγ

2
j | · · · ), (13)

where the symbol “| · · · ” stands for conditioning on Zij = 1, Y j =

yj and Θ = Θ̂
(k)

and they are directly obtainable through using
identities (7) and the law of iterative expectations. Moreover, we
define

ẑ
(k)
ij = Pr(Zij = 1 | y, Θ̂(k)

) =
ŵ

(k)
i ψnj

(
yj

∣∣xj , θ̂
(k)

i

)
f(yj |Θ̂

(k)
)

, (14)

which is the posterior probability that the j-th curve belongs to the
i-th component evaluated at the (k + 1)-st iteration. Therefore, the
Q-function (12) can be written as

Q(Θ|Θ̂(k)
) =

m∑
j=1

g∑
i=1

ẑ
(k)
ij

{
logwi −

(nj + 1

2

)
log σ2

i

− 1

2σ2
i

[
Υ

(k)
1ij(βi) + Υ

(k)
2ij(βi)

]
+

(νi
2

)
log

(νi
2

)
− log Γ

(νi
2

)
+

(νi
2

)
(κ̂

(k)
ij − τ̂

(k)
ij )

}
. (15)

where Υ
(k)
1ij(βi) = τ̂

(k)
ij (yj − µij)

⊤(yj − µij) and Υ
(k)
2ij(βi) =

γ̂
(k)
2ij − 2λiγ̂

(k)
1ij 1⊤

nj
(yj − µij) + λ2

i τ̂
(k)
ij [1⊤

nj
(yj − µij)]

2.
In summary, the implementation of the EM algorithm proceeds as

follows:
E-step: Given Θ = Θ̂

(k)
, compute τ̂ (k)ij , κ̂(k)

ij , γ̂(k)
1ij , γ̂(k)

2ij and ẑ(k)ij ,
for i = 1, . . . , g and j = 1, . . . , n, by using Eqs. (13) and (14),
respectively.
M-step: Calculating Θ̂

(k+1)
by optimizing (15) over Θ, the

updating formulae are given by

ŵ
(k+1)
i =

1

m

m∑
j=1

ẑ
(k)
ij ,

β̂
(k+1)

i = argmin
βi

{
m∑

j=1

ẑ
(k)
ij

σ
2(k)
j

[
Υ

(k)
1ij(βi) + Υ

(k)
2ij(βi)

]}
,

λ̂
(k+1)
i =

∑m
j=1 ẑ

(k)
ij γ̂

(k)
1ij 1⊤

nj
(yj − µ̂

(k+1)
ij )∑m

j=1 ẑ
(k)
ij τ̂

(k)
ij

[
1⊤
nj
(yj − µ̂

(k+1)
ij )

]2 ,
σ̂
2(k+1)
i =

∑m
j=1 ẑ

(k)
ij

[
Υ̂

(k)
1ij + Υ̂

(k)
2ij

]∑m
j=1 ẑ

(k)
ij (nj + 1)

,

where µ̂
(k+1)
ij = µij(β̂

(k+1)

i ,xj) and Υ̂
(k)
1ij and Υ̂

(k)
2ij are Υ

(k)
1ij(βi)

and Υ
(k)
2ij(βi) in (15) with βi replaced by β̂

(k)

i . Consequently, we
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obtain ν̂(k+1)
i by solving the root of the following equation:

log
(νi
2

)
+1−DG

(νi
2

)
+

1∑m
j=1 ẑ

(k)
ij

m∑
j=1

ẑ
(k)
ij

(
κ̂
(k)
ij −τ̂ (k)ij

)
= 0.

This can be easily done with the help of the R routine ‘uniroot’.
The E- and M- steps are alternately repeated until a suitable
convergence rule is satisfied, e.g., the Aitken acceleration based
stopping criterion |ℓ(k+1) − ℓ

(k+1)
∞ | < ϵ, where ℓ(k+1) is the

observed log-likelihood evaluated at θ̂
(k)

, ℓ(k+1)
∞ is the asymptotic

estimate of the log-likelihood at iteration k + 1 (McLachlan and
Krishnan 2008; Chap. 4.9) and ϵ is the desired tolerance.

Model selection for Step 2: Let X be a p-dimensional random
sample drawn from a mixture distribution of g components, each
with homogeneous covariance matrix Γ, and let c1, . . . , cg be a
set of candidate cluster centers with cr being the one closet to X .
Sugar and James (2003) developed an alternative simple approach
to identify the optimal number of clusters based on the “distortion
function”, defined as

dg =
1

p
min

c1,...,cg

E(X − cr)
⊤Γ−1(X − cr), (16)

which is a quantity that measures the average Mahalanobis distance
between X and its closest cluster center cr . The Jump function due
to Sugar and James (2003) is defined as

Jg = d̂−C
g − d̂−C

g−1,

whereC is an appropriate positive constant that makes a sharp jump
at the true number of clusters and d̂g is the minimum distortion
obtained by the clustering algorithms. They have proven that an
appropriate number of clusters can be identified at the peak of jump
based on information-theoretic ideas. Their simulation studies have
also empirically shown that the jump plot has good performance in
finding the true number of clusters.

We applied the Jump function approach to the problem of curve
clustering analysis. Each curve is assigned to the component with
the largest posterior probability obtained by fitting model (8) for
g = 1, . . . , gmax, a pre-specified maximum number of components.
We chose gmax to be 12 for all tissues, except for two (spleen and
bone marrow) where the model did not converge for g > 10. Let
ŷij be the fitted vector of yj if yj has been assigned outright to ith
cluster, say yj ∈ Ci. This gives

ŷij = E

(
µj +

λiγj 1nj

(1 + njλ2
i )

∣∣∣∣yj , Zij = 1, Θ̂

)∣∣∣∣
Θ=

ˆΘ

= µ̂ij +
λ̂iγ̂ij 1nj

(1 + nj λ̂2
i )
,

where γ̂ij = E(γj |yj , Zij = 1, Θ̂). Then, the mean squared error
for yj ∈ Ci is given by

∆̂ij =
1

nj
(yj − ŷij)

⊤(yj − ŷij),

which is the scaling squared distance from yj to ŷij . It follows from
(16) that the associated distortion function is empirically defined as

d̂g =
1

m− g

m∑
j=1

{
min

[
∆̂1j , ∆̂2j , . . . , ∆̂gj

]}
.

Theoretically, the distortion curve, d̂g versus g, is always monotone
decreasing. A simple way of choosing the optimal g is to look for the
point at which the magnitude of change in d̂g’s becomes negligible,
especially when the subclasses are well-separated. However, using
the raw distortion curve could fail in certain cases. As suggested by
Sugar and James (2003), the Jump plot method performs extremely
well, provided that some suitable values for C are chosen. The
optimal number of clusters in data can be visually determined from
the peak patterns on the jump plot. Empirical studies show that the
point with largest or secondary largest jump is often the best choice.

Quality of curve clustering: To determine the quality of
our clustering of mAb profiles, modeled as probability density
functions, we measured mean intra- and inter-cluster distances
using a symmetric form of Kullback-Leibler distance, denoted by
sKL(p, q), between a pair of profiles (p, q), defined as follows:

sKL(p, q) = (KL(p, q) +KL(q, p))/2,

where KL(p, q) =
∑

t pt log2(pt/qt) at each observation point t.
To determine the quality of hierarchical clustering of mAb data,

we used the R functions hclust (with Euclidean distance metric)
and asw (average silhouette width). The R package ks is used for
SiZer plot.

3 RESULTS
Following data preparation and preprocessing, in step 1,
mAbprofiler modeled cytometric histograms for 561 mAb samples
from 6 tissues using skew tmixture models. Figure 1 illustrates how
a profile (shown as grey curve) constructed by mAbprofiler offers a
smooth and precise representation of mAb density histograms. This
can be contrasted with the original cytometric input in the form of
highly non-smooth patterns as shown in Supplementary Fig. 1. To
rigorously assess the precision of modeling with our skew t mixture
models (STMIX), we computed log-likelihood maxima, Bayesian
Information Criterion (BIC) values, the distances Dn between the
data and the fitted model (based on Kolmogorov-Smirnov test), and
CPU times for STMIX as well as for two competing models of more
commonly used mixtures of Gaussian (NMIX) and t distributions
(TMIX), and compared them in Supplementary Table 1. Clearly, as
shown by BIC, mAbprofiler gives the best fit.

In step 2, for each tissue, mAbprofiler clustered the mAb profiles,
specified as density curves, with our new algorithm for fitting skew
t mixture of nonlinear regression models. It selected the model
that corresponded to the optimal tissue-specific group structure
using the maximal value of the Jump statistic over a range of
clusters (g = 1, 2 . . . , gmax). Table 1 summarizes the results of
this clustering step. The optimal choice of g over the values for
which the EM converged is marked in Fig. 3 and Supplementary
Fig. 1 (right panel). In Figure 2 (a)-(f), we show each of the six
clusters of the spleen profiles. Notably, the profiles were grouped by
their significant features overcoming inter-sample variation. Thus
the clustering was both accurate and robust. Further, the bottom
plot (g) shows the mean profile of every cluster in its own color,
thereby contrasting the signature templates for every class while
summarizing the characteristic features within each of them. Similar
joint plots for every tissue are shown in Supplementary Fig. 2, which
also includes the Jump statistics that help in the determination of the
optimal group structures.
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Fig. 1. Profiling of a mAb reactivity against the surface of sheep cells: A
cytometric histogram measuring the reactivity of a particular mAb tested
against the surface of sheep efferent lymphocytes is shown as log of
fluorescence intensity of surface expression. In Step 1 of mAbprofiler,
the surface expression pattern is profiled with a skew t mixture model as
depicted by the smooth and precisely fit grey curve. It captures non-Gaussian
features such as skewness and outliers common in cytometric distributions.
For the original non-smooth pattern, see Supplementary Fig. 1.

Table 1. Clustering statistics for Step 2: For each tissue-type, its
count of mAb profiles, number of profile clusters (i.e. mAb classes),
IIR (average Intra-cluster distance to average Inter-cluster distance
Ratio) and computing time (CT, in minutes) of the EM algorithm
for g = 1, 2 . . . , gmax.

Tissue-type No. of No. of IIR CT gmax

samples classes

Spleen 59 6 0.078 27.09 10
Thymocyte 111 12 0.068 118.04 12
Lung lavage 123 11 0.017 95.06 12
Bone marrow 48 8 0.014 23.94 10
Fetal thymus 89 12 0.038 81.24 12
Lymph node 131 8 0.072 111.21 12

We validated our mAb classification both computationally and
empirically. Since every fitted profile is defined by a probability
distribution, we computed a symmetric form of Kullback-Leibler
distance (sKL) between all pairs of profiles, and observed that
the average intra-cluster distances between profiles are considerably
lower than the average inter-cluster distances. The ratio (IIR) in
every tissue is shown in Table 1. For illustration, the distance matrix
for the 6 clusters for spleen is shown in Supplementary Fig. 3.

For empirical validation, for 4 tissue-types (spleen, thymocytes,
bone marrow and lymph node) and 2 classes of antibodies (class
I mAb T2/39 and anti-LFA-1 mAb F10-150 as described in Pratt
et al., 2009), we generated data for 2 pairs of mAb such that
the mAb within each pair were known to target molecules of the
same class, but across pairs, they targeted molecules from distinct
classes. As shown in Supplementary Fig. 4, indeed all profile pairs
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Fig. 2. Classification of mAb profiles for Spleen: In Step 2 of mAbprofiler,
the profiles of all 59 mAb samples in Spleen were clustered with skew t

mixture of nonlinear regression models. The profiles belonging to each of
the 6 clusters (a)-(f) are shown in specific colors. The joint plot (g) of all
6 mean profiles in cluster-specific colors allows visual comparison of the
cluster templates.

(black thin curves) cluster together within each class (class I in left
panel or anti-LFA-1 in right panel), but separately across 2 distinct
classes, providing experimental evidence for precise and objective
classification by our framework. As in Fig. 2, the mean profiles are
shown in cluster-specific colors for distinguishing the 2 classes in
each tissue.
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Fig. 3. Model selection for curve clustering: Maximum value of Jump for
Spleen indicates that 6 is the optimal number of mAb classes in that tissue.

3.1 Comparative analysis with other methods
Besides internal validation, we also compared the performance
of mAbprofiler with other established methods. We began with
hierarchical clustering, which is the most commonly used approach
for mAb classification (Bernard and Boumsell, 1984). When we
used hierarchical clustering on our mAb profiles, then the method
clearly failed to capture the complex class structure and detected
few clusters. Based on Average Silhouette Width (ASW), a common
measure for determining the quality of hierarchical clustering,
we noted that the optimal number of mAb classes according to
hierarchical clustering of our data was typically restricted to 4
or even fewer for all tissues other than Thymocytes. Moreover,
little difference among the ASW scores for different number of
clusters indicated that the hierarchical clusters had low separation
(Supplementary Fig. 5).

Thereafter, we adopted the established protocol of Pratt et al.
(2009) in which mAb histograms were first smoothed with SiZer,
and then hierarchical clustering was performed with those smoothed
profiles. We show the results of that approach on our data using
SiZer plots for the different tissues in Supplementary Fig. 6(a)-(f).
As depicted with the dendrograms, while the larger clustering-
structures were detected with smoothing, the finer structures were
often ignored, thus resulting in highly heterogeneous classes. This
can be seen clearly in the largest clusters in Spleen, Lung lavage and
Bone marrow.

Finally, we also studied a combination our approach with that
of Pratt et al. (2009) in which we clustered the SiZer-smoothed
profiles (i.e. we replaced Step 1 of mAbprofiler) using our NLRST
algorithm (i.e. we retained Step 2 of mAbprofiler). We observed
that while NLRST could identify more classes in the same SiZer
profiles for some tissues, the overall gain was not significant. In
other words, the fact that mAbprofiler identified a much richer class
structure could be attributed to the dual contributions of both Steps
1 as well as 2 of the new framework. While NLRST tackles the
inter-sample variation along x-direction (feature location), the skew
t mixture pdf provides a precise and continuous representation of
the y-direction (feature significance). The resulting effectiveness of
mAbprofiler’s 2-step approach is illustrated, for example, in the 8
class-templates for the Lymph node which are distinctive along both
x- and y-directions (Supplementary Fig. 2 left panel bottom plot).
In contrast, the other methods failed to capture that dual complexity

and identified only few dominant clusters. The full comparison of
classes detected by all 4 methods is shown in Supplementary Table
2.

4 DISCUSSION
Monoclonal antibodies play an immensely important role in
molecular biology, biochemistry and medicine. Their utility
for probing, stimulating or inhibiting specific target molecules
supports numerous diagnostic and immunotherapeutic applications
(Zola, 2006). Further, design and development of new mAb
are also of great industrial significance. Therefore, objective
mAb classification is essential for categorizing and comparing
the known as well as the newly developed mAb panels. Besides
biochemical methods like immunoprecipitation, this is achieved by
clustering flow cytometric reactivity patterns of mAb in different
cell types. Unlike traditional HLDA workshops which classified
leukocyte surface (CD) molecules (Zola and Swart, 2005) using cell
lines, Pratt et al. (2009) recently described a system to facilitate
practical mAb characterization in animal tissues. This approach
is consistent with the new HCDM (Human Cell Differentiation
Molecules) focus on various non-hematopoeitic cell types (Zola,
2006). In the present study, we enhanced that approach further
by (a) generating a new, larger and more varied collection of
mAb patterns in 6 different tissues, and importantly, by (b)
constructing a new analytical framework, mAbprofiler, to formally
address the technical challenges of mAb characterization. Our 2-
step framework provides precise profiling of cytometric histograms
(step 1) followed by novel clustering of these curve profiles (step 2).
In addition to characterizing mAb for the present study, mAbprofiler
can also provide a general framework to allow users to search for
archived class signatures or to construct and classify new mAb
profiles in a systematic way.

Previous mAb classification studies (e.g. Salganik et al., 2005;
Pratt et al., 2009) have used non-parametric kernel density
estimation techniques for detection of significant features in
cytometric histograms, typically followed by hierarchical clustering
based on Euclidean distances between the features. While being
practical, such approaches may not always be precise or robust. For
instance, the accuracy of density estimates by kernel-based methods
are known to be strongly influenced by bandwidth selection (Jones
et al., 1996). As observed in Supplementary Fig. 1, significance of
the peak features in a given sample, as detected by the program
SiZer, is clearly dependent on the choice of bandwidth. This poses a
key practical problem, especially since we seek to do unsupervised
classification of new mAb profiles. While recent advances in kernel-
based techniques have addressed different aspects of cytometric
analysis (e.g. Duong et al., 2009; Naumann et al., 2010), we
followed the parametric approach developed by Pyne et al. (2009)
and Frühwirth-Schnatter and Pyne (2010), which use finite mixtures
of skew t distributions, for our purposes. Observations of non-
Gaussian features in cytometric data made by these and other recent
studies (Lo et al., 2008; Ho et al., 2011; Pyne et al., 2011) led us to
use this more general parametric family of distributions, which also
the includes Gaussian distribution as a special case.

Finite mixture models have been extensively used in biology and
medicine (McLachlan and Peel, 2000; Frühwirth-Schnatter, 2006).
In step 1 of mAbprofiler, we presented a univariate version of the
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Pyne et al.’s (2009) approach for profiling asymmetric and noisy
mAb patterns with finite mixture model of skew t distributions fit
via our own EM algorithm (see Supplementary Information). The
EM algorithm converges fast in practice, and supports multiple
well-known model selection criteria such as AIC, BIC and ICL. In
the resulting smooth and precise profiles (see illustrative sample in
Fig. 1), every component is specified by rigorous model parameters
such as location, size, shape, variance and degrees of freedom.
Further, the parametric design enables mAbprofiler to specify the
significance of every mAb feature with a smooth and continuous
probability density function, which can be represented as a curve
that is well-defined at any resolution. Importantly, in step 2,
mAbprofiler’s skew t mixture of nonlinear regression models can
cluster these curve profiles accurately for every cell type. While step
1 follows the approach of Pyne et al. (2009), step 2 introduces novel
methodology and the EM algorithm implementing it.

A key challenge for cytometric data analysis is inter-sample
variation. Similar mAb profiles can vary considerably in both
their significance and location, which must be addressed by any
algorithm designed for classifying cytometric data. While it is
possible to transform or shift and align the data (e.g. Lo et al.,
2008; Hahne et al., 2010), we want to cluster the mAb profiles
precisely in terms of the distinctive features that they present as
curves with a robust approach. To systematically model that inter-
sample variation, in Step 2, mAbprofiler presented a new nonlinear
regression algorithm. It is also a solution for the more generic
problem of curve clustering, an important topic in the field of
pattern recognition which has not received much attention in the
past (e.g. Gaffney, 2004; Gaffney et al., 2007; Liu and Yang,
2009). Here we extended the work of Gaffney (2004) to introduce
skew t mixture of nonlinear regression models for robust curve
clustering with asymmetric variation among the curve features. In
our comparative analysis with other methods, we observed that
hierarchical clustering is not as well suited for such clustering
probably because it critically relies on precise pairwise distances
between points. Trying to reduce a curve profile to a point – albeit
a multi-dimensional point – can lead to loss of information about
features due to binning of the data as specified by a cytometric
histogram. That leads to fewer and less well-separated hierarchical
clusters, as illustrated in Supplementary Fig. 5.

The problem of using hierarchical clustering for mAb classification
gets further compounded with the issue of bandwidth selecton in
smoothing of cytometric histograms such as in the protocol of Pratt
et al. (2009). For our data, the SiZer-smoothed features for a pre-
determined bandwidth led to mAb classes with high heterogeneity.
While our NLRST (Step 2) clustering could improve detection of the
classes with the same SiZer profiles, the net gain was not significant.
Therefore the identification of a much richer group structure by
mAbprofiler, as shown in Supplementary Table 2 (and the class
templates in Fig. 2(g) and Supplementary Fig. 2 left panel) may be
attributed to the dual advantage of both Steps 1 and 2 of the new
framework. Hierarchical clustering fails to capture the complexity
of data when presented in the form of noisy curve profiles in
which the true significance of features is not apparent. This is
even more difficult if there are few significant features, which,
in turn, might suffer from inter-sample variation. By addressing
these issues, mAbprofiler produced robust mAb classes – specified
as curves of probability density functions – even in the presence
of non-Gaussian variation. It achieves this without any need for

transforming the profiles or reducing them to points as required for
hierarchical clustering.

The new framework has several additional advantages. Its use
of Jump statistic provides a suitable criterion for optimal model
selection in profile clustering. Each step of mAbprofiler can be
performed independently with its own EM algorithm, which offers
the flexibility of pipelining the framework with external algorithms.
As output, not only does mAbprofiler produce a smooth profile
for a mAb histogram, it also generates a mean template for the
“signature” pattern of every mAb class, along with parametric
description of significant features therein. As a result, class-
templates can be archived, and later searched for information on
overall or specific characteristics of such known mAb classes.
Thus it facilitates pattern matching with newly constructed mAb
profiles, which can be grouped with classes having the most
similar templates. Our computational and empirical validation of
mAbprofiler classification shows how this is achieved. Another
feature of our approach is that it does not require a clonal population.
Expression can be analyzed both on individual cells and within
a complex cell population. Moreover, our non-Gaussian model
can be easily extended to temporal mAb profiling (Pyne et al.,
2011), e.g., for measurements over the course of dampening of an
inflammation in a certain tissue. The strength of mAbprofiler lies in
providing a much-needed robust and objective framework for mAb
characterization in different cell types and tissues.
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