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Background: Kawasaki disease (KD) involves a complex interaction of immunoinflammatory process, cytokine ac-
tivation, and genetic factors. We aimed to investigate whether genetic variations in a major histocompatibility
complex (MHC) class could be used as markers of susceptibility in KD and coronary artery aneurysm lesions (CALs).
Methods: Individuals were divided into following groups: (1) normal controls; (2) KD with CAL; (3) KD without CAL.
Polymorphisms for MHC class I chain-related genes A (MICA) (rs2301747, rs2256184, rs2848716), MICB (rs2855804,
rs3132464, rs2516400), BAT3 (rs750332), MSH5 (rs1150793), and chromosome 6 open reading frame 27 (C6orf27,
rs707928) were genotyped with polymerase chain reaction and the TaqMan� allelic discrimination assay. Genotypes,
alleles, and haplotype in each group were compared. Results: Genotype and allele frequency of MICB*rs2516400
polymorphisms in each group were significantly different. MICB (rs2516400)*C-related genotypes/alleles are cor-
related with development of KD and CAL. Proportions of rs2516400*TT/TC/CC were (1) 1/39/60%, (2) 0/0/100%,
and (3) 0/0/100%. Other single-nucleotide polymorphisms were not associated with KD susceptibilities. Haplotypes
(rs2301747-rs2256184-rs2848716-rs2855804-rs3132464-rs2516400-rs750332-rs1150793-rs707928) G-G-G-C-T-C-T-A-
A, C-A-G-T-T-C-T-A-A, and G-G-G-C-C-C-T-A-A were associated with higher susceptibilities for KD. The G-G-G-T-
T-T-T-G-G and C-G-G-T-T-T-T-A-A haplotypes were associated with lower susceptibilities. Conclusion:
MICB*rs2516400 polymorphisms and some MHC class I-related haplotypes are associated with KD susceptibility.
MICB and MHC class I genetic variations might contribute to the pathogenesis of KD and CAL.

Introduction

Kawasaki disease (KD) is a complex vasculitis disease,
which is associated with immunologic and genetic

changes. KD is characterized by persistent fever, nonpurulent
conjunctivitis, oropharyngeal inflammation, induration and
erythema of hands and feet, rash, and cervical lymphade-
nopathy. Despite intensive research, the etiology of KD re-
mains unclear. Current theories suggest that KD is an
immunologically mediated vasculitis (Kamizono et al., 1999).
The features of KD are immune activation and cytokine-
mediated generalized vasculitis. The injured vascular tissues
show subendothelial edema, vascular damage, gap forma-
tion, and fenestration of endothelial cells, which contribute to
the pathogenesis of this disorder (Leung et al., 1989).

Vascular endothelial cells express major histocompatibility
complex (MHC) molecules on their surface for presenting

antigenic peptides to T cells, which initiate acquired immune
responses (Danese et al., 2007). Human lymphocyte antigen
(HLA) from the MHC has been reported to be associated with
immune-mediated vascular diseases (Pay et al., 2007). HLA
has regulatory functions in both the innate and adaptive im-
mune responses. Recently, with the clinical application of
molecular genetic technology, some HLA polymorphisms
have been identified to be associated with KD. As the vascular
endothelium is a functional barrier between the vessel wall
and the bloodstream, endothelial cell damage or vascular in-
jury of some disorders might lead to the expression and re-
lease of HLA molecules (Coupel et al., 2007).

MHC class I chain-related genes (MICs) are located within
MHC class I region of chromosome 6. MICs, MICA and MICB,
are located centromeric to human leukocyte antigen B (HLA-
B) on chromosome 6 (Fig. 1). Recent work supports the find-
ings that MICA is associated with several autoimmune
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diseases. MIC proteins are considered to be markers of
‘‘stress’’ in the epithelia and act as ligands for cells expressing
a common activating natural killer (NK)-cell receptor. MICA
molecules appear to be highly flexible and polymorphic
(Stephens 2001). The functional relevance and implications of
MIC polymorphism have to be yet fully discerned.

A large number of genes have been previously identified
between the class I and class II gene families within the HLA
class I region. Genetic studies suggest HLA class I genes might
be associated with KD development (Huang et al., 2000). Several
studies have indicated that genes in the HLA region contribute
to KD susceptibility. These genes include HLA-B–associated
transcript (BAT). BAT3, a member of the BAT family, is origi-
nally identified as one of the genes located within MHC. BAT
appears to regulate the production of inflammatory cytokines
associated with neurological disorders (Gnjec et al., 2008).
MSH5, another single-nucleotide polymorphism (SNP) within
the HLA region, is involved in DNA mismatch repair (MMR)
and meiotic recombination (Wang et al., 2008). Despite some
reports in the literature about the effects of these genetic vari-
ations upon human disorders, few investigators have demon-
strated the association of KD with MIC, BAT, MSH, or the
chromosome 6 open reading frame 27 (C6orf27).

The aim of this study was to assess whether these markers
within the MHC class I region are associated with KD. A total of
6 genetic variations and related haplotypes within MHC class I
region were evaluated, including MICA (rs2301747, rs2256184,
rs2848716), MICB (rs2855804, rs3132464, rs2516400), BAT3
(rs750332), MSH5 (rs1150793) and C6orf27 (rs707928). We tried
to search for association of these MHC genes with susceptibility
to KD and the occurrence of coronary artery aneurysm lesions
(CALs) in Taiwanese children. To the best of our knowledge,
this is the first survey of this sort.

Materials and Methods

Taiwanese children with and without the histories of KD
were recruited and divided into following groups: (1) normal
controls (n = 668); (2) KD with CAL (n = 29); (3) KD without
CAL (n = 63). All children with KD were evaluated at China
Medical University Hospital and met the criteria of KD. Every
patient underwent regular echocardiography examinations,
beginning during the acute stage of KD, at 2 and 6 months
after disease onset, and once a year thereafter. A CAL was
identified when either the right or left coronary artery showed
a dilated diameter of 3 mm in children younger than 5 years or
4 mm in children older than 5 years (Akagi et al., 1992). The
control group consisted of healthy children randomly selected
from the Han Chinese Cell and Genome Bank (Hung et al.,
2005). Control subjects were matched for sex and age with the
study patients. The estimated prevalence of KD is fewer than 1
in 1000 children; therefore, it should be assumed that there
were no KD cases in the control group. This series was ap-
proved by the ethical committee and institutional review
board of China Medical University Hospital. Informed con-
sents were signed by all individuals who donated their blood.

All individuals accepted the peripheral blood sampling for
genotype analyses. Genomic DNA was extracted from pe-
ripheral blood leukocytes according to standard protocols
(Roche Genomic DNA kit). SNP discovery and genotyping for
MICA (rs2301747, rs2256184, rs2848716), MICB (rs2855804,
rs3132464, rs2516400), BAT3 (rs750332), MSH5 (rs1150793),
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and C6orf27 (rs707928) were obtained from dbSNP (http://
ncbi.nih.gov/SNP/) and Applied Biosystems (www.applied
biosystems.com) (Table 1). The genetic variations were de-
tected by TaqMan(R) Genotyping Assays (Applied Biosys-
tems). SNPs were detected by polymerase chain reaction
(PCR) system with TaqMan allelic discrimination assay (Ap-
plied Biosystems) (Table 1) (Ricci et al., 2009). Briefly, the PCR
was carried out in a total volume of 12.5 mL using the fol-
lowing amplification protocol: denaturation at 95�C for
10 min, followed by 40 cycles of denaturation at 95�C for 15 s,
and annealing and extension at 60�C–62�C for 1 min. Further,
genotyping of each sample was automatically attributed by
measuring the allele-specific fluorescence on the ABI Prism
7700 Sequence Detection System, using the SDS 1.9.1 software
for allelic discrimination (Applied Biosystems). Genotype
frequencies of each SNP were determined by direct counting.
The resulting spectra were processed with SpectroTyper (Se-
quenom) software.

The genotype frequency and allelic frequency distributions
of these polymorphisms in both KD patients and controls
were analyzed by the v2 method. Haplotypes were estimated
in compound heterozygotes using the PHASE program.
Haplotype analysis was performed using Haploview. The
SAS system with v2 test was utilized for statistical analyses.
Allelic frequencies were expressed as a percentage of the total
number of alleles. Odds ratios were calculated from genotype
frequencies and allelic frequencies with 95% confidence
interval. A p-value of < 0.05 was considered statistically
significant.

Results

Genotype distribution and allele frequency of MICB*
rs2516400 polymorphisms in each group were significantly
different (Table 2). Proportions of MICB rs2516400*T homozy-
gote/heterozygote/C homozygote in (1) controls, (2) KD with
CAL, and (3) KD without CAL were (1) 1/39/60%, (2) 0/
0/100%, and (3) 0/0/100%, respectively (Table 2). MICB
(rs2516400)*C-related genotypes and alleles are correlated with
higher susceptibilities for KD and CAL. In contrast, other SNPs
(MICA*rs2301747, MICA*rs2256184, MICA*rs2848716, MICB*
rs2855804, MICB*rs3132464, BAT3*rs750332, MSH5*rs1150793,
C6orf27*rs707928) are not associated with KD or CAL suscep-
tibilities (Table 2).

Haplotypes (MICA*rs2301747-MICA*rs2256184-MICA*rs
2848716-MICB*rs2855804-MICB*rs3132464-MICB*rs2516400-
BAT3*rs750332-MSH5*rs1150793-C6orf27*rs707928) G-G-G-
C-T-C-T-A-A, C-A-G-T-T-C-T-A-A, and G-G-G-C-C-C-T-A-A
haplotypes are associated with higher susceptibilities for KD
(Table 3). The G-G-G-T-T-T-T-G-G and C-G-G-T-T-T-T-A-A
haplotypes are associated with lower susceptibilities for KD.
Further, the C-G-G-C-T-C-T-A-A haplotype is associated with
higher susceptibility for KD and CAL. The C-A-G-C-T-C-T-A-
A is associated with higher susceptibility for CAL in KD
individuals (Table 3). Pairwise linkage disequilibriums between
these SNPs associated with KD are presented in Figure 2.

Discussion

KD, an acute, self-limited, and systemic vasculitis, is one of
the leading causes of acquired heart disease in children (Burns
and Glodé, 2004). Although KD is a mysterious disease of
unknown etiology and pathogenesis, it is believed to be

caused by infectious agents, host immune dysregulation,
and genetic susceptibility (Tse et al., 2002). The development
of KD involves a complex interaction between immuno-
inflammatory process, cytokines activation, and genetic fac-
tors. KD is a multisystemic disorder with a possible underlying
pathology of immune-mediated vasculitis (Burns and Glodé,
2004). Recent studies suggest a potential role of bacterial toxins
in the immunopathogenesis of KD (Lin et al., 1992). During the
acute stage of KD, activation of vascular endothelial cells and
increased serum levels of proinflammatory cytokines are in-
volved in the occurrence of inflamed and injured vessels (Lin
et al., 1992). The vascular inflammation might cause the de-
velopment of CAL and cardiac complications. Patients with
these cardiovascular complications are at increased risk of is-
chemic heart disease, which may lead to myocardial infarction
and sudden death (Kato et al., 1996). Although the adminis-
tration of immunoglobulin significantly reduces the develop-
ment of CALs, 2%–15% of KD patients suffer from this
complication (Muta et al., 2004).

Recent studies have shown that the expression of soluble
HLA might have important implications in the pathogenesis
of immune-mediated vascular diseases (Coupel et al., 2007).
The HLA-B35, B75, and Cw09 are associated with KD sus-
ceptibilities (Oh et al., 2008). HLA-B*5801 allele is a genetic
marker for severe cutaneous adverse reactions caused by al-
lopurinol (Hung et al., 2005). The HLA-DR gene variations
were not associated with susceptibility for KD and CALs in
Taiwanese population (Huang et al., 2007). HLA-G plays a
crucial role for the susceptibility to KD and CAL (Kim et al.,
2008). In our previous survey, we observed an association
between HLA-E gene polymorphism and KD (Lin et al., 2009).

MICs belong to a multicopy gene family located within the
HLA class I region of the short arm of human chromosome 6.
One member of MHC genes is the MICA gene, which is
characterized by its high degree of polymorphisms. There
were over 50 MICA alleles described (Rueda et al., 2002). MIC
encodes for proteins that have a completely different organi-
zation, expression, and products from classical HLA class I
gene products. The predicted amino acid sequence of MICA
chain suggests that it folds similarly to typical class I chains
and might have the capacity to bind peptides or other short
ligands. MICA is predicted to have a specialized function in
antigen presentation or T-cell recognition (Mizuki et al., 1997).
MICA was found to be associated with Addison’s disease
(Gambelunghe et al., 1999), Behcet disease (Mizuki et al.,
1997), etc.

Some MICA polymorphisms have been shown to influence
various chronic inflammatory conditions (Folwaczny et al.,
2011). Some MIC gene polymorphisms and expressions are
associated with autoimmune diseases (Li et al., 2010). Some
MIC molecules are receptors on NK cells, T4 cells, and T8 cells
that mediate host antitumor immune response (Kopp et al.,
2009). Recently, Folwaczny et al. (2011) demonstrated the as-
sociation between the MIC SNPs and the susceptibility to
chronic periodontitis. Some MIC genetic variation was also
associated with ulcerative colitis (Li et al., 2010). The func-
tional role of MIC genes in the pathogenesis of rheumatoid
arthritis has been demonstrated (López-Arbesu et al., 2007).

The gene coding for BAT lies adjacent to TNF in the central
MHC. BAT polymorphisms are also associated with asthma
susceptibilities (Migita et al., 2005), rheumatoid arthritis
(Martinez et al., 2004), Chagas cardiomyopathy (Ramasawmy

MIC, BAT3, AND MSH5 POLYMORPHISMS IN KAWASAKI DISEASE 757
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et al., 2006), Alzheimer’s disease pathology (Gnjec et al., 2008),
malaria (Diakite et al., 2009), etc. BAT3, a nuclear protein,
encodes a large proline-rich protein with unknown function.
BAT3 is capable of modulating transforming growth factor
(TGF) signaling and acts as a positive regulator of TGF of
collagen expression (Kwak et al., 2008). The intracellular
protein of BAT3 is involved in DNA damage-induced apo-

ptosis (Simhadri et al., 2008). BAT3 could directly bind to
NKp30 and engaged NKp30 on NK cells. BAT3 also triggered
NKp30-mediated cytotoxicity, which was essential for tumor
rejection (Pogge von Strandmann et al., 2007). BAT3 is an es-
sential regulator of p53-mediated responses to genotoxic
stress (Sasaki et al., 2007). BAT3 also controls DNA damage-
induced acetylation of p53 (Sasaki et al., 2007).

MSH5 plays functional roles in cellular processes, such as
DNA damage response and meiotic homologous recombi-
nation (Yi et al., 2005). The compromised MSH5 molecules
play a crucial role in mismatch repair proteins (Xu et al., 2010).
MSH5 is associated with numerous disorders, including dia-
betics (Valdes et al., 2009), lung cancer (Wang et al., 2008),
spermatogenesis (Xu et al., 2010), etc. Severe cutaneous ad-
verse reactions caused by allopurinol were associated with
MSH5 (Hung et al., 2005). MSH5*rs707915 is associated with
diabetics (Valdes et al., 2009). MSH5 C85T polymorphisms
may be genetic determinants for human spermatogenesis
impairment (Xu et al., 2010).

Genetic studies of these multifactorial diseases such as KD are
difficulty to approach because of the uncertainty of a polygenic trait.
The SNPs are the most abundant types of DNA sequence variation
in the human genome (Kwok and Gu 1999). The SNP markers
provide a new way for the identification of complex gene-associated
diseases. In this study, the genotype distributions, allelic frequencies,
and haplotypes for MICB*rs2516400 polymorphisms in KD and
non-KD patients were statistically different. MICB*rs2516400*C-
related genotypes and alleles are correlated with the developments
of KD and CAL. In contrast, other MHC genotypes/allele
(MICA*rs2301747, MICA*rs2256184, MICA*rs2848716, MICB*rs
2855804, MICB*rs3132464, BAT3*rs750332, MSH5*rs1150793,
C6orf27*rs707928) are not associated with KD susceptibilities.
Some MHC haplotypes (G-G-G-C-T-C-T-A-A, C-A-G-T-T-C-
T-A-A, and G-G-G-C-C-C-T-A-A) were associated with higher
susceptibilities of KD with CAL. These findings suggested that
MICB polymorphisms might be useful genetic markers in the
prediction of the susceptibility to KD. It also suggested that
some MHC genetic variations might be involved in disease

FIG. 2. Haplotype blocks of MICA (rs2301747, rs2256184,
rs2848716), MICB (rs2855804, rs3132464, rs2516400), BAT3
(rs750332), MSH5 (rs1150793), and C6orf27 (rs707928) for
the 668 control subjects and 92 Kawasaki disease patients
constructed according to the confidence interval approach
using Haploview software. Dark gray indicates linkage
disequilibrium; white and light gray indicate evidence of
recombination.

FIG. 1. Map of major histocompatibility complex class I chain-related genes (MICA) (rs2301747, rs2256184, rs2848716),
MICB (rs2855804, rs3132464, rs2516400), HLA-B associated transcript 3 (BAT3) (rs750332), MSH5 (rs1150793), and chro-
mosome 6 open reading frame 27 (C6orf27, rs707928) lying within the major histocompatibility complex region on chro-
mosome 6p21.3.
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susceptibility and development. These SNPs might influence
the production of soluble MICB by vascular endothelial cells,
which further compromise the progression of KD.

In conclusion, MICB*rs2516400 polymorphisms and re-
lated haplotypes are associated with KD and CAL suscepti-
bility. The related genetic variations might contribute to the
pathogenesis of KD and CAL. MHC haplotypes (G-G-G-C-T-
C-T-A-A, C-A-G-T-T-C-T-A-A, G-G-G-C-C-C-T-A-A) might
be associated with higher susceptibilities for KD. These data
suggest that some MICB molecules might be involved in the
pathogenesis of KD. Some genotype/allele frequencies and
haplotypes of MHC polymorphism might be useful markers
for the prediction of KD susceptibility. This could provide the
database for the further survey of the MHC gene polymor-
phisms. However, the real roles of MHC polymorphisms
upon the KD remain to be clarified. Further, possible effects of
other immune gene polymorphisms upon KD development
merits further surveys.
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