Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Bioactive components from the heartwood of Pterocarpus santalinus

Shou-Fang Wu^a, Tsong-Long Hwang^b, Shu-Li Chen^a, Chin-Chung Wu^a, Emika Ohkoshi^c, Kuo-Hsiung Lee^{c,d}, Fang-Rong Chang^{a,e,f,*}, Yang-Chang Wu^{a,g,h,*}

^a Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan

^b Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan

^c Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA

^d Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan

^e Cancer Center, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan

^f Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan

^g Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan

^h Natural Medicinal Products Research Center and Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan

ARTICLE INFO

Article history: Received 25 April 2011 Revised 28 May 2011 Accepted 10 June 2011 Available online 29 June 2011

Keywords: Pterocarpus santalinus Pterolinus K Pterolinus L Phenanthrenedione Chalcone Anti-inflammatory Cytotoxicity

ABSTRACT

One new phenanthrenedione, pterolinus K (1), and one new chalcone, pterolinus L (2) were isolated from the heartwood extract of *Pterocarpus santalinus*. The structures were elucidated by spectroscopic methods. Both 1 and 2 showed inhibitory effect on elastase release by human neutrophils in response to fMLP with an IC₅₀ value of 4.24 and 0.95 μ M, and compound 1 also inhibited superoxide anion generation with IC₅₀ value of 0.99 μ M. In addition, compound 1 showed selective cytotoxicity against HepG2 with IC₅₀ value of 10.86 μ M, while compound 2 showed a moderate cytotoxicity against KB with IC₅₀ values of 17.18 μ M.

© 2011 Elsevier Ltd. All rights reserved.

Pterocarpus santalinus L. (Fabaceae), also named 'red sanders', belongs to the Legume family. It is a rare, commercial tree, which is distributed exclusively in well-defined forest tracts of Andhra Pradesh in Southern India. It is valuable in the international market and is most notably exported from India to Japan and other countries.¹ *P. santalinus* has been used as a folk remedy for the treatment of inflammatory conditions, such as chronic bronchitis, chronic cystitis, fever, headaches, mental aberrations, ulcers, cancers, etc.^{2,3} The previous phytochemical investigations of this plant revealed the presence of, six sesquiterpenes,⁴ one isoflavone,⁵ two lignans,² and two aurone glycosides.⁶ In preliminary studies, we found the methanolic extract of the heartwood exhibited potent cytotoxicity (IC₅₀ <20 µg/mL) against three cancer cell lines (HepG2, Hep3B, A549) and anti-inflammatory activity (IC₅₀ <10 μ g/mL). These preliminary results encouraged us to peruse further detailed investigation. One new phenanthrenedione (1) and one new chalcone (2), together with two known compounds, dalbergin $(3)^7$ and cearoin (**4**),⁸ (Fig. 1) were isolated from the heartwood extract of this species according to bioactivity-guided fractionation. Cytotoxic and anti-inflammatory activities of the isolated compound were also investigated in the current study.

The heartwood was powdered and extracted with MeOH $(5 \times 20 \text{ L})$. After solvent evaporation, the crude extract (ca. 480 g) was partitioned between CH₂Cl₂ and 50% MeOH ag. The CH₂Cl₂ layer was concentrated in vacuo, and the CH₂Cl₂ extract (ca. 300 g) was subjected to column chromatography (CC) on celite 545 and eluted with *n*-hexane (8 L), CH₂Cl₂ (40 L), EtOAc (20 L), acetone (10 L), and MeOH (8 L) leading to collect six fractions (PS-C1 to PS-C6). Among them, PS-C2 and PS-C3 showed significant cytotoxic ($IC_{50} < 20 \,\mu g/mL$) and anti-inflammatory activity (IC₅₀ <10 µg/mL). Therefore, PS-C3 (ca. 100 g) was subjected to silica gel CC and eluted with hexane-EtOAc-MeOH gradient solvent system (3/1/0, 1/1/0, 0/1/0, 0/40/1, 0/20/1, 0/10/1, 0/6/1), to give 11 fractions (PS-C3.1 to PS-C3.11). Compound 1 (162.42 mg) was an abundant reddish precipitate and filtered from sub-fraction PS-C3.8. In addition, PS-C3.5 (31.21 g) was subjected to repeated silica gel CC with a CH₂Cl₂ and MeOH gradient solvent system, and eleven fractions (PS-C3.5.1 to PS-C3.5.11) were collected. PS-C3.5.6 (20.70 g) was subjected to CC on Sephadex LH-20 and eluted

^{*} Corresponding authors. Tel.: +886 7 312 1101x2162; fax: +886 7 311 4773 (F.-R.C); tel.: +886 4 220 57153x1012; fax: +886 4 220 60248 (Y.-C.W.).

E-mail addresses: aaronfrc@kmu.edu.tw (F.-R. Chang), yachwu@mail.cmu. edu.tw, yachwu@kmu.edu.tw (Y.-C. Wu).

Table 1 $^{1}\text{H}\text{-}(400\ \text{MHz})$ and $^{13}\text{C}\text{-}(100\ \text{MHz})\ \text{NMR}$ data of pterolinus K (1) in pyridine- d_5

	1	
Position	1 H (δ_{H})	$^{13}C(\delta_{c})$
1		185.7
2	6.34 s	107.6
3		161.5
4		182.8
4a		132.8
4b		127.1
5	9.50 s	106.9
6		153.5
7		150.6
8	7.97 s	110.4
8a		124.0
9		145.6
10	8.37 s	121.8
10a		130.4
1′		133.8
2′	7.54 d (2.0)	118.1
3′		148.2
4′		148.7
5′	7.07 d (8.0)	112.3
6′	7.10 d (8.0, 2.0)	121.0
3-0CH ₃	3.78 s	56.4
6-OCH ₃	4.03 s	55.7
4'-0CH ₃	3.87 s	56.0
OH	11.42 br	
OH	12.50 br	

with acetone and CH_2Cl_2 (1:1) to give 10 fractions (PS-C3.5.6.1 to PS-C3.5.6.10). Compound **2** (12.97 mg) was isolated from PS-C3.5.6.3 using CC with C18 silica gel (12–100% MeOH aq) and Sephadex LH-20 CC (acetone/CH₂Cl₂ 1:1, v/v).

Compound **1** was obtained as a reddish amorphous powder and its molecular formula, $C_{23}H_{18}O_7$, was determined by the HRESI-MS peak at m/z 407.1133 [M+H]⁺ ($C_{23}H_{19}O_7$, calcd for 407.1131), indicated 15° of unsaturation. The IR spectrum of **1** revealed a hydroxyl group at 3418 cm⁻¹, a carbonyl absorption band at 1635 cm⁻¹, as well as an aromatic ring at 1507 cm⁻¹. UV absorption at 248, 307, and 405 nm also indicated an aromatic system. In ¹H NMR, compound **1** exhibited an ABX system (δ_H 7.07, d, J = 8, δ_H 7.10, dd, J = 8, 2, δ_H 7.54, d, J = 2), four singlet protons (δ_H 6.34, 7.97, 8.37, 9.50) and three methoxy groups (δ_H 3.78, 3.87, 4.03) (Table 1). Based on ¹³C NMR and HSQC spectra, 23 carbon

Table 2 ¹H-(500 MHz) and ¹³C-(125 MHz) NMR data of pterolinus L (2) in MeOH- d_a

	2		
Position	¹ Η (δ _H)	${}^{13}C(\delta_{c})$	
1		133.3	
2	7.48 d (1.5)	116.1	
3		147.9	
4		153.8*	
5	7.03 d (8.5)	111.9	
6	7.60 d (8.5, 1.5)	123.1	
α	8.04 d (15.5)	141.9	
β	7.53 d (15.5)	119.5	
γ		191.9	
1′		115.4	
2′		153.6	
3′	6.47 s	101.0	
4′		153.1*	
5′		141.0	
6′	7.08 s	114.8	
4-0CH ₃	3.93 s	56.4	
4'-OCH ₃	3.86 s	56.6	

[®] May changeable.

signals, including 13 quaternary, six methane, and three methylene carbons were observed. Among the quaternary 13 carbons, two were identified as carbonyl carbons based on the chemical shift δ_c 182.8 and 185.7. Through comparing our spectral data with the previously reported data,⁹ the above data indicated the presence of a phenanthrenedione attached to an additional aromatic ring to fulfill the 15° of unsaturation. The additional aromatic ring was attached at C-9 according to the HMBC corrections of H-2'/C-9 and H-6'/C-9. The other olefinic proton at $\delta_{\rm H}$ 6.34 showed HMBC corrections with two carbonyl carbons (δ_c 182.8, 185.7) and C-2 (δ_c 161.5). Proton at δ_H 8.37 exhibited the HMBC corrections of C-1, C-4a, C-8a, C-9, and C-1'. Protons at $\delta_{\rm H}$ 7.97 and 9.50 presented the HMBC corrections of C-4b, C-6, C-7, C-8a as well C-9, and C-4a, C-4b, C-6 as well C-8a, respectively. The methoxy locations at C-3, C-6 and C-4' were confirmed by the following NOE corrections: $\delta_{\rm H}$ $6.34/3.78^{10}_{,10}_{$ identified and named as pterolinus K (1).¹¹

Compound **2** was isolated as a brown amorphous powder. The HRESI-MS of **2** displayed a pseudomolecular ion peak at m/z 317.1024 [M+H]⁺, corresponding to the formula of C₁₇H₁₆O₆

I able 5	Tal	ble	3
----------	-----	-----	---

Inhibitory effects of compounds 1 and 2 isolated from P. santalinus on superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB

Compounds	IC ₅₀ (μΝ	IC ₅₀ (μM)	
	Superoxide anion	Elastase	
1 2 LY294002 ^b	0.99 ± 0.15 NT ^a 3.84 ± 0.78	4.24 ± 1.33 0.95 ± 0.13 6.48 ± 1.14	

± SEM (*n* = 3).

^a Not tested.

^b LY294002, phosphatidylinositol-3-kinase inhibitor, was used as a positive control for superoxide anion generation and elastase release.

 $(C_{17}H_{17}O_6, \text{ calcd for 317.1025})$, indicated 10° of unsaturation. The UV absorption maxima at 277, 316 and 398 nm together with the IR absorption bands at 3417 (OH), 1699 (C=O) cm⁻¹ and 1610, 1514 cm⁻¹ indicated the presence of an aromatic system. In the ¹³C NMR spectrum, 15 carbons including one carbonyl carbon, two oleflinic carbons, five methines and five guaternary carbons of the main skeleton were detected. The combination of ¹H NMR and HSQC spectrum, an ABX system, two para-aromatic protons and a pair of trans olefinic protons were observed together with two methoxy groups. According to the above data, a chalcone skeleton was presumed. Based on the HMBC data, proton at $\delta_{\rm H}$ 7.47 showed corrections of C-5 and C- γ , proton at $\delta_{\rm H}$ 7.08 showed HMBC correction of C- α and proton at $\delta_{\rm H}$ 8.04 exhibited corrections of C-1' and C-2'. The location of methoxy groups were confirmed by NOE corrections as the following data: δ_H 7.03/3.93, δ_H 6.47/3.86 and $\delta_{\rm H}$ 7.60/7.53/7.08. Thus, compound **2** was identified and named pterolinus L.12

Compounds **1** and **2** were screened for their anti-inflammatory activity (Table 3), compound **1** showed a notable inhibition of superoxide anion generation and elastase release with IC_{50} value 0.99 and 4.24 μ M, respectively. Compound **2** also showed a potent inhibition of elastase release with IC_{50} value 0.95 μ M, which was 6-folds more potent than the positive control. In addition, compounds **1–4** were screened for their cytotoxic activity against six cancer lines (A549, DU145, KB, KBvin, HepG2 and Hep3B) (see Supplementary data). Compound **1** showed a selective activity against Hep3B with IC_{50} value 10.86 μ M. Compound **2** exhibited a moderate cytotoxicity (IC_{50} : 17.18–29.81 μ M) against six cancer cell lines, while both compounds **3**, neoflavone with a lactone ring, and **4** neoflavone with a ketone group, showed weak or no cytotoxic activity.

Overall, two new compounds were isolated from *P. santalinus* heartwood portion, and were identified as phenanthrenedione and chalcone. The biological data demonstrated that compounds **1** and **2** showed potent anti-inflammatory effect either through the inhibition of superoxide anion generation or elastase release. Therefore, these two new compounds may act as future lead compounds for the anti-inflammatory drug development.

Acknowledgments

This work was supported by grants from National Science Council, Taiwan and Department of Health, Executive Yuan, Taiwan (DOH99-TD-C-111-002). We thank Dr. Sheng-Yang Wang (Department of Forestry, National Chung-Hsing University, Taichung, Taiwan) for the plant materials identification. The authors deeply appreciate the English revision by Dr. Mohamed El-Shazly (Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2011.06.036.

References and notes

- 1. Parkash, E.; Sha Valli Khan, P. S.; Sreenivasa Rao, T. J. V.; Meru, E. S. J. For. Res. 2006, 11, 329.
- Cho, J. Y.; Park, J.; Kim, P. S.; Yoo, E. S.; Baik, K. U.; Park, M. H. Biol. Pharm. Bull. 2001, 24, 167.
- Kwon, H. J.; Hong, Y. K.; Kim, K. H.; Han, C. H.; Cho, S. H.; Choi, J. S.; Kim, B. W. J. Ethnopharmacol. 2006, 105, 229.
- 4. Kumar, N.; Ravindranath, B.; Seshadri, T. R. Phytochemistry 1974, 13, 633.
- 5. Krishnaveni, K. S.; Rao, J. V. Phytochemistry 2000, 53, 605
- 6. Kesari, A. N.; Gupta, R. K.; Watal, G. Phytochemistry 2004, 65, 3125.
- 7. Chan, S. C.; Chang, Y. S.; Kuo, S. C. Phytochemistry 1997, 46, 947.
- 8. Muangnoicharoen, N.; Frahm, A. W. Phytochemistry 1982, 21, 767.
- Lee, C. L.; Nakagawa-Goto, K.; Yu, D.; Liu, Y. N.; Bastow, K. F.; Morris-Natschke, S. L.; Chang, F. R.; Wu, Y. C.; Lee, K. H. Bioorg. Med. Chem. Lett. 2008, 18, 4275.
- 10. Krohn, K.; Loock, U.; Paavilainen, K.; Hausen, B.; Schmalle, H. W.; Kiesele, H. ARKIVOC 2001, 2, 88.
- Pterolinus K (1): red amorphous powder; IR (Neat) max 3418, 1635, 1507, 1486, 1266, 1231 cm⁻¹; UV(MeOH) max nm (log ε): 248 (3.89), 307 (3.46), 405 (3.07); ¹H NMR (pyridine-d₅, 400 MHz) and ¹³C NMR (pyridine-d₅, 100 MHz) are given in Table 1; HRESI-MS m/z 407.1133 [M+H]⁺ (calcd for C₂₃H₁₉O₇, 407.1131).
- Pterolinus L (2): brown amorphous powder; IR (Neat) max 3417, 1699, 1610, 1514, 1443, 1274 cm⁻¹; UV (MeOH) max nm (log ɛ): 277 (3.62), 316 (3.62), 398 (3.73); ¹H NMR (MeOH-d₄, 500 MHz) and ¹³C NMR (MeOH-d₄, 125 MHz) are given in Table 2; HRESI-MS m/z 317.1024 [M+H]⁺ (calcd for C₁₇H₁₇O₆, 317.1025).