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ABSTRACT 34 

Light-duty diesel exhaust particulate matter and its constituents, including 35 

elemental carbon, organic carbon, water-soluble ionic species, elements, and 36 

polyaromatic hydrocarbons (PAHs), were measured by a dynamometer study 37 

and following the driving pattern of federal test procedure-75 (FTP-75). Fuel 38 

consumption of these light-duty diesel vehicles was in the range of 39 

0.106-0.132 l km-1, and the average emission factors of NMHC (non-methane 40 

hydrocarbon), CO and NOx for light-duty vehicles were 0.158 (92% of total 41 

hydrocarbon), 1.395, and 1.735 g km-1, respectively. The particulate emission 42 

factor of light-duty diesel vehicles was 0.172 g km-1, and PM2.5 contributed to 43 

88% of particulate mass. Al, S, Ca, and Fe emission factors were about 44 

0.83-1.24 mg km-1 for PM2.5, and the particulate mass fractions of these 45 

elements ranged from 66-90% in PM2.5. Nitrate, sulfate, ammonium and nitrite 46 

were the major ionic species in diesel PM, and their emission factor ranged 47 

from 0.22-0.82 mg km-1 for PM2.5. The emission factor of total PAHs was 3.62 48 

mg km-1 in this study, with about 40% in the gas phase and 60% in the 49 

particulate phase. Acenaphylene, naphthalene, fluoranthene, pyrene, and 50 

anthracene were the dominant PAHs, and their emission factors were more 51 

than 0.19 mg km-1. The content of nitro-PAHs was low, with most less than 52 
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0.040 mg km-1. 53 

Keywords: diesel exhaust, particulate composition, emission factor,  54 

1. INTRODUCTION 55 

Chemical constituents are an important issue in the study of diesel 56 

exhaust emission. Exposure to air pollutants increases the risk of 57 

cardiovascular disease.  Numerous epidemiological studies have shown that 58 

an increase in adverse cardio-pulmonary effects is associated with an increase 59 

in particulate matter level (HEI, 2003; Pope et al., 2004). Recent studies have 60 

revealed that diesel exhaust particles could induce inflammation in cytokines 61 

(Mazzarella et al, 2007), cytokine/chemokine response (Ø vrevik et al, 2010), 62 

cellular oxidative stress (Suzuki et al, 2008), mutation yield in human-hamster 63 

hybrid cells (Bao et al, 2007) etc. Diesel exhaust particles have been identified 64 

as a class 2A human carcinogen (International Agency for Research on Cancer, 65 

IARC) and related to an increase in the incidence of respiratory allergy, 66 

cardiopulmonary morbidity and mortality, and risk of lung cancer (Kizu et al., 67 

2003). 68 

Generally, diesel vehicles contribute only a small fraction of particulate 69 

matter (0.25-1.4% of PM2.5) in the atmosphere (Hwang and Hopke, 2007; 70 

López-Veneroni, 2009), but most people are concerned with the health effects 71 

of diesel exhaust particles (Alföldy et al, 2009). Therefore, elucidating the 72 

chemical constituents of diesel exhaust is important to understand their toxicity 73 

(Lin et al., 2008a; Lin et al., 2008b; Schneider et al., 2008; Cheng et al., 2010). 74 

In addition, diesel fuel characteristics (i.e., sulfur content, fuel density, 75 

distillation point, cetane index) and engine operation conditions (power loading, 76 

exhaust temperature, engine speed, air/fuel ratio exhaust gas circulation) 77 

could affect the exhaust compositions and particulate size distribution (Lim et 78 

al., 2007; Lapuerta et al., 2007; Chung et al., 2008, Zhu et al., 2010). Most 79 

studies in the literature have investigated the constituents of diesel exhaust 80 



 4 

particles including carbon content (organic carbon and elemental carbon), 81 

metal, inorganic ions, polyaromatic hydrocarbons, etc. (Kawanaka et al., 2007; 82 

Maricq, 2007; Fushimi et al., 2008; Lin et al., 2008a; Cheng et al., 2010). Few 83 

studies have investigated the comprehensive chemical constituents of diesel 84 

exhaust particulate matter in detail. Typical mass fraction of diesel particle was 85 

mainly in accumulation mode, 0.050 m < Dp < 1.0 m, with a maximum 86 

concentration between 0.1 and 0.2 m and small mass peak in nuclei mode 87 

and coarse mode (Kittelson, 1998; Kittelson, 2002). Significant and 88 

fundamental changes have been made to the diesel engine combustion 89 

process and associated after-treatment technologies (i.e., catalyst, diesel 90 

particle filter, SCR catalyst) to meet stringent regulations and reduce emissions 91 

of NOx and particulate matter (Biswas et al., 2008). However, diesel vehicles 92 

are still a concern with regard to their pollution emission and health effects. 93 

In general, two methods are used to measure vehicle emissions: the 94 

dynamometer test and real-world study (i.e., roadside and tunnel studies). The 95 

emission factors of specific engines can be determined by a dynamometer; 96 

measurements from individual cars are still the standard in dynamometer 97 

studies for many countries (Heeb et al., 2000, 2002, 2003; Nelson et al., 2008; 98 

Oanh et al., 2010).   99 

Actual traffic emission data have been obtained from roadsides or road 100 

tunnels (De Vlieger, 1996; Lenaers, 1996; Pierson et al., 1996; Laschober et 101 

al., 2004; Stemmler et al., 2005; He et al., 2008); the emission factor has been 102 

determined by a mathematical method that does not reflect actual vehicle 103 

emissions.  Because dynamometer testing is a standard method and 104 

determines tailpipe exhaust emission, it was selected in this work. 105 

Detailed chemical constituents provide baseline information to 106 

determine the effects of diesel vehicle exhaust. Many studies have focused on 107 
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diesel exhaust emission and composition using a dynamometer. However, 108 

detailed information about PM concentration and composition is still necessary 109 

to compare different areas. In this study, PM2.5 and its compositions including 110 

elemental carbon, organic carbon, water-soluble ionic species, elements, and 111 

polyaromatic hydrocarbons were measured to determine their emission 112 

factors. 113 

 114 

2. EXPERIMENT 115 

2.1 Light-duty diesel vehicles and testing driving pattern 116 

Six in-use light-duty vehicles were selected on the basis of accumulated 117 

mileage and produced year.  All vehicles were without pollution control 118 

equipment, mileage ranged from 56,000 to 160,000 km, and the displacement 119 

volume ranged from 2184 to 2835 cc. Table 1 presents more detailed 120 

information such as produced year, mileage, weight and engine capacity of all 121 

selected vehicles. 122 

All selected vehicles were tested on a chassis dynamometer following 123 

test procedure FTP-75, which is used in Taiwan to certify new vehicles.  The 124 

dynamometer is located in a certified laboratory located in ARTC (Automotive 125 

Research & Testing Center, Taiwan).  All vehicles were visually examined for 126 

safety prior to testing on the following day.  The distance and average speed 127 

of FTP-75 are 17.48 km and 34.1 km hr-1, respectively. 128 

 129 

2.2 Criteria pollutant sampling and analysis 130 

All exhaust samples were taken from a constant volume dilution 131 

sampling system.  The dilution system, designed to meet the specifications 132 

covered in the U.S. Federal Register (1986), was connected to a constant 133 

volume sampling system (Horiba, Japan) to dilute the exhaust flow rate to 9 m3 134 
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min-1.  Exhaust samples, taken at the end of the entire cycle of the FTP, were 135 

analyzed for CO, HC, NOx and CO2 by auto-monitors (HORIBA MEXA-9200).  136 

The background concentrations of those pollutants were also analyzed 137 

routinely and deducted from the test results.  Background concentrations 138 

were about 2 ppm for CO, 6 ppm C for HC, 0.1 ppm for NOx and 0.1% for CO2.  139 

The analytical errors for CO, HC, NOx and CO2 were approximately 140 

0.01-0.08%, 0.01-0.17%, 0.02-0.06% and 0.25-0.38%, respectively. 141 

 142 

2.3 Particle sampling 143 

A dilution tunnel and a monitoring system were installed downstream of 144 

the diesel exhaust to supply air for dilution and to measure particles and gas 145 

pollutants. A cascade impactor (Graseby Anderson Mark III) with quartz filters 146 

(with diameters of 64 mm, Pallflex, Pall Corporation, USA) is installed 147 

downstream of the dilution tunnel to collect size-resolved samples. These 148 

impactors can effectively separate the particulate matter into eight size ranges 149 

with the following equivalent cut-off diameters: 6.6-10.5 (stage 8), 4.4-6.6 150 

(stage 7), 3.1-4.4 (stage 6), 1.9-3.1 (stage 5), 1.0-1.9 (stage 4), 0.6-1.0 (stage 151 

3), 0.4-0.6 (stage 2), and <0.4 m (stage 1). A linear interpolation method was 152 

employed to determine the mass concentration of PM2.5 and PM10. All quartz 153 

filters were baked at 900oC for 3h before use to ensure low concentrations of 154 

organic compounds on the blank filter materials. In addition, polyurethane 155 

foam (PUF) and an XAD-16 resin backup cartridge were utilized to collect 156 

PAHs in the vapor phase, which is connected after the particle sampling 157 

system. 158 

  159 

2.4 Chemical analysis 160 

2.4.1 Water-soluble ions   161 
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One-eighth of the particle filter sample of each stage was ultrasonically 162 

extracted for 2 h into 20 ml of deionized distilled water and passed through a 163 

Teflon filter of 0.45 m nominal pore size. Ion chromatography (IC, Dionex, 120) 164 

was used to analyze the concentration of anions (Br-, F-, Cl-, NO2
-, NO3

-, SO4
2-) 165 

and cations (Na+, NH4
+, K+, Mg2+, Ca2+). Anions were separated using an 166 

IonPac AS 12A (4×200 mm) analytical column, an AG 14 guard column with a 167 

10 l sample loop, and an anion self-regenerating suppressor-ultra. A solution 168 

of 2.7 mM Na2CO3/0.3 mM NaHCO3 was used as an effluent at a flow rate of 169 

1.5 ml min-1.  Cations were separated using an IonPac CS 12A (4×250 mm) 170 

analytical column and a CG 14 guard column, with a 50 l sample loop, and a 171 

cation self-regenerating suppressor-ultra. A solution of 20 mM 172 

methanesulfonic acid was used as the eluent at a flow rate of 1 ml min-1. The 173 

recovery ranged from 87% (Na+) to 109%( F-).  174 

2.4.2 Elemental constituents in particulate matter 175 

The one-eighth particle filter samples were mixed with a 20 ml acid 176 

mixture (HNO3:HClO4:HF = 5:3:2, v/v) in a Teflon-lined closed vessel and 177 

placed in a high-pressure digestion oven at 170oC for 5h.  The digested acid 178 

mixture was analyzed to determine the trace elements.  A Perkin Elmer 179 

OPTIMA 3000 ICP-AES was used to determine the Al, Ca, Fe, K, Mg, Na, S, 180 

Co and Zn concentrations. Additionally, a SCIEX Elan Model 5000 ICP-MS 181 

manufactured by Perkin-Elmer was employed to determine As, Ba, Cd, Cr, Cu, 182 

Mn, Ni, Pb, Sb, Se, Sr and V concentration.  Blank and duplicate samples 183 

were also analyzed in this study. 184 

 185 

2.4.3 Organic and elemental carbon in particulate matters  186 

Particulate samples intended for carbon analysis were collected on 187 

quartz-fiber filters that had previously been heated in air at 900oC for 4h to 188 

lower their carbon blank level.  The particle filter sample was stored below 4oC 189 
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until analysis.  Total carbon (TC) and elemental carbon (EC) were measured 190 

with a C/H/N elemental analyzer (Carlo Erba EA 1110).  The procedure 191 

performed in this study to determine particle carbon content is similar to the 192 

method described by Cachier et al. (1989).  Samples one-eighth the amount 193 

of each filter were heated in advance in a 340oC oven for 100 min to expel the 194 

organic carbon (OC) content, then fed into the elemental analyzer to obtain the 195 

EC content.  Another one-eighth sample was fed directly into the elemental 196 

analyzer without pre-treatment to obtain the TC concentration. EC could be 197 

determined by the difference of TC and OC. However, the EC fraction as 198 

measured by this method can be overestimated, so the use of thermo-optical 199 

techniques is highly recommended by other studies (Turpin et al., 2000; 200 

Schmid et al., 2001; Sillanpää et al., 2005). 201 

 202 

2.4.4 Reference sample validation 203 

To validate the analysis method, NIST Standard Reference Material SRM 204 

1648 was used.  About 10 mg of SRM 1648 and 1650a, which approximates 205 

the composition of urban particulate matter and diesel particulate matter, 206 

respectively, was used to examine the accuracy and reliability of the analysis 207 

method.  Al, As, Ba, Co, Cr, Cd, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, S, Sb, Se, Sr, 208 

V, and Zn were recovered in the acceptable range (recovery: 82-108%).  In 209 

addition, the recovery of three water-soluble ionic species, F-, Cl-, and SO4
2-, 210 

was 87-109%, which is in the acceptable range by the analysis method of ion 211 

chromatography. 212 

 213 

2.4.5 Polyaromatic hydrocarbons (PAHs) 214 

The 16 PAH (polyaromatic hydrocarbons) and 10 nitro-PAH standards 215 

(purity of >99%) including Naphthalene (NaP), Acenaphthylene (AcPy), 216 

Acenaphthene (AcP), Fluorene (Flu), Phenanthrene (PA), Anthracene (Ant), 217 

Fluoranthene (FL), Pyrene (Pyr), Benzo(a)anthracene (BaA), Chrysene (CHR), 218 
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Benzo(b)fluoranthene (BbF), Benzo (k)fluoranthene (BkF), Benzo(a)pyrene 219 

(BaP), Indeno(1,2,3-cd)pyrene (IND), Dibenzo(a,h)anthracene (DBA) and 220 

Benzo(g,h,i)perylene (BghiP); and 2-Nitrofluorene (2-nFlu), 9-Nitroanthracene 221 

(9-nAnt), 3-Nitrofluoranthene (3-nFL), 1-Nitropyrene (1-nPyr), 222 

7-Nitrobenzo(a)anthracene (7-nBaA), 6-Nitrochrysene (6-nCHR), 223 

1,3-Dinitropyrene (1,3-DnPyr), 1,6-Dinitropyrene (1,6-DnPyr), 224 

1,8-Dinitropyrene (1,8-DnPyr) and 6-Nitrobenzo(a)pyrene (6-nBaP), were 225 

purchased from Supelco Inc. (USA).  Dichloromethane, n-hexane, acetone, 226 

acetonitrile, silica gel (0.063–0.200 mm, activated at 150°C for 18 h prior to 227 

use), anhydrous sodium sulfate (baked at 400°C for 4 h prior to use) and other 228 

reagents were pesticide analysis grade and/or residue analysis grade and 229 

purchased from E. Merck, Germany.  230 

 231 

2.4.5.1 Sample extraction and cleanup 232 

Combination samples of polyurethane foam (PUF) and XAD-16 resin 233 

were extracted using the Soxhlet extraction procedure in an all-glass Soxhlet 234 

system combined with an electro-thermal heating plate.  The samples were 235 

extracted for 16 h with 300 ml of mixed solvent (dichloromethane-acetonitrile 236 

3:1, by volume) in a 500-ml flat-bottom flask. The filters (cut size was larger 237 

than 1.9 m) were mixed as one sample for consideration of low PAH content 238 

in large particles to ensure that the concentration was higher than the method 239 

detection limitation. Samples of quartz filter were extracted using sonication 240 

with the above solvent three times (3×40=120 ml) for periods of 15 min. The 241 

temperature of the sonication bath was maintained between 25 and 30°C.  242 

The extracts from the various procedures were concentrated on a rotary 243 

evaporator (EYELA, Japan) equipped with a water bath held at 40°C, and the 244 

solution volume was reduced to 1-2 ml. In the cleanup process, the residual 245 

solution was introduced into a silica column (1 cm internal diameter and 25 cm 246 

length), and the column was first eluted with 10 ml of n-hexane.  About 2 cm 247 
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height of anhydrous sodium sulfate was packed at the fore-end of the cleanup 248 

column to exclude water. The n-hexane fraction was discarded, and the 249 

available fractions were then obtained by elution with 20 ml of 250 

dicloromethane-hexane 1:2 and then 30 ml of acetone-hexane 1:2.  The 251 

last two fractions were combined and concentrated just to dryness, then 252 

quantified to 2 ml (PUF+XAD-16) or 1 ml (quartz filter) with solvent 253 

acetone-hexane 1:2.  The final solutions were analyzed with the gas 254 

chromatography (GC) method. 255 

 256 

2.4.5.2. Gas chromatography method 257 

PAHs were analyzed by GC-MS.  The GC apparatus consisted of a 258 

Hewlett-Packard GC 6890 equipped with a mass (5973 N) and split/splitless 259 

injector. An HP-5MS capillary column (5% phenyl methyl siloxane, 30 m, 260 

internal diameter 0.32 mm, and film thickness 0.25 µm) was used.  The 261 

injector program was set to 280°C at the pulsed splitless mode (12 psi for 1 262 

min). The oven temperature program was 60°C for 1 min, 35°C min−1 to 170°C, 263 

8°C min−1 to 210°C, 4°C min−1 to 300°C, and 15°C min−1 to 320, which was 264 

held for 3 min. The carrier gas (99.9995% nitrogen) flow rate was held at 1.5ml 265 

min−1. MSD (mass selective detector) was operated in SIM (selected ion 266 

monitoring) mode, with the electron energy at 70 eV, the EI (electron ionization) 267 

source held at 175 °C and the interface temperature at 300 °C.    268 

To analyze the nitro-PAHs, a 63Ni electron-capture detector (ECD) was 269 

used for GC-ECD analysis under the same conditions as the PAH analyses. 270 

The ECD temperature was 300°C, and the total gas flow rate was 30 ml min−1 271 

(makeup plus column).  In a preliminary investigation for the above conditions, 272 

these PAHs and nitro-PAHs have a completely isolated chromatogram with 273 

retention time ranging from 4.66 to 27.39 min.  The mixed stock solution was 274 

used to make five concentrations of mixed standard solution, which were 275 

required to establish calibration curves for PAH and nitro-PAH measurement. 276 
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The injection volume was 1µl for all samples. The spike was added to the 277 

blank sampling PUF+XAD-16 and quartz filter prior to extraction for recovery 278 

analysis.  The average recovery of PAHs based on QA/QC ranged from 68% 279 

(naphthalene) to 93% (pyrene) and 71% (naphthalene) to 94% 280 

(Benzo(g,h,i)perylene) for the PUF+XAD-16 and quartz filter samples, 281 

respectively.  The nitro-PAHs had lower average recoveries for the 282 

PUF+XAD-16 and quartz filter samples, which ranged from 59% 283 

(1,3-Dinitropyrene) to 87% (2-Nitrofluorene) and 61% (1,8-Dinitropyrene) to 284 

89% (3-Nitrofluoranthene), respectively. 285 

To validate the analysis method of PAHs in diesel particulate matter, 286 

NIST Standard Reference Material SRM 1650a was used.  About 50 mg of 287 

SRM 1650a, which approximates the composition of diesel particulate matter, 288 

was used to examine the accuracy and reliability of the analysis method.  289 

 290 

3. RESULTS AND DISCUSSION 291 

 292 

3.1 Exhaust gas characteristics 293 

The diesel fuel characteristics included carbon: 86.0%, hydrogen: 294 

12.4%, heat value: 10821 cal g-1, aromatic content: 32.4%, sulfur content: 295 

0.0341% etc. The fuel characteristics could affect the emission factors of 296 

particulate matter. CO, CO2, NOx and HC for the entire cycle are summarized 297 

in Table 2; some literature data are also included for comparison. The fuel 298 

consumption of these light-duty diesel vehicles was in the range of 299 

0.106-0.132 l km-1. The average emission factors of light-duty diesel vehicles 300 

were 0.171, 0.158, 1.395, and 1.735 g km-1 for THC, NMHC, CO and NOx, 301 

respectively. About 8% CH4 contributed to THC. 302 

In general, the PM emission factors are low for low-mileage vehicles, 303 

and the values increase with mileage accumulation and age. The average PM 304 

emission factor was 0.1720.071 g km-1. High fuel consumption reflects high 305 
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CO2 and high NOx emission. In addition, little methane was emitted from the 306 

diesel exhaust. LDV-4 was the lowest reference weight, but high fuel 307 

consumption (about 20-50% high) and high pollution emission, i.e., CO (about 308 

1.5-3.9 times), NOx (about 2.4-4.0 times). Results indicated that weight was 309 

not the main factor in high fuel consumption; engine characteristics are also 310 

important (Ceviz and Akin, 2010). High fuel consumption could cause 311 

incomplete combustion for high CO and high engine temperature for high 312 

thermal NOx. 313 

PM, THC, CO, and NOx concentrations were in the range of California 314 

test guidelines for 1998, which are based on the FTP driving cycle (Norbeck 315 

etal., 1998). The average concentrations of PM and THC were low in this study, 316 

which could be attributed to the age of the California vehicles (1977-1993). 317 

These vehicles were older than those used in our tests. 318 

 319 

3.2 PM mass distribution 320 

Figure 1 shows the particle size distribution of the exhaust of light-duty 321 

diesel vehicles. Particulate matter concentration was 172 mg km-1; 66% of 322 

particulate mass fraction was less than 0.4 m (near the range of ultrafine 323 

particles). In addition, particulate size was 0.4-0.6, 0.6-1.0, and 1.0-1.9 m 324 

corresponding to mass fractions of 6, 8 and 6%, respectively. Other particle 325 

size fractions were less than 4%. About 80% of the mass fraction of diesel 326 

particulate was less than 1.0 m. Lin et al. (2008) indicated high mass fraction 327 

at a particle size < 1.0 m, especially in the 0.166-0.52 m range, and low 328 

mass fractions at particle sizes of > 0.52 m and < 0.166 m.  Generally, the 329 

high mass fraction was less than 0.4 m for diesel vehicles; the smallest cut 330 

size of the particulate sampler is about 0.4 m, which could not clearly 331 

describe the particle size distribution; it could be a limitation of this study.  332 

Park et al. (2010) indicated that the mass concentration of diesel 333 

nano-particles was in the range of 0.131-0.230 m. In addition, the average 334 
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sizes of particles emitted in diesel exhaust is higher than particles emitted in 335 

gasoline exhaust under similar operating conditions. The peak of particle 336 

concentrations for mineral diesel was never less 0.040 m; however, for 337 

gasoline engines, it could be as low as 0.020 m under most operating 338 

conditions (Gupta et al., 2010). 339 

 340 

3.3 Particulate compositions 341 

3.3.1 Carbon content 342 

The emission factor of diesel particulate matter was about 172 mg km-1. 343 

Based on the interception of particle size distribution, the emission factor of 344 

PM10 was 167 mg km-1 and PM2.5 was 151 mg km-1. About 88% of particulate 345 

mass was less than 2.5 m in diesel exhaust. Generally, the percent of 346 

particulate mass less than 10 and 2.5 m was 99.4 and 95.1%, respectively 347 

(Norbeck et al., 1998), which was higher than the results of this study. 348 

The carbon content was high, and its fraction was about 72% of 349 

particulate mass (Table 3). EC was about 66% of carbon content in particulate 350 

mass; the remainder was OC in PM2.5. The fraction of EC was high compared 351 

to the results (EC and OC were almost the same level) of Norbeck et al., 1998. 352 

Generally, the EC content was higher than OC content in diesel particulate 353 

matter (Kleeman et al., 1999; Grieshop et al., 2006), which was similar to this 354 

study. 355 

 356 

3.3.2 Elemental compositions 357 

The emission factors of Al, S, Ca, and Fe were about 0.83-1.24 mg km-1 358 

in PM2.5 and 1.07-1.77 mg km-1 in PM10, and the fractions of these elements 359 

were about 66-90% in PM2.5 and others were in PM2.5-10. Sulfur content in fuel 360 

could affect the formation of new particles during engine combustion in 361 

exhaust gas. Sulfur could form sulfate after the cylinder gas, leaving as 362 

exhaust. In addition, sulfur can be a catalyst poison in the exhaust control 363 
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system of diesel motor vehicles. (Kozak and Merkisz, 2005). Therefore, the 364 

fuel sulfur could affect the formation of nucleation particulate matter during the 365 

combustion of diesel fuel (Schneider et al., 2005). Some studies have 366 

indicated that high sulfur and the oxidation catalyst are mandatory conditions 367 

for sulfate formation, which results in nucleation formation of particulate matter 368 

for light-duty diesel vehicles (Maricq et al., 2002; Vogt et al., 2003). 369 

K, Zn, Na, and Mg were in the range of 0.18-0.48 mg km-1 in PM2.5 and 370 

0.29-0.82 mg km-1 in PM10. Some toxic elements, i.e., Ni, Cr, Pb, Cu, Cd, and 371 

As, ranged from 0.01-0.09 mg km-1 in PM2.5 and 0.02-0.22 mg km-1 in PM10. 372 

Others were trace, i.e., Sb, Sr, V, and Se (the emission factors were less than 373 

0.04 mg km-1 in PM2.5). The element content in PM could be attributed to the 374 

engine wear and tear, pipe erosion of the vehicle, and fuel compositions (Wang 375 

et al., 2003). 376 

 377 

3.3.3 Ionic species 378 

Nitrate (0.82 mg km-1 in PM2.5 and 1.33 mg/km in PM10), sulfate (0.69 mg 379 

km-1 in PM2.5 and 0.85 mg km-1 in PM10), ammonium (0.41 mg km-1 in PM2.5 380 

and 0.54 mg km-1 in PM10), nitrite (0.22 mg km-1 in PM2.5 and 0.49 mg km-1 in 381 

PM10) were the major ionic species in diesel PM. Other ionic species were less 382 

than 0.16 mg km-1. Nitrate, nitrite and ammonium could be the result of the fuel 383 

composition and high-temperature combustion causing thermal NOx formation. 384 

Sulfur content in diesel fuel could be an important reason for the presence of 385 

sulfate in particulate matter (Maricq et al., 2002; Vogt et al., 2003). Shi and 386 

Harrison (1999) indicated that sulfuric acid/water (emitted from the fuel sulfur 387 

combustion) with subsequent condensation of organic substances in the diesel 388 

exhaust and the other species (i.e., ammonia) could be involved in the 389 

nucleation. In addition, Yu (2001) implied that chemiion could play a role in 390 

diesel exhaust nucleation.  391 

The ionic species contents were high in diesel PM compared to those 392 
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reported by Norbeck (1998). In addition, some alkali metals and alkali earth 393 

metals (Na, K, Mg, and Ca) were less than 0.17 mg/km in diesel PM. 394 

The determined composition fractions of PM2.5 were taken from diesel 395 

exhaust shown as Figure 2. Carbon content was high in PM, with low 396 

elements (3.8%) and ionic species (1.6). In addition, the composition of about 397 

22% of PM mass could not be determined; it is a limitation of this study. 398 

 399 

3.3.4 PAHs 400 

The emission factors of PAHs are shown in Figure 3. Twenty-six PAHs 401 

including 16 PAHs and 10 nitro-PAHs were determined for diesel vehicle 402 

exhaust. The toxicity and cancer effects of PAHs are of greatest concern after 403 

exposure. The IARC identifies some PAHs to be probable human carcinogens 404 

(Group 2A, i.e. Benz(a)anthracene, benzo(a)pyrene, Dibenzo(a,h)anthracene 405 

etc.) and others to be possible human carcinogens (Group 2B, i.e. 406 

Benzo(b)fluoranthene (BbF), Benzo (k)fluoranthene (BkF), 407 

Indeno(1,2,3-cd)pyrene (IND), 2-Nitrofluorene (2-nFlu), 1-Nitropyrene (1-nPyr), 408 

6-Nitrochrysene (6-nCHR), 1,6-Dinitropyrene (1,6-DnPyr), 1,8-Dinitropyrene 409 

(1,8-DnPyr) etc.) (IARC, 1983 and 2010). In addition, some PAHs have been 410 

classified in Group 3, a class of chemicals for which no human data is available 411 

on carcinogenesis and there is only limited or inadequate data in animals (i.e. 412 

Benzo(g,h,i)perylene (BghiP); 9-Nitroanthracene (9-nAnt), 3-Nitrofluoranthene 413 

(3-nFL), 7-Nitrobenzo(a)anthracene (7-nBaA), 1,3-Dinitropyrene (1,3-DnPyr), 414 

6-Nitrobenzo(a)pyrene (6-nBaP) etc) (IARC, 1983 and 2010). Therefore, these 415 

PAHs are of concern due to their volatilization in diesel exhaust, persistent 416 

organic pollutants in the environment and toxicity in human health effect. 417 

The emission factor of total PAHs was 3.62 mg km-1 in this study; about 418 

40% was in the gas phase and 60% in the particulate phase (20% was 419 

determined in the particulate size > 1.9 m, and 10% was in the particulate 420 

size less than 0.4m). Naphthalene, acenaphylene, fluoranthene, fluorine, 421 
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anthracene, pyrene, acenaphthene and phenanthrene are dominant PAHs, 422 

and their emission factors were over 0.12 mg km-1. Naphthalene and indeno 423 

(1,2,3-cd) pyrene were dominant in the gas phase. We used the concept of 424 

toxic equivalent factor (TEF) to determine the carcinogenicity of chemicals. 425 

TEF data was investigated by LaGoy and Nisbet’s study. In many risk 426 

assessments of complex pollutant mixtures, all carcinogenic PAHs have been 427 

considered to be as carcinogenic as BaP (Marty et al., 1994). Sixteen PAHs 428 

were transferred to TEF as BaP. Results indicated that the TEF of 16 PAHs 429 

was 0.24 mg-BaP km-1 and the Dibenzo(a,h)anthracene and BaP was about 430 

90% TEF in diesel exhaust. 431 

The content of nitro-PAHs (shown as Figure 4) was low, with most less 432 

than 0.04 mg/km. The emission factors of 1,6-dinitropyrene, 2-nitrofluorene 433 

and 1,8—dinitropyrene were in the range of 0.019-0.040 mg km-1. The mass 434 

fraction of nitro-PAHs in total PAHs was less than 4%. But some nitrated 435 

aromatic hydrocarbons--i.e., 1,6-Dinitropyrene, 1,8-Dinitropyrene, 436 

6-Nitrochrysene, etc.--revealed high toxic potency, with the potential for 437 

mutagenic and carcinogenic effects related to cell apoptosis of diesel exhaust 438 

(Landvik et al., 2007). 439 

Only PAHs and nitro-PAHs were determined in PM contributing to low 440 

mass fraction of organic carbon in this work. Generally, PM organic classes 441 

included the n-alkanes and acids from C13-30, PAHs, oxygenated/sulfur 442 

containing PAHs, hopanes, steranes, methoxylated phenols and others 443 

(Mcdonald et al., 2004).  444 

 445 

4. CONCLUSIONS 446 

Six light-duty diesel vehicles were selected to determine the pollutant emission 447 

factor of exhaust and following the FTP-75 driving cycle in a dynamometer. 448 

Fuel consumption was 0.1260.022 l km-1, and the high fuel consumption 449 

reflects high CO2 and NOx emissions. The average emission factor of PM was 450 
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0.1720.071 g km-1, THC was 0.1710.137 g km-1, CO was 1.3950.698 g 451 

km-1, and NOx was 1.7351.127 g km-1. Carbon content was about 72% of 452 

particulate mass, and the EC portion was about 66% of carbon content, with 453 

the remainder being OC. Al, S, Ca, and Fe were about 1.0 mg/km, and K, Zn, 454 

Na, and Mg were less than 0.50 mg km-1 in PM2.5. Some toxic elements, i.e., Ni, 455 

Cr, Pb, Cu, Cd, and As, were less than 0.1 mg km-1 and others were trace; i.e., 456 

Sb, Sr, V, and Se were less than 0.04 mg km-1 in PM2.5. Nitrate, sulfate, 457 

ammonium, and nitrite were the major ionic species, and their emission factor 458 

was 0.22 (nitrite)-0.82 (nitrate) mg km-1 in diesel PM2.5. The emission factor of 459 

total PAHs was 3.62 mg km-1, and their mass was about 60% in the particulate 460 

phase.  Emission factors of naphthalene, acenaphylene, fluoranthene, 461 

fluorine, anthracene, pyrene, acenaphthene and phenanthrene were in the 462 

range of 0.13-1.04 mg km-1. The mass fraction of nitro-PAHs in total PAH was 463 

less than 4%, and1,6-dinitropyrene, 2-nitrofluorene and 1,8—dinitropyrene 464 

were in the range of 0.019-0.040 mg km-1. 465 

 466 
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