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Abstract. This study is to forecast the impact force and impact position of free over-fall flow in the 
downstream by using artificial neuron networks (ANN). A simulation procedure for the ANN 
algorithm was established to train and validate numerical samples with the experimental data. The 
outcomes of simulation show the ANN method can properly estimate the impact force and position. 

Introduction 

The maintenance of the dam or weir structure is quite an important program for water resource 
management. The sudden drop in the river bed due to the structure body such as the weir or dam will 
induce free overfall flows that will yield high impact force as flushing the channel bed. Many 
researchers hence devoted experimental studies to this phenomenon in the past years since it probably 
damages the dam or weir. Many studies discussed the characteristics of free overfall flow such as the 
end-depth-ratio (EDR), the dimensionless parameter “Drop Number”, or the discharge of the flow for 
the depth at the end section of drop [1][2][3][4].  Recently, Hong et al. [5] derived the regression and 
semi-theoretical equations to forecast the force and length of free-falling nappe dropping on an 
aerated straight-drop spillway. Besides, comparing with traditional regression models, the artificial 
neuronal network (ANN) has been widely applied in environment forecast by determining the 
relevant effective factors [6][7]. Thus the expert systems could be developed upon the adaptive 
network-based interface with the multiple nonlinear and linear analyses and their results were 
approved by the practical measurement data [8]. This study will implement the ANN method to 
predict the maximum impact force and position caused by the free overfall flow.  Furthermore, 
laboratory experiment data in our previous study (Hong et al. [5] and hereinafter called Hong’s study) 
are used for the data training procedure to validate the proposed method. 

Experiment Description 

The laboratory experiments are conducted in a rectangular re-circulating water flume by installing 
a movable channel with the slope from 0% to 9%. As shown in Fig.1, the channel is constructed by 
glass with the layout dimension of 2m in length, 0.3m in width and 0.4m in height. A set of powered 
ultrasonic sensors (RPS-401) and eight pressure transducers (KYOWA) are embedded in the channel 
to measure the water depths and vertical bed pressures distribution, respectively. The characteristics 
of impact effect can be studied by varying the slope of bed (S=0 to 9%), the height of drop (H=0.15 to 
0.30 m) and the drop number (D=2.61×10-4 to 487.3×10-4). The discharge of flow per unit width q is 
ranged from 0.0076 cms/m to 0.0402 cms/m. All design parameters of the experimental condition are 
displayed in Table 1. Due to Hong’s study, total 64 groups of training data were given for training the 
model of neural network and regression formulas. In this study, we added 36 groups of experimental 
data to simulate the proposed model. Two groups of samples are distinguished by various flow rates. 



 

 
Fig. 1 The layout of channel experiment (a) Vertical view (b) Lateral view 

Table 1 Experimental condition 
Sample Measurement item Experimental condition 

Downstream channel slope S 0、3%、6%、9% 
Free overfall height H 0.3、0.25、0.2、0.15 m Training sample 
Discharge per unit width q 0.0076~0.0402 cms/m 
Downstream channel slope S 0、3%、6%、9% 
Free overfall height H 0.3、0.25、0.2、0.15 m Simulation 

sample 
Discharge per unit width q 0.0138~0.0359 cms/m 

Let’s define the impact position Lmi as the distance between the dam and the position where the 
maximum pressure can be measured by the pressure transducers. The symbol Fmi denotes the 
measured impact force which is counted as the total flushing force per unit vertical width. Then, Fmi 
can be calculated by the measured impact pressure P on the downstream channel. 
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where Li is the distance between the ith pressure transducers and the dam; ρ is the water density; and g 
is the gravity. 

Dimensional analysis 

According to the outcomes of Hong’s study, the semi-theoretical impact position Lti is the function 
of the slope of downstream bed (S), the height of drop (H), the discharge per unit width (q) and the 
gravity acceleration (g). Based on Buckingham’s π theorem, it can return three terms of π; they 
are 3

1 gHq=π , riri LHL ==2π  and S=3π . Hence, the dimensionless regression impact 

position riL  can be determined by the function of slope S and drop number D ( 3gHq= ).  
Similarly, let Ftvi denote the vertical impact force per unit width and be the function of the slope of 

downstream bed (S), the height of drop (H), the discharge per unit width (q), the gravity acceleration 
(g) and the density of fluid (ρ). Due to Buckingham’s π theorem, three terms of π can be obtained; i.e., 

3
1 gHq=π , riri LHL v

2
v2 g == ρπ  and S=3π . Hence, the dimensionless regression impact 

force rviF  can also be the function of S and D. 
Based on the dimensional analysis and the empirical equations [9], the coefficient data of the 

training sample in Table 1 can be trained to establish the regression equations as follows: 



 

( )1.272Sxp7401L 1630
ri eD. .= , (R2=0.982) (2a) 

( )2.243Sxp1.472 4960 eDF .
rvi = , (R2=0.972) (2b) 

Application of Artificial Neuron Network 

In this study, the toolbox of Matlab 7.1 is adopted to process the training data and simulation 
required for the application of artificial neuron network. 

A. Data normalization 

There are two central tasks as preparing the data: (1) To unify the data into the standard format that 
can support data mining and other computer-based tools; and (2) To configure the data sets that may 
lead the best performances of data mining. In general, we can normalize the raw data to reduce 
influence of the sample range and to speed up convergence of the training process. We hence adopt 
the minimum-maximum normalization in this study: 

( ) ( ) ( )( )( ) ( )( ) ( )( )( )iviviviviV minmaxmin' −−=  (3) 

where, ( )iV '  denotes the dimensionless value of normalization; ( )iv  is the measured value; ( )( )ivmin  
and ( )( )ivmax  stand for the minimum and maximum measured value, respectively. Note that ( )iV '  is 
controlled in the range between 0 and 1 by Eq. (3) .  According to the dimensional analysis, it can be 
clearly observed that the drop number D and the slope of downstream channel S are both the main 
influence factors with respect to impact force and position. Therefore, by Eq. (3), four data sets 
should be normalized and they are the drop number D, the slope of downstream channel S, the 
dimensionless impact position riL , and the dimensionless impact force per unit vertical width rviF  in 
which riL and rviF are both dimensionless and measured by experiment.  

B. Training conditions of artificial neuron network 

Training a neural network model essentially means selecting one model from the set of allowed 
models that minimizes the cost criterion. There are numerous algorithms available for training neural 
network models; most of them can be viewed as a straightforward application of optimization theory 
and statistical estimation.  In Matlab software package, there are six conditions should be determined 
before training the sample as follows.  

(1) Neuron network type:  Multilayer perceptrons have been applied successfully to solve some 
different and diverse problems by training the network in a supervised manner with a highly popular 
algorithm known as the error backpropagation algorithm [10]. The multilayer feed-forward 
backpropagaton neuron network (FFBPNN) model to process the simulation in this study.  

(2) Input ranges: The input range is between 0 and 1 by following the normalization method above. 
(3)Training function: The Levenberg-Marquardt algorithm is selected as the training function in 

this study because this algorithm can appear the fastest convergence for training the model of 
moderate-sized feedforward neural networks up to several hundred weights [11]. 

(4) Performance function: The mean square error is employed as the performance function. 
(5)Number of hidden layers: One hidden layer is used in this study. The hidden layer receives the 

input data and delivers the data to the output layer via the transfer function provided by the toolbox. 
(6) Properties of hidden layer: The properties of hidden layer include the number of neurons and 

the transfer function.  Too few neurons can lead to under-fitting, and, in contrast, too many neurons 
can contribute to over-fitting. Appropriate neurons can fit all training points and prevent wild 
oscillations from the fitting curve [11]. It is observed that the drop number and the slope of channel 
are requested for the input layer and, therefore, two neurons in the hidden layer are used in this study. 

Subsequently, we consider a two-layer network, where the first layer is sigmoid and the second 
layer is linear, for training data to efficiently approximate any function with a finite number of 



 

discontinuities [11].  Herein, the linear 
transfer and log-sigmoid functions are 
adopted in the hidden and output layers, 
respectively. The network diagram is 
viewable in Fig. 2 after giving the 
parameters above. In which, iw{1,1} 
represents the weight to the layer 1; lw{2,1} 
means the weight to layer 2; b{1} is the bias 
to layer 1, and b{2} is the bias to layer 2.  
Therefore, the network is created with a 
single input (composed of two elements), a 
log-sigmoid transfer function for the hidden 
layer, a linear transfer function to the output layer, and a linear output. 

C. The training and simulation of impact characteristics 

This approach adopts 64 groups of training sample to train the ANN model. The model contains 
the input data consisting of the normalized drop number and the downstream slope, and the target 
data including the measured dimensionless vertical impact force per unit width.   

  
(a) impact force                                                  (b) impact position 

Fig. 3 MSE convergence trend of normalized dimensionless  

Fig. 3(a) displays the convergence trend of training data for the dimensionless impact force. The 
unit of vertical coordinate (Training–Blue) is the mean square error (MSE), and the unit of horizontal 
coordinate (Epochs) is the training number. After training for five times, the trend of MSE is stable 
gradually, and MSE is equal to 0.00034 after training for 100 times. Similarly, Fig. 3(b) performs the 
training diagram of the dimensionless impact position. The unit MSE equals to 0.00133 after training 
for 100 times. Table 2 shows the weights and bias after executing the training process. These factors 
are available to simulate the normalized dimensionless impact force and position by inputting 
normalized dimensionless slope and drop number into the ANN model. 

Table 2 Selected factors of ANN method after data training 
iw{1,1} b{1} Application 

item 
normalized 
parameter neuron1 neuron2 lw{2,1} neuron1 neuron2 b{2} 

slope -0.130 -0.379 144.858 Dimensionless 
impact force drop number 12.186 -3.116 -0.962 6.249 1.601 -143.771 

slope -0.014 -0.947 52.244 Dimensionless 
impact position drop number 12.574 -1.880 -0.755 4.571 1.930 -51.019 

Impact characteristics comparison 

The outcomes of impact characteristics simulated by artificial neuron network are discussed with 
that by semi-theoretical equation and regression analysis in Hong’s study.  The comparison of impact 
characteristics between various prediction methods can help to find the best one. 

Fig. 2 Flowchart of the neuron network 



 

As comparing the impact positions and forces carried out by three methods for the measured 
values with respect to the various predicted values due to the training data, we found that all of 
methods for impact positions can obtain satisfactory to fit the measured values.  However, the values 
computed by the regression method display a large difference with respect to the measured values. 
These training results can be apparently observed in the simulation outcomes shown in Fig. 4(a) and 
4(b). In addition, the root-mean-square (RMS) error is working to calculate the difference between 
measured values and predicted values. Thus the small RMS errors are shown in Table 3 in which all 
of RMS errors are smaller than 0.001m. Table 3 also presents the smaller RMS errors of 
semi-theoretical and ANN methods than that of the regression method. 

Fig. 4(a) and 4(b) shows the simulation outcomes of impact characteristics. All of the impact 
characteristics, whether they are impact force or impact position, can be accurately predicted by the 
ANN method and semi-theoretical method.  On the other hand, the regression method can simulate 
the impact position, but overestimate the impact force with a large RMS error.  The RMS error also 
supports above conclusion. 

Table 3 Root mean square error by various predicted method 
Data attribute Predicted method Vertical impact force (N/m) Impact position (m) 

semi-theoretical method 0.56 0.00085 
Regression method 1.31 0.00064 Training data 
ANN method 0.48 0.00077 
semi-theoretical method 2.62 0.0072 
Regression method 11.76 0.0049 Simulation data 
ANN method 2.94 0.0065 
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 (a) Impact position (b) Impact force per unit width 
Fig. 4 Comparison between measured and predicted impact characteristics by simulation outcomes 

Conclusion 

This study calculates the impact force and impact position of free overfall flows by using the 
algorithm of artificial neuron network.  The experiment data from Hong’s study was recruited for the 
required training data.  Besides, 36 groups of sample are further employed to confirm the feasibility 
of proposed methods. Multilayer feed-forward backpropagaton neuron network (FFBPNN) model is 
adopted to process the artificial neuron network model. In which the downstream slope and drop 
number are considered as the input data while the dimensionless impact position and force are carried 
out as the target data. The outcomes of simulation approve the semi-theoretical method and ANN 
method that can provide a useful estimation for the impact force and position. Nevertheless, the 
regression analysis for the impact force results in overestimation. 
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