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Abstract
Breast MRI acquires many images from the breast, and computer-aided
algorithms and display tools are often used to assist the radiologist’s
interpretation. Women with lifetime risk greater than 20% of developing breast
cancer are recommended to receive annual screening MRI, but the current breast
MRI computer-aided-diagnosis systems do not provide the necessary function
for comparison of images acquired at different times. The purpose of this work
was to develop registration methods for evaluating the spatial change pattern of
fibroglandular tissue between two breast MRI scans of the same woman taken
at different times. The registration method is based on rigid alignment followed
by a non-rigid Demons algorithm. The method was tested on three different
subjects who had different degrees of changes in the fibroglandular tissue,
including two patients who showed different spatial shrinkage patterns after
receiving neoadjuvant chemotherapy before surgery, and one control case from
a normal volunteer. Based on the transformation matrix, the collapse of multiple
voxels on the baseline images to one voxel on the follow-up images is used to
calculate the shrinkage factor. Conversely, based on the reverse transformation
matrix the expansion factor can be calculated. The shrinkage/expansion factor,
the deformation magnitude and direction, as well as the Jacobian determinate
at each location can be displayed in a 3D rendering view to show the spatial
changes between two MRI scans. These different parameters show consistent
results and can be used for quantitative evaluation of the spatial change patterns.
The presented registration method can be further developed into a clinical tool
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for evaluating therapy-induced changes and for early diagnosis of breast cancer
in screening MRI.

S Online supplementary data available from stacks.iop.org/PMB/56/5865/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Screening mammography is the standard clinical examination for detecting early breast cancer.
The radiologist reviews the mammogram of a woman by comparing it side-by-side with her
previous mammogram (typically taken 1–2 years ago), so that the changes in breast density
and/or micro-calcifications can be evaluated for detecting the growth of abnormal lesions.
But mammograms do not work well in women with dense breasts, and in 2007 the American
Cancer Society recommended that women with lifetime risk greater than 20% should receive
annual breast MRI for screening (Saslow et al 2007). Since MRI acquires 3D images, more
sophisticated image analysis algorithms and display tools are needed. It would be very helpful
to develop a co-registration method so that the current MRI can be compared with the previous
MRI done 1 year ago, similar to evaluation of mammograms for cancer detection.

If there is no enhanced lesion that is clearly visible, the changes in fibroglandular tissue
(commonly referred to as the breast density) may provide useful information to aid in the
detection of subtle abnormal changes, so that these areas can be followed more closely.
However, the distribution of breast density is not uniform; thus, the capability to map out
local changes within the entire breast is required. The current research in MRI-based density
studies has been mainly focused on volumetric measurements of density in the whole breast
(Klifa et al 2004, Nie et al 2008, Wei et al 2004). Unfortunately, the measurement of the total
volume is too coarse and cannot be used for detecting local changes.

The evaluation of the spatial pattern of changes between two MRIs taken at different
times may be accomplished by registration. In breast MRI, the enhanced lesion can be
best visualized in subtraction images generated by subtracting pre-contrast from post-contrast
images. However, due to the minor movement of the patient between these two acquisitions,
subtraction artifacts are often seen, and the registration techniques are commonly applied to
align images acquired before and after contrast injection (Rohlfing and Maurer 2003, Rueckert
et al 1999). For the small changes between images acquired during the same scan session, rigid
registration using the Affine transformation algorithm is sufficient. For registration of images
taken at different scan sessions that has substantial change, non-rigid registration algorithms
are required (Roose et al 2008). The method has been applied to co-register breast images
acquired at prone and supine positions, so that the lesion detected on breast MRI in the prone
position can be better utilized during the operation while the patient is lying at the supine
position (Carter et al 2006, 2008). These previous studies have been for registration based
on the boundary of the whole breast. The registration of the segmented fibroglandular tissue
inside the breast has never been reported before.

In this work, we developed a method based on a non-rigid Demons registration algorithm
to register the fibroglandular tissues acquired in two scans from the same woman. Based on the
correspondence between two volumes, a metrics indicating the shrinkage/expansion of pixels
within the breast was calculated. A three-dimensional rendering software was developed
to display the changes in the breast from different views. The method was tested in three

http://stacks.iop.org/PMB/56/5865/mmedia
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Table 1. The total fibroglandular tissue volume measured in the baseline and the follow-up MRI
studies, and the percentage change.

Age Baseline Follow-up Percent change

Subject 1 (chemotherapy patient) 32 190 (cm3) 116 (cm3) 39%
Subject 2 (chemotherapy patient) 41 116 (cm3) 110 (cm3) 5.2%
Subject 3 (normal volunteer) 36 36.6 (cm3) 35.9 (cm3) 1.9%

different subjects who had different degrees of changes in the fibroglandular tissue, including
two patients who showed different spatial shrinkage patterns after receiving neoadjuvant
chemotherapy before surgery, and one control case from a normal volunteer. This method
will provide the basic framework upon which other algorithms (e.g. the matching of breast
boundary) can be further developed and integrated in the future for detection of early cancer.

2. Materials and methods

2.1. Subjects and MR imaging protocol

The MRI of two patients (32 and 41 years old) who received neoadjuvant chemotherapy and had
a baseline scan and a post-therapy scan after 3 months of treatment was analyzed. One normal
volunteer (36 years old) who had two scans done 1 week apart was analyzed as a control case
for comparison. The MRI was performed on a 3T Achieva system (Philips Medical Systems,
Best, The Netherlands) using a dedicated breast coil. The non-fat-suppressed images acquired
before injection of contrast agents were used for segmentation of the breast from the body, and
segmentation of the fibroglandular tissue within the breast. The images were acquired using
a 3D gradient-echo sequence in axial view to cover bilateral breasts. The parameters were as
follows: FOV = 31–36 cm, image matrix 480 × 480, TR/TE = 6.2/1.26 ms, flip angle =
12◦, and SENSE-factor = 2. Therefore, the in-plane resolution was 0.65–0.75 mm/pixel and
the slice thickness was 2 mm.

2.2. Breast and fibroglandular tissue segmentation

The detailed procedures have been described in previous publications (Nie et al 2008, 2010).
Briefly, a horizontal line was drawn through the posterior boundary of the sternum and all
tissues below this line were considered as non-breast tissues and removed. The breast region
was extracted using the fuzzy C-means (FCM)-based method and the chest wall muscle was
identified using the B-spline curve fitting. The inhomogeneity of the signal intensity over
the imaging field was corrected using an improved bias field correction algorithm (Lin et al
2011) based on combined N3 (Sled et al 1998) and FCM (Chen and Giger 2004). Then,
the FCM algorithm was used to segment the fibroglandular and fatty tissues. The final
segmentation results were visually verified by an experienced radiologist. For each subject,
the procedure was applied to segment the fibroglandular tissues at the baseline and the follow-
up studies independently, and the segmented 3D tissue structures obtained in the two studies
were registered to evaluate the differences between them. The segmented fibroglandular tissue
volume in the baseline and the follow-up studies, and the percentage change, are summarized
in table 1.
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Figure 1. The overall registration procedures and the evaluation of local shrinkage/expansion
based on the deformation matrix T. The segmented density in the pre-treatment baseline and post-
therapy follow-up studies is first aligned with rigid translation and rotation. Then, the non-rigid
Demons algorithm is used to register the baseline images (as the source) to match the follow-up
images (as the target). The spatial shrinkage pattern is analyzed by calculating the convergence
of multiple voxels on the source image into one voxel on the target image. For example, if four
voxels (x1, x2, x3 and x4) in the source image collapse into the same voxel x0 in the target image,
that indicates shrinkage with a shrinkage factor of three voxels. Expansion is analyzed based on
the reverse transformation matrix RT from the target image to the source image using the same
criteria. Lastly, the obtained shrinkage/expansion factor at each voxel location is color-coded and
displayed on the baseline image.

2.3. Image registration

The overall registration procedures and the evaluation of local change based on deformation
are shown in figure 1. The segmented density in pre-treatment baseline (B/L) and post-therapy
follow-up (F/U) were first rigidly aligned based on six degrees of freedom, including three
rotations (rx, ry, rz) and three translations (tx, ty, tz), using equation (1):

Trigid(x, y, z) = (
rx ry rz

)
⎛
⎝

x

y

z

⎞
⎠ +

⎛
⎝

tx

ty

tz

⎞
⎠ . (1)

Let F be the fixed image (F/U), M be the moving image (B/L) and ◦ be image transformation;
the rigid alignment is the iterative process of minimizing the energy function E:

Erigid = ‖F − (Trigid ◦ M)‖. (2)
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The optimization of rigid transform was done using Powell’s algorithm (Press et al 2002).
After the global alignment, the Demons algorithm (Kroon and Slump 2009, Thirion 1998)
was applied to locally match the density in B/L and F/U. Similar to (2), the energy function
of the Demons algorithm is provided by

E(u) = ‖F − M ◦ (T + u)‖2 + σ 2
n |F − M|2 ‖u‖2 , (3)

where T is the deformation field, u is the update for T in each iteration and σn is the image
noise ratio coefficient. Let ∇ be the gradient of image and solve u by minimizing E to be 0;
the estimated displacement of the original Demons algorithm (Thirion 1998) is given by

u = (M − F)∇F

|∇F |2 + (M − F)2 . (4)

In order to improve the speed of registration convergence and stability, the image edge force
of the moving image (Wang et al 2005) is introduced to (4). The estimated displacement is
now given by

u = (M − F)∇F

|∇F |2 + α2 (M − F)2 +
(M − F)∇M

|∇M|2 + α2 (M − F)2 , (5)

where α is a constant which reduces the influence of edges (and noise) and limits the update
speed of the transformation field. T is often initialized as zero (no displacement) while
σn = 1/α and α = 0.6 in our study. The Demons registration was done following these
iterative processes.

(a) Given T, update the new estimated displacement u by (5). u is further smoothed by a
Gaussian kernel (with σ = 8) for a fluid-like regulation.

(b) Update T with the newly calculated u by T + u. T is further smoothed by a Gaussian
kernel for a diffusion-like regulation (with σ = 1).

(c) Calculate a new cost function E based on the new deformation field.
(d) If the difference of E between two consecutive iterations is less than a pre-set threshold

(t = 0.0001) or the registration process reaches the maximum iteration number (n = 200),
the iterative registration process is finished; otherwise, go back to step (a).

We adopted the version developed by Kroon and Slump (2009) that is available at
http://www.mathworks.com/matlabcentral/fileexchange/21451-multimodality-non-rigid-
demon-algorithm-image-registration.

2.4. Evaluation of deformation

Based on the deformation matrix T, one can assess the spatial shrinkage pattern by analyzing
the convergence of multiple voxels on the source image M into one voxel on the target image
F, as illustrated in figure 1. For example, if four voxels (x1, x2, x3 and x4) in the source
image collapse into the same voxel x0 in the target image after transformation (x1 + T1 ≡
x2 + T2 ≡ x3 + T3 ≡ x4 + T4 ≡ x0), that indicates shrinkage. Let �(x) be the number of
overlapping voxels; we have �(x1) = �(x2) = �(x3) = �(x4) = 4. A higher number of
overlapping voxels indicate a greater shrinkage in this area. Expansion is analyzed based
on the reverse transformation matrix RT using the same criteria from the target image to the
source image. The shrinkage/expansion factor can be calculated by O(x) = direction · (�(x)
− 1), where direction = 1 if shrinkage and direction = −1 if expansion. The O(x) map was
smoothed by the Gaussian kernel and color-coded to illustrate the spatial shrinkage/expansion
patterns.

In addition to calculating the number of overlapping voxels, the Jacobian determinant
of the deformation matrix was also used to evaluate the shape changes. This is a

http://www.mathworks.com/matlabcentral/fileexchange/21451-multimodality-non-rigid-demon-algorithm-image-registration.
http://www.mathworks.com/matlabcentral/fileexchange/21451-multimodality-non-rigid-demon-algorithm-image-registration.


5870 M Lin et al

Figure 2. Comparison of fibroglandular tissues before (baseline, B/L) and after chemotherapy
(follow-up, F/U) in the younger 32 year old patient. She has extremely dense breast at baseline
and shows a severe atrophy after receiving chemotherapy. The total fibroglandular tissue volume
decreases from 190 to 116 cm3. The most noticeable shrinkage is seen in the medial and the lateral
sides, as marked by arrows. The map of the overlapping factor shows warm colors (orange to red)
in the medial and lateral sides, indicating large shrinkage in these areas. In addition, the Jacobian
determinant of the deformation matrix is used to evaluate the changes. For display purposes, the
color bar is adjusted to show inward shrinkage (|J| < 1) as warm colors and outward expansion
(|J| > 1) as cold colors. The Jacobian map is consistent with the map of the overlapping factor,
also showing shrinkage in the medial and lateral sides.

common approach to assess the volumetric deformation (Qiu et al 2008). We adopted the
implementation from the Insight Segmentation and Registration Toolkit (ITK, Ibanez et al
2005) and the Jacobian determinant is given by

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + 0.5 · ∂Tx

∂x
0.5 · ∂Tx

∂y
0.5 · ∂Tx

∂z

0.5 · ∂Ty

∂x
1 + 0.5 · ∂Ty

∂y
0.5 · ∂Ty

∂z

0.5 · ∂Tz

∂x
0.5 · ∂Tz

∂y
1 + 0.5 · ∂Tz

∂z

∣∣∣∣∣∣∣∣∣∣∣∣

. (6)

|J| < 1 indicates inward shrinkage, while |J| > 1 indicates outward expansion.

3. Results

The methods are applied to three case examples. Figure 2 shows the younger chemotherapy
patient (32 years old) who had extremely dense breasts at baseline and shows severe
fibroglandular tissue atrophy after receiving chemotherapy. The total fibroglandular tissue
volume was 190 cm3 before treatment, and decreased to 116 cm3 at the follow-up scan,
showing 39% reduction. The shrinkage of breast density can easily be observed by visual
inspection of the MR images, and the most noticeable changes are in the medial and the lateral
sides. It can be seen that many voxels in the medial side of the breast show a shrinkage factor
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Figure 3. Illustration using the cone plot to indicate the amplitude and the direction of the
deformation for voxels on the baseline image to match the follow-up image. The medial, caudal
and lateral views are shown. This is the same case example shown in figure 2. Most deformations
are pointing inward, indicating shrinkage. The results are consistent with the map of overlapping
factors. The larger inward cones are seen in the warm color area with a higher shrinkage factor.

of greater than 2 (that is, more than three voxels on the baseline image collapse into one voxel
on the follow-up image). A 3D rendering movie of the spatial shrinkage pattern is provided
as a supplementary file (movie 1) available at stacks.iop.org/PMB/56/5865/mmedia. Figure 3
illustrates the difference in the breast density between the baseline and follow-up images by
overlaying the cone plots from three different views (medial, caudal and lateral). The cones
show the deformation amplitude and direction of pixels at each location on the baseline image
to match the follow-up image. Most deformations are pointing inward, indicating shrinkage.
The results are consistent with the map of overlapping factors. A 3D rendering movie of the
overlay cone plot along the medial–lateral direction is provided as a supplementary file (movie
2) available at stacks.iop.org/PMB/56/5865/mmedia.

Figure 4 shows the results analyzed from the older chemotherapy patient (41 years
old) who had a moderate breast density before treatment and showed milder atrophy
compared to the younger patient. She also showed reduced fibroglandular tissue volume from
116 cm3 at baseline to 110 cm3 at follow-up, with 5.2% reduction. On the spatial shrinkage
map, it can be seen that only a few voxels have overlapping factors greater than 1 (coded by
yellow to orange color). Figure 5 shows the change in a healthy volunteer between two MRI
scans acquired 1 week apart. The fibroglandular tissue volume was 36.6 cm3 at baseline and
35.9 cm3 at follow-up, only showing 1.9% difference. The spatial map of overlapping voxels
was mostly coded by green, and the results indicate that there was very little change.

4. Discussion and future works

In this work, we applied the non-rigid Demons algorithm to coregister breast densities between
two scans taken at different times, and demonstrated that the number of collapsing voxels (noted
as the shrinkage factor) at each spatial location during transformation can be used to illustrate
the spatial shrinkage pattern. The results were consistent with the quantitative analysis of
volumetric reduction and visual inspection findings. In the three selected case examples,
the tool reveals the different atrophy patterns caused by chemotherapy, and shows very little
change between two scans of a normal volunteer. The results suggest that this registration-
based method can be used to provide information on the spatial change in breast density
for visual inspection, also providing quantitative parameters using the shrinkage/expansion
factor and the Jacobian determinant for further analysis of the degree of change. For cases

http://stacks.iop.org/PMB/56/5865/mmedia
http://stacks.iop.org/PMB/56/5865/mmedia
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Figure 4. The results analyzed from the older chemotherapy patient (41 years old) who has a
moderate breast density before treatment and shows milder atrophy after chemotherapy compared
to the younger patient (from 116 cm3 at baseline to 110 cm3 at follow-up). Only a few voxels have
a shrinkage factor greater than 1, showing as yellow to orange in color.

Figure 5. The changes between two MRI scans acquired from a healthy volunteer 1 week apart.
The fibroglandular tissue volume is 36.6 cm3 at baseline, and 35.9 cm3 at follow-up. The map of
the overlapping factor is mostly coded by green, indicating very little change.

that show substantial changes (e.g. subject 1), visual inspection can easily detect these
changes. If a quantitative parameter is needed for any purpose (e.g. to correlate the change
with patient’s future recurrent cancer risk), the coarse volumetric measurement is probably
sufficient. However, for cases with little change (e.g. subjects 2 and 3), these small changes
cannot be detected by visual inspection, and the spatial pattern evaluated using the algorithms
developed in this work might provide additional information.

The observed difference in the fibroglandular tissue mainly comes from two sources: the
positioning difference of the breast between the two scans, and the intrinsic change of the
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fibroglandular tissue within the breast. In theory, we can use both the outer boundary of the
breast as well as the inner boundary of the fibroglandular tissue for registration, but this is
a much more complicated problem and it will also be difficult to verify the obtained results.
Therefore, as the initial approach, we selected three cases that show similar shapes of the
breast between two scans, so that we can focus on registration of the fibroglandular tissue
within the breast.

Given the highly deformable nature of soft breast tissue, MR scans of the same breast at
different imaging sessions often present different shapes. In this case, traditional non-rigid
registration methods may not be sufficient to recover the large deformations. Carter et al (2006,
2008) have successfully combined non-rigid registration together with the finite element model
(FEM) to overcome the large deformation from two different scanning positions (e.g. between
prone and supine). In the future, FEM-based registration may be applied as the pre-processing
step to first match the shape of the breast (Cash et al 2005), before non-rigid registration is
applied to co-register the fibroglandular tissue.

In the implementation of the Demons registration, the additive update of the transformation
field (T + u) was applied. Vercauteren et al (2009) suggested that the additive Demons
algorithm is not fully diffeomorphic and may be incapable of matching objects with large
curvature. They proposed a new exponential compositive Demons algorithm with the
transformation field updated by T ◦ exp(u) that is fully diffeomorphic and has the potential
to coregister objects with irregular boundaries. Whether the registration of the fibroglandular
tissue can be further improved by this method needs to be evaluated.

In a recent paper, we demonstrated that the normal contralateral breast of patients receiving
chemotherapy showed reduction of breast density (Chen et al 2010). Since the changes were
different between pre-menopausal and post-menopausal patients, the results suggested that
the reduction was mediated through the compromised ovarian function. The ability to analyze
spatial change patterns may provide quantitative information for evaluating the chemotherapy-
induced breast atrophy, as well as how it is related to changes in hormones and patient’s future
prognosis. In a very recent paper by Cuzick et al (2011), the change of breast density was
shown as a surrogate marker to predict the efficacy in patients receiving tamoxifen as a
chemopreventive drug to reduce the risk of developing breast cancer. Measurement of breast
density on mammography is not reliable (Kopans 2008), and the presented method in this
work may provide a useful tool and new imaging biomarkers for evaluating the efficacy of
cancer therapy or chemoprevention.

Another important application of this method is for comparing annual screening MRI in
high-risk women to evaluate whether there are any regions showing significant changes in
density. If an increase of density is found in a specific region by comparing it to the prior scan,
this patient may need close follow-up to monitor the development of abnormal lesions. For
detecting such a small localized change, we need high precision, and all possible reasons that
may cause spatial difference of the breast between two scans (including the positioning) need
to be considered. As the next task, we will develop the registration of the breast boundary
using the finite-element-based method, so that the positioning difference can be eliminated,
and then we can proceed with the fibroglandular tissue registration according to the method
presented in this work.

In summary, we proposed a new method for evaluating the spatial change pattern of
fibroglandular tissue between two breast MR scans of the same woman at different times.
The deformation analyzed using the combined rigid and non-rigid registration methods can
be used to evaluate the collapse of voxels in one volume to match the other, thus indicating
the shrinkage, and vice versa for expansion. The Jacobian, as well as the magnitude and
direction of the deformation, can be displayed in a 3D rendering view. However, the method
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was only tested in three cases, for proof of feasibility, and further evaluation in more cases is
needed. The presented method in this paper will provide the basic framework upon which other
algorithms (e.g. the matching of breast boundary) can be further developed and integrated.
These methods can be developed into a clinical tool for evaluating the therapy-induced changes
and for early diagnosis of breast cancer in screening MRI.
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