| 1        | The significance of                | Her2 on AR protein stability in the transition of androgen                                                       |
|----------|------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 2        | requirement in pro                 | state cancer cells                                                                                               |
| 3        |                                    |                                                                                                                  |
| 4        |                                    |                                                                                                                  |
| 5        | Fu-Ning Hsu <sup>1</sup> , Min-    | Shiou Yang <sup>1</sup> , Eugene Lin <sup>1, 3</sup> , Chun-Fu Tseng <sup>1</sup> , and Ho Lin <sup>1, 2</sup> * |
| 7        |                                    |                                                                                                                  |
| 8        | <sup>1</sup> Department of Life    | Sciences National Chung Hsing University Taichung 40227.                                                         |
| 9        | <sup>2</sup> Graduate Institute of | of Rehabilitation Science, China Medical University, Taichung                                                    |
| 10       | 40402; <sup>3</sup> Department     | of Urology, Chang Bing Show Chwan Memorial Hospital,                                                             |
| 11       | Changhua 505, Taiw                 | /an                                                                                                              |
| 12       | 8                                  |                                                                                                                  |
| 13       |                                    |                                                                                                                  |
| 14       | Running head: andro                | ogen receptor stability & Her2 activity                                                                          |
| 15       |                                    |                                                                                                                  |
| 16       |                                    |                                                                                                                  |
| 17       | Keyword: Her2, and                 | rogen receptor, androgen-independent, prostate cancer cells                                                      |
| 18       |                                    |                                                                                                                  |
| 19       |                                    |                                                                                                                  |
| 20       |                                    |                                                                                                                  |
| 21       |                                    |                                                                                                                  |
| 22       |                                    |                                                                                                                  |
| 23       |                                    |                                                                                                                  |
| 24       |                                    |                                                                                                                  |
| 25       |                                    |                                                                                                                  |
| 26       |                                    |                                                                                                                  |
| 27       |                                    |                                                                                                                  |
| 28       |                                    |                                                                                                                  |
| 29       |                                    |                                                                                                                  |
| 30       |                                    |                                                                                                                  |
| 31       | Correspondence:                    | *Ho Lin, Ph.D.                                                                                                   |
| 32       |                                    | Department of Life Sciences                                                                                      |
| 33       |                                    | National Chung Hsing University                                                                                  |
| 34<br>25 |                                    | 250 Kuo Kuang Koad,<br>Taishung 40227, Taiwan                                                                    |
| 22<br>24 |                                    | Tal No $\cdot$ 986 A 2284 0416 617                                                                               |
| 30<br>27 |                                    | $\frac{101100.000-4-2204-0410-01}{E_{20}}$                                                                       |
| 38       |                                    | $F_{ax}$ 10. 000-4-220/-4/40<br>E_mail: hlin@dragon.nehu.edu.tw                                                  |
| 50       |                                    | E-man. mm@uragon.nenu.cuu.tw                                                                                     |
|          |                                    |                                                                                                                  |

### 40 Abstract

| 41 | Androgen ablation therapy is the most common strategy to suppress prostate                 |
|----|--------------------------------------------------------------------------------------------|
| 42 | cancer progression; however, tumor cells eventually escape androgen requirement and        |
| 43 | progress into androgen-independent phase. Androgen receptor (AR) plays a pivotal           |
| 44 | role in this transition. In order to answer this transition mystery in prostate cancer, we |
| 45 | established an androgen-independent prostate cancer cell line (LNCaPdcc) by                |
| 46 | long-term screening LNCaP cells in androgen-deprived condition to investigate              |
| 47 | changes of molecular mechanisms before and after androgen withdrawal. We found             |
| 48 | that LNCaPdcc cells displayed the morphology of neuroendocrine differentiation, less       |
| 49 | aggressive growth, weaker androgen sensitivity, and lower expression levels of cell        |
| 50 | cycle-related factors, although the cell cycle distribution was similar to parental        |
| 51 | LNCaP cells. Interestingly, higher protein expressions of AR, phospho-Ser81-AR, and        |
| 52 | PSA in LNCaPdcc cells were observed. Moreover, nuclear distribution and protein            |
| 53 | stability of AR increased in LNCaPdcc cells. On the other hand, LNCaPdcc cells             |
| 54 | expressed higher levels of Her2, phospho-Her2, and ErbB3 proteins than parental            |
| 55 | LNCaP cells. Notably, these two cell lines exhibited distinct responses toward Her2        |
| 56 | activation (by heregulin treatment) and Her2 inhibition (by AG825 or Herceptin             |
| 57 | treatments) on proliferation. In addition, Her2 inhibitor more effectively caused AR       |
| 58 | degradation in LNCaPdcc cells. Taken together, our data demonstrate that Her2 plays        |

- an important role to support AR protein stability in the transition of androgen
- 60 requirement in prostate cancer cells. We hope these findings would provide new
- 61 suggestion on the treatment of hormone-refractory prostate cancer.

#### 63 Introduction

| 64 | Prostate cancer is an age-related carcinoma and the most commonly diagnosed              |
|----|------------------------------------------------------------------------------------------|
| 65 | malignancy among men (25). Although the prostate specific antigen (PSA), a               |
| 66 | biomarker of hypertrophy in the prostate gland, helps to identify prostate cancer in the |
| 67 | early stages, the disease still causes high mortality. Traditionally, gonadectomy is the |
| 68 | main therapeutic procedure for androgen-dependent prostate cancer. Once the cancer       |
| 69 | escapes from androgen dependence and becomes androgen-independent, radio- or             |
| 70 | chemo-therapies are subsequently applied. Unfortunately, the treatment of                |
| 71 | hormone-refractory prostate cancer in this stage is often ineffective and the            |
| 72 | mechanisms of prostate cancer progression in this stage remain to be elucidated.         |
| 73 | Therefore, it is imperative to understand the transition of androgen requirement and to  |
| 74 | develop strategies for prolonging the survival of patients with recurrent and            |
| 75 | hormone-refractory prostate cancer.                                                      |
| 76 | The androgen receptor (AR), a member of the steroid receptor family, plays a             |
| 77 | decisive role in the development of the prostate gland and in the pathogenesis and       |
| 78 | progression of prostate cancer. AR binds to androgen response elements (AREs) and        |
| 79 | thereby mediates androgen-regulated gene expression (12). A growing number of            |
| 80 | clinical investigations show amplifications of AR and AR-regulated genes in              |
| 81 | hormone-refractory prostate cancer, which suggests that the AR signaling pathway is      |

| 82 | still activated and important at limiting concentrations of androgen (14). Previous     |
|----|-----------------------------------------------------------------------------------------|
| 83 | research indicates that the elevated AR expression levels were correlated to resistance |
| 84 | to anti-androgen therapy (3). The cross-talk between receptor tyrosine kinases with     |
| 85 | their cognate ligands and AR signaling in hormone-refractory transition of prostate     |
| 86 | cancer has also been addressed (6, 11, 26). On the other hand, Her2/ErbB3 signals       |
| 87 | have been suggested to stabilize AR proteins and to increase the interaction of AR to   |
| 88 | promote/enhancer regions of AR-regulated gene in androgen-dependent prostate            |
| 89 | cancer cells (23).                                                                      |
| 90 | Here, we established an androgen-independent prostate cancer cell line named            |
| 91 | LNCaPdcc by incubating LNCaP cells in androgen-deprived condition for a long            |
| 92 | period (eight months). We try to take advantage of this popular strategy of cell model  |
| 93 | to answer how prostate cancer cells maintain AR protein levels and activation in        |
| 94 | androgen free environment. Indeed, we observed several characteristics obviously        |
| 95 | changed after androgen deprivation. Importantly, our data showed that LNCaPdcc          |
| 96 | cells were more sensitive to Her2 inhibition with increase of AR degradation than       |
| 97 | parental LNCaP cells. These findings suggest that Her2 activation might be an           |
| 98 | important support of AR protein stability in prostate cancer cells under adaptation of  |
| 99 | androgen deprivation.                                                                   |

#### 101 Materials and Methods

#### 102 Materials

- 103 R1881 (Methyltrienolone; NLP-005) was purchased from PerkinElmer (Boston,
- 104 MA, USA); Cycloheximide (CHX; C1988) from Sigma (Missouri, USA); MG-132
- 105 (474791) from Calbiochem (San Diego, CA, USA); Recombinant human heregulin β1
- 106 (396-HB) from R&D Systems, Inc. (Minneapolis, MN, USA); AG825 (121765)
- 107 from Calbiochem and Herceptin from Roche Applie Science (Mannheim, Germany).
- 108 Antibodies used for immunoblotting were indicated: Cdk1 (sc-54, Santa Cruz
- 109 Biotechnology, Santa Cruz, CA, USA), Cyclin A (sc-751, Santa Cruz), Cyclin B1
- 110 (sc-752, Santa Cruz), Cyclin D1 (sc-20044, Santa Cruz), β-actin (MAB1501,
- 111 Millipore, Temecula, CA, USA), phospho-Ser81-AR (07-541, Upstate, Lake Placid,
- 112 NY, USA), AR (sc-13062 and sc-7305, Santa Cruz), PSA (sc-7316, Santa Cruz),
- 113 α-tubulin (05-829, Upstate), PARP (06-557, Upstate), phospho-Tyr1221/1222-Her2
- 114 (2249, Cell Signaling, Danvers, MA, USA), Her2 (C-18, Santa Cruz; OP-15,
- 115 Calbiochem) and ErbB3 (sc-285 and 7309, Santa Cruz). Secondary antibodies were
- 116 peroxidase-conjugated anti-mouse or anti-rabbit (Jackson ImmunoResearch
- 117 Laboratory, West Grove, PA, USA).
- 118
- 119 Cell Culture

| 120 | Human prostate carcinoma cell lines derived from lymph node carcinoma of the                         |
|-----|------------------------------------------------------------------------------------------------------|
| 121 | prostate (LNCaP clone FGC (fast growing colony), BCRC 60088) (13) were                               |
| 122 | purchased from Food Industry Research and Development Institute, Taiwan. LNCaP                       |
| 123 | cells were maintained in complete medium: phenol red-positive RPMI-1640 culture                      |
| 124 | medium (Gibco, Carlesbad, CA, USA) supplemented with 1.5 g/L sodium bicarbonate                      |
| 125 | (NaHCO <sub>3</sub> ) (Sigma), 10% fetal bovine serum (FBS) (Gibco), and                             |
| 126 | penicillin/streptomycin (P/S) (100 IU/mL and 100 µg/mL, respectively) (Gibco). Cells                 |
| 127 | were cultured at 37 $^{\circ}$ C in a humidified atmosphere with 5% CO <sub>2</sub> (18). Cells were |
| 128 | routinely passaged by trypsin/EDTA (0.05% and 0.02%, respectively) (Gibco) twice a                   |
| 129 | week in the ratio 1:3. LNCaPdcc cells, a subline from LNCaP cells, was designed to                   |
| 130 | be an <i>in vitro</i> model for investigating the progression of androgen-independent                |
| 131 | prostate cancer (7). LNCaPdcc cells were established by domesticating LNCaP cells                    |
| 132 | in a long-term androgen-ablated condition over 14 passages. To deprive cells of                      |
| 133 | steroid hormones, FBS was incubated with dextran-coated charcoal (dcc) (Sigma) by                    |
| 134 | rotating at a low speed at 4 °C for 12-16 h. The charcoal-FBS mixture was then                       |
| 135 | centrifuged twice at 500 g for 10 min. Then the supernatant was stored at $-20$ °C until             |
| 136 | use. LNCaPdcc cells were grown in phenol red-free RPMI-1640 medium (Sigma)                           |
| 137 | plus 10% dcc-stripped FBS, 1.5 g/L NaHCO3, and P/S (100 IU/mL, 100 $\mu\text{g/mL})$ at 37           |
| 138 | °C in a humidified atmosphere at 5% CO <sub>2</sub> . Cells were split once a week in the ratio      |

139 1:2. All experiments on LNCaPdcc were performed between passage 25 and 45.

140

#### 141 Cell Viability Assay

| 142 | The modified colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium         |
|-----|----------------------------------------------------------------------------------------|
| 143 | bromide (MTT) assay was manipulated to quantify the viability of LNCaP and             |
| 144 | LNCaPdcc cancer cells. Yellow MTT compound (Sigma) is converted by living cells        |
| 145 | into blue formazen, which is soluble in isopropanol. The intensity of blue staining in |
| 146 | culture medium is proportional to the number of living cells and measured by using an  |
| 147 | optical density reader (Athos-2001, Australia) at 570 nm (background, 620 nm) (1, 18,  |
| 148 | 19).                                                                                   |

149

#### 150 Immunoblotting and Fractionation Analyses

| 151 | Cell lysates were obtained in lysis buffer (50 mM Tris-HCl [pH 8.0], 0.5%                                     |
|-----|---------------------------------------------------------------------------------------------------------------|
| 152 | Nonidet P-40 [NP-40], 150 mM NaCl, 5 mM EDTA, 1 mM phenylmethylsulfonyl                                       |
| 153 | fluoride [PMSF], 2 mM sodium orthovanadate [Na <sub>3</sub> VO <sub>4</sub> ], and protease inhibitor         |
| 154 | cocktail [Roche Applied Science]). Lysates were then analyzed for immunoblotting                              |
| 155 | using methods modified from those previously described (1, 18, 19). To isolate                                |
| 156 | subcellular proteins, cells were collected and washed in PBS/Na <sub>3</sub> VO <sub>4</sub> . Pelleted cells |
| 157 | were resuspended in hypotonic buffer (10 mM HEPES [pH 7.9], 10 mM KCl, 0.1 mM                                 |

| 159 | inhibitor cocktail). Nuclei were pelleted and the supernatant was harvested as the              |
|-----|-------------------------------------------------------------------------------------------------|
| 160 | cytosolic fraction. The nuclear pellet was washed three times with hypotonic buffer             |
| 161 | before lysing in nuclear extraction buffer (20 mM HEPES [pH 7.9], 0.4 M NaCl, 1                 |
| 162 | mM EDTA, 1 M EGTA, 20% glycerol, 1 mM PMSF, 2 mM Na <sub>3</sub> VO <sub>4</sub> , and protease |
| 163 | inhibitor cocktail) in a procedure modified from those described previously (1, 18, 19).        |
| 164 | Protein samples were analyzed by direct immunoblotting (25-35 $\mu$ g/lane) or blotting         |
| 165 | after immunoprecipitation (0.5-1 mg /immunoprecipitation). ECL detection reagent                |
| 166 | (PerkinElmer Life Science) was used to visualize the immunoreactive proteins on                 |
| 167 | membranes (polyvinylidene difluoride, PVDF; Perkin Elmer Life Science) after                    |
| 168 | transfer using a Trans-Blot SD (Bio-Rad, Berkeley, CA, USA).                                    |
| 169 |                                                                                                 |
| 170 | Trypan Blue Assay                                                                               |
| 171 | LNCaP and LNCaPdcc cells were seeded in a 24-well plate in the complete                         |
| 172 | culture medium. Cells were trypsinized, stained with 0.2% trypan blue (Sigma), and              |
| 173 | counted by hemocytometer to distinguish the live and dead cells.                                |

EDTA, 0.1 mM EGTA, 0.5% NP-40, 1 mM PMSF, 2 mM Na<sub>3</sub>VO<sub>4</sub>, and protease

174

158

### 175 Analysis of Cell Cycle Distribution

176 Propidium iodide staining was used for DNA content measurement. Cancer cells,

| 177 | trypsinized and fixed in 70% ethanol, were washed once with PBS and treated with   |
|-----|------------------------------------------------------------------------------------|
| 178 | RNase A for 30 minutes, followed by staining with propidium iodide (0.1% sodium    |
| 179 | citrate, 0.1% Triton X-100, and 20 $\mu l/mL$ propidium iodide). DNA content was   |
| 180 | measured by using flow cytometry (FACS Calibur, Germany). Percentage of cells in   |
| 181 | each phase of the cell cycle was analyzed by the software, Cell Quest.             |
| 182 |                                                                                    |
| 183 | Statistics                                                                         |
| 184 | All values are given as the mean $\pm$ standard error of the mean (SEM). Student's |
|     |                                                                                    |

- *t*-test was used in the cell proliferation. A difference between two means was
- 186 considered statistically significant when p < 0.05.

187 **Results** 

204

| 188 | Comparisons of characteristics between LNCaPdcc and parental LNCaP cells                  |
|-----|-------------------------------------------------------------------------------------------|
| 189 | The LNCaPdcc cells displayed the dendritic-like morphology in neuroendocrine              |
| 190 | differentiation as compared with parental LNCaP cells (Fig. 1A). In addition, growth      |
| 191 | curves of two cell lines were determined by cell counting (Fig. 1B). The comparison       |
| 192 | of doubling time (inset table of fig. 1B) showed that LNCaPdcc cells grew much            |
| 193 | slower than parental LNCaP cells. By using the flow cytometry, the differences of cell    |
| 194 | cycle distribution between parental LNCaP and LNCaPdcc cells were identified. The         |
| 195 | data showed that S phase distribution of LNCaPdcc cells was obviously higher than         |
| 196 | parental LNCaP cells although G1 and G2/M phase distributions of two cell lines           |
| 197 | were similar (Fig. 2A). Therefore, it is interesting to understand the levels of cell     |
| 198 | cycle-related proteins expressed in two cell lines. The results revealed that the protein |
| 199 | levels of Cdk1, cyclin A, cyclin B1, and cyclin D1 were all lower in LNCaPdcc cells       |
| 200 | (Fig. 2B), which might explain why LNCaPdcc cells grew slowly and stuck in S              |
| 201 | phase.                                                                                    |
| 202 |                                                                                           |
| 203 | AR-related features in two cell lines                                                     |
|     |                                                                                           |

205 levels of phospho-Ser81-AR, AR, and PSA (AR-regulated gene) (Fig. 3A). In addition,

Compared to parental LNCaP cells, LNCaPdcc cells expressed higher protein

| 206 | the protein fractionation was utilized to investigate the subcellular distribution of AR |
|-----|------------------------------------------------------------------------------------------|
| 207 | proteins. Interestingly, compared to parental LNCaP cells, LNCaPdcc cells contained      |
| 208 | higher levels of nuclear AR protein (Fig. 3B), indicating that AR in LNCaPdcc cells      |
| 209 | are still activated even in the absence of androgen. Then, cycloheximide (CHX) was       |
| 210 | used to block protein synthesis and the degradation of existing protein was then         |
| 211 | monitored. The result exhibited that AR protein in LNCaPdcc cells was more stable        |
| 212 | than that in parental LNCaP cells (Fig. 3C). Subsequently, the cell proliferation in     |
| 213 | response to androgen treatment was investigated by using MTT assay. Parental             |
| 214 | LNCaP cell proliferation was sensitive to synthetic androgen R1881 under                 |
| 215 | steroid-deprived condition, especially at the limiting concentrations (0.1 and 1 nM) of  |
| 216 | androgen. However, the proliferation of LNCaPdcc cells was inhibited by these            |
| 217 | concentrations (Fig. 4). The result illustrates that the proliferation of LNCaPdcc cells |
| 218 | is androgen-independent.                                                                 |
| 219 |                                                                                          |
| 220 | Her2-related features in two cell lines                                                  |
| 221 | According to previous research, there is a correlation between AR and Her2               |
| 222 | signals in androgen-dependent prostate cancer cells (23). Therefore, the protein         |
| 223 | expressions of Her2 and its activation partner, ErbB3, in two cell lines were            |
| 224 | investigated. The data showed that LNCaPdcc cells expressed higher levels of             |

| 225 | phospho-Y1221/1222-Her2, Her2, and ErbB3 (Fig. 5A). Since Her2 activation was              |
|-----|--------------------------------------------------------------------------------------------|
| 226 | correlated to its phosphorylation status, these data imply that Her2 is more active in     |
| 227 | LNCaPdcc cells than parental cells. In addition, parental LNCaP and LNCaPdcc cells         |
| 228 | were both treated with 10 ng/mL of heregulin (HRG, ligand of Her2/ErbB3) in a              |
| 229 | time-course manner. HRG-induced Her2 activation in LNCaPdcc cells could sustain            |
| 230 | for 24 hours after treatment; however, that activation in parental cells simply dropped    |
| 231 | since 1 hour after treatment (Fig. 5B). In order to understand the physiological           |
| 232 | functions of Her2 in different cell lines, the effects of Her2 inhibitors on proliferation |
| 233 | of two cell lines were evaluated by MTT assay. AG825 and Herceptin (monoclonal             |
| 234 | antibody of Her2 for clinical use) were treated to both cell lines. Parental LNCaP cell    |
| 235 | proliferation displayed weak response to both Her2 inhibitors whereas LNCaPdcc cell        |
| 236 | proliferation was significantly declined by Her2 inhibition (Fig. 5C). It might be due     |
| 237 | to the high levels of Her2 in LNCaPdcc cells. Accordingly, Her2 in LNCaPdcc cells          |
| 238 | might take more charge on LNCaPdcc proliferation comparing to parental cells.              |
| 239 |                                                                                            |
|     |                                                                                            |

#### 240 AR stability in LNCaPdcc cells depends on high Her2 activation

- AR is a short half-life protein and tends to be degraded through the
- 242 ubiquitin-proteasome pathway (27). It has been reported that AR proteins can be
- 243 stabilized under Her2/ErbB3 activation (23). In addition, our data indicated that AR

| 244 | protein levels were correlated to Her2 activation in both cell lines (data not shown). In |
|-----|-------------------------------------------------------------------------------------------|
| 245 | order to determine whether Her2 is involved in the increase of AR stability in            |
| 246 | LNCaPdcc cells (Fig. 3C), Her2 inhibition (by AG825) was performed and AR                 |
| 247 | stability in two cell lines was monitored. The results showed that Her2 inhibition        |
| 248 | accelerated AR degradation in LNCaPdcc cells (Fig. 6A), although the initial level of     |
| 249 | AR protein in LNCaPdcc cells was still higher than that in parental cells (time=0, Fig.   |
| 250 | 6A). After 9-hour treatment of CHX, the AR degradation percentage of LNCaPdcc             |
| 251 | (quantitative ratio) was 79% which is much higher than 32% of parental cells.             |
| 252 | Furthermore, Ser81 phosphorylation of AR has been reported to be responsible for          |
| 253 | itself stability (21). Corresponding to previous research (23), Her2 inhibitor            |
| 254 | effectively reduced AR Ser81 phosphorylation in both cell lines (Fig. 6B).                |
| 255 | Interestingly, LNCaPdcc cells were more sensitive to AG825 treatment on the               |
| 256 | inhibition of AR Ser81 phosphorylation (40% inhibition in LNCaPdcc cells versus           |
| 257 | 20% inhibition in parental cells). Taken together, higher Her2 activation might make      |
| 258 | more contribution to AR protein stability through Ser81 site phosphorylation in           |
| 259 | LNCaPdcc cells.                                                                           |

### **Discussion**

| 262 | Prostate carcinoma is a leading cause of death in male malignancy. Since the          |
|-----|---------------------------------------------------------------------------------------|
| 263 | prostate is an androgen-dependent gland, androgen ablation therapy is the most        |
| 264 | frequent strategy used to suppress prostate tumor pathogenesis. Nevertheless, cancer  |
| 265 | cells eventually escape the androgen requirement and progress to an                   |
| 266 | androgen-independent phenotype. The cure for the hormone-refractory prostate cancer   |
| 267 | remains a main clinical challenge. In the progression of prostate cancer, AR emerges  |
| 268 | as an important determinant. AR protein controls cell cycle, cell proliferation,      |
| 269 | inhibition of apoptosis, regulation of angiogenic growth factors, and stimulation of  |
| 270 | cellular migration among other functions (5). In order to investigate the roles of AR |
| 271 | activity in prostate cancer progression following androgen withdrawal, the authors    |
| 272 | established LNCaPdcc subline by long-term screening LNCaP cells in an                 |
| 273 | androgen-stripped condition. The LNCaPdcc cells revealed a dendritic-like             |
| 274 | morphology (Fig. 1A) and a lower growth rate (Fig. 1B) indicating the adaptation of   |
| 275 | LNCaPdcc cells to androgen-free condition.                                            |
| 276 |                                                                                       |
| 277 | Interestingly, AR proteins of LNCaPdcc cells were even more active in the             |
| 278 | absence of androgen because higher levels of AR Ser81 phosphorylation, PSA            |
| 279 | proteins (Fig. 3A) and nuclear AR proteins (Fig. 3B) in LNCaPdcc cells were           |

| 280 | observed. It might be due to the excessive recruitment of coactivators (10) or crosstalk                    |
|-----|-------------------------------------------------------------------------------------------------------------|
| 281 | with several polypeptide growth factors as well as cognate receptors (22, 28) in the                        |
| 282 | transition of prostate cancer. On the other hand, cyclin D1 was reported to interact                        |
| 283 | predominantly with the N-terminal domain of AR and this interaction depends on the                          |
| 284 | presence of the AR <sup>23</sup> FxxLF <sup>27</sup> motif, which is also important for interaction between |
| 285 | the N- and C-termini of AR. Through this motif, cyclin D1 protein prevents the                              |
| 286 | interaction between the two termini of AR, consequently inhibiting AR activity (2).                         |
| 287 | Our data revealed that cyclin D1 proteins dramatically declined in LNCaPdcc cells                           |
| 288 | (Fig. 2B), illustrating that the decrease of cyclin D1 levels might help to increase AR                     |
| 289 | activation. In addition, we found that the proliferation of LNCaPdcc cells was not                          |
| 290 | dependent on androgen (Fig. 4). It has been reported that AR in LNCaP cell line is a                        |
| 291 | T877A mutant that can be activated not only by androgens but also by non-androgenic                         |
| 292 | steroid hormones and anti-androgens (31). Our unpublished data showed that parental                         |
| 293 | LNCaP cell proliferation was significantly stimulated by estradiol bezoate (EB,                             |
| 294 | synthetic estrogen) in dose-dependent manner while LNCaPdcc displayed insensitive                           |
| 295 | to EB.                                                                                                      |
| 296 |                                                                                                             |
| 297 | According to previous study, AR is a short half-life protein in the absence of                              |

androgen (10) and tends to be degraded through the ubiquitin-proteasome pathway

| 299 | (27). Ubiquitin-proteasome degradation is important to transcriptional regulation (20)  |
|-----|-----------------------------------------------------------------------------------------|
| 300 | and ubiquitin-ligase E6-associated protein may be a cofactor of steroid receptors (24). |
| 301 | Therefore, it is of interest to investigate what delays AR degradation in LNCaPdcc      |
| 302 | cells (Fig. 3C). In addition to ligand-dependent regulation, post-translational         |
| 303 | modification of AR has also been extensively discussed (8). The existence of AR         |
| 304 | Ser81 phosphorylation is correlated to protein stability (21). On the other hand, the   |
| 305 | Her2/ErbB3 axis has been reported to provide signals to AR which protects AR            |
| 306 | protein stability (23). It also demonstrates that the androgen-induced Ser81            |
| 307 | phosphorylation of AR is declined by a small molecule Her2 inhibitor PKI-166 (23).      |
| 308 | Additionally, our findings indicated that AR protein levels seem to be positively       |
| 309 | regulated by Her2 activity but not by epidermal growth factor receptor (EGFR)           |
| 310 | activation (data not shown). These results suggest the existence of a specific and      |
| 311 | enhanced regulation between Her2 activation and AR stability in LNCaPdcc cells. In      |
| 312 | addition, our findings also indicated that AR Ser81 phosphorylation was inhibited by    |
| 313 | Her2 inhibitors (Fig. 6B), which suggests that AR Ser81 site is a downstream            |
| 314 | substrate of Her2 pathway. As regards to Her2-downstream serine-threonine kinases,      |
| 315 | Akt/protein kinase B (PKB) has been reported not to be the kinase that responds to      |
| 316 | AR Ser81 phosphorylation due to the analysis of phosphorylation consensus sequence      |
| 317 | sites (23). Although the Ser81 site occurs in the consensus sequence of protein kinase  |

| 318 | C (PKC), PKC inhibitors fail to reduce AR Ser81 phosphorylation (9). Several           |
|-----|----------------------------------------------------------------------------------------|
| 319 | kinases are implied or predicted to be the candidates responding to AR Ser81           |
| 320 | phosphorylation such as Cdk1, Cdk5 (4), and Erk (29). However, Cdk1 activation is      |
| 321 | inhibited by Her2 via phosphorylation on tyrosine 15 site (30). Moreover, Cdk1         |
| 322 | proteins diminished in our LNCaPdcc cells (Fig. 2B), illustrating that the increasing  |
| 323 | levels of Her2-dependent AR Ser81 phosphorylation might be irrelevant to Cdk1          |
| 324 | activity. On the contrary, we have reported that Cdk5 activity is elevated by Her2     |
| 325 | activation through Tyr15 phosphorylation in thyroid cancer cells (16). In addition,    |
| 326 | Cdk5 is also reported to modulate androgen production (17) and cell fate of prostate   |
| 327 | cancer (15, 18) by us. With regards to Erk, we found that both phospho-Erk and Erk     |
| 328 | levels increased in LNCaPdcc cells as compared to those in parental LNCaP cells        |
| 329 | (data not shown). The specific kinases regulated by Her2 and responsible for Ser81     |
| 330 | phosphorylation of AR need to be further investigated.                                 |
| 331 |                                                                                        |
| 332 | According to the results in Fig. 3, LNCaPdcc cells displayed higher level of AR        |
| 333 | Ser81 phosphorylation and longer half-time of AR proteins in androgen-stripped         |
| 334 | environment. Coincidentally, LNCaPdcc cells expressed higher levels of                 |
| 335 | phospho-Her2 and Her2 proteins (Fig. 5A). By using Her2 inhibitor, Her2 in             |
| 336 | LNCaPdcc cells was more sensitive to its inhibitor and resulted in the drops of either |

| 337 | AR Ser81 phosphorylation or AR protein stability (Fig. 6). These results suggest that |
|-----|---------------------------------------------------------------------------------------|
| 338 | Her2 not only plays a role of growth factor receptor, but also protects AR protein    |
| 339 | stability through Ser81 phosphorylation in LNCaPdcc cells after cells escape the      |
| 340 | androgen requirement.                                                                 |
| 341 |                                                                                       |
| 342 | In conclusion, we used a new-established prostate cancer cell subline, LNCaPdcc,      |
| 343 | to elucidate different characteristics and protein expressions comparing to parental  |
| 344 | LNCaP cells. LNCaPdcc cells display features of androgen-independent prostate         |
| 345 | cancer. We found that, in LNCaPdcc cells, Her2 activation becomes more important to   |
| 346 | protect AR protein from degradation through Ser81 phosphorylation and subsequently    |
| 347 | modulates cell proliferation. We hope our findings would be helpful in understanding  |
| 348 | the transition of androgen deprivation. Besides, we also suggest that Her2-AR axis    |
| 349 | would become a diagnostic and therapeutic target in hormone-refractory prostate       |
| 350 | cancer in the near future.                                                            |
| 351 |                                                                                       |

#### 352 Acknowledgements

- 353 The authors thank Dr. Shih-Lan Hsu and Ms. Mei-Chun Liu (Department of
- 354 Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan) for
- 355 their full support; Dr. Ying-Ming Liou (National Chung Hsing University, Taiwan) for
- 356 technical support.

### 358 Grants

- 359 This work was supported by grants NSC97-2320-B-005-002-MY3 and
- 360 NSC96-2628-B-005-013-MY3 from the National Science Council and in part by the
- 361 Taiwan Ministry of Education under the ATU plan (to H. Lin, National Chung Hsing
- 362 University).

#### **Disclosures**

365 The authors have no conflicts of interest to declare.

#### **References**

| 367        | 1   | Bargar D. Lin DI. Niata M. Siginska F. Carraway I.A. Adams H. Signaratti                         |
|------------|-----|--------------------------------------------------------------------------------------------------|
| 200        | 1.  | C. Helen W.C. and L. de M. Andre and dent resulting of the 2/2 are in                            |
| 308        |     | S, Hann WC, and Loda W. Androgen-dependent regulation of Her-2/neu in                            |
| 369        | •   | prostate cancer cells. Cancer Res 66: 5/23-5/28, 2006.                                           |
| 370        | 2.  | Burd CJ, Petre CE, Moghadam H, Wilson EM, and Knudsen KE. Cyclin                                 |
| 371        |     | D1 binding to the androgen receptor (AR) NH2-terminal domain inhibits                            |
| 372        |     | activation function 2 association and reveals dual roles for AR corepression.                    |
| 373        |     | <i>Mol Endocrinol</i> 19: 607-620, 2005.                                                         |
| 374        | 3.  | Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG,                          |
| 375        |     | and Sawyers CL. Molecular determinants of resistance to antiandrogen therapy.                    |
| 376        |     | Nat Med 10: 33-39, 2004.                                                                         |
| 377        | 4.  | Chen S, Xu Y, Yuan X, Bubley GJ, and Balk SP. Androgen receptor                                  |
| 378        |     | phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase                  |
| 379        |     | 1. Proc Natl Acad Sci U S A 103: 15969-15974, 2006.                                              |
| 380        | 5.  | Culig Z, and Bartsch G. Androgen axis in prostate cancer. J Cell Biochem 99:                     |
| 381        |     | 373-381, 2006.                                                                                   |
| 382        | 6.  | Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A,                               |
| 383        |     | Bartsch G, and Klocker H. Androgen receptor activation in prostatic tumor cell                   |
| 384        |     | lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal                 |
| 385        |     | growth factor. Cancer Res 54: 5474-5478, 1994.                                                   |
| 386        | 7.  | Culig Z, Hoffmann J, Erdel M, Eder IE, Hobisch A, Hittmair A, Bartsch G,                         |
| 387        |     | Utermann G, Schneider MR, Parczyk K, and Klocker H. Switch from                                  |
| 388        |     | antagonist to agonist of the androgen receptor bicalutamide is associated with                   |
| 389        |     | prostate tumour progression in a new model system. <i>Br J Cancer</i> 81: 242-251,               |
| 390        |     | 1999.                                                                                            |
| 391        | 8   | <b>Gelmann EP</b> Molecular biology of the androgen receptor <i>J Clin Oncol</i> 20 <sup>-</sup> |
| 392        |     | 3001-3015 2002                                                                                   |
| 393        | 9   | Gioeli D. Ficarro SB. Kwiek II. Aaronson D. Hancock M. Catling AD.                               |
| 394        | 2.  | White FM. Christian RF. Settlage RF. Shabanowitz J. Hunt DF. and Weber                           |
| 395        |     | M.I. Androgen recentor phosphorylation. Regulation and identification of the                     |
| 396        |     | phosphorylation sites I Biol Cham 277: 29304-29314, 2002                                         |
| 307        | 10  | Creasery CW He B Johnson BT Ford OH Mobler H. French FS and                                      |
| 200        | 10. | Wilson FM A machanism for androgon resenter mediated prostate concer                             |
| 200        |     | requirence after androgen deprivation therepy. Cancer Peg 61: 4215, 4210, 2001                   |
| 399<br>400 | 11  | Crossmann ME Huang H and Tindall DL Andragen geogration signaling in                             |
| 400        | 11. | ondrogen refractory prostate sensor, <i>LNetl Crucey Let</i> 02, 1697, 1697, 2001                |
| 401        | 10  | androgen-refractory prostate cancer. J Natl Cancer Inst 93: 168/-169/, 2001.                     |
| 402        | 12. | Heinlein CA, and Chang C. Androgen receptor in prostate cancer. <i>Endocr Rev</i>                |

403 25: 276-308, 2004. 404 13. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, 405 Mirand EA, and Murphy GP. LNCaP model of human prostatic carcinoma. 406 Cancer Res 43: 1809-1818, 1983. 407 14. Isaacs JT, and Isaacs WB. Androgen receptor outwits prostate cancer drugs. 408 Nat Med 10: 26-27, 2004. 409 Lin H. The versatile roles of cyclin-dependent kinase 5 in human diseases. 15. 410 Adaptive Medicine 1 22-25, 2009. 411 Lin H, Chen MC, Chiu CY, Song YM, and Lin SY. Cdk5 regulates STAT3 16. 412 activation and cell proliferation in medullary thyroid carcinoma cells. J Biol 413 Chem 282: 2776-2784, 2007. 414 17. Lin H, Chen MC, and Ku CT. Cyclin-dependent kinase 5 regulates 415 steroidogenic acute regulatory protein and androgen production in mouse 416 Leydig cells. Endocrinology 150: 396-403, 2009. 417 18. Lin H, Juang JL, and Wang PS. Involvement of Cdk5/p25 in 418 digoxin-triggered prostate cancer cell apoptosis. J Biol Chem 279: 29302-29307, 419 2004. 420 19. Lin H, Lin TY, and Juang JL. Abl deregulates Cdk5 kinase activity and 421 subcellular localization in Drosophila neurodegeneration. Cell Death Differ 14: 422 607-615, 2007. 423 20. Lipford JR, and Deshaies RJ. Diverse roles for ubiquitin-dependent 424 proteolysis in transcriptional activation. Nat Cell Biol 5: 845-850, 2003. 425 21. Liu S, Yuan Y, Okumura Y, Shinkai N, and Yamauchi H. Camptothecin 426 disrupts and rogen receptor signaling and suppresses prostate cancer cell growth. 427 Biochem Biophys Res Commun 394: 297-302, 2010. 428 22. Marcelli M, Ittmann M, Mariani S, Sutherland R, Nigam R, Murthy L, 429 Zhao Y, DiConcini D, Puxeddu E, Esen A, Eastham J, Weigel NL, and 430 Lamb DJ. Androgen receptor mutations in prostate cancer. Cancer Res 60: 431 944-949, 2000. 432 23. Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J, and Sawyers CL. 433 HER2/neu kinase-dependent modulation of androgen receptor function through 434 effects on DNA binding and stability. *Cancer Cell* 6: 517-527, 2004. 435 24. Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ, and 436 **O'Malley BW**. The Angelman syndrome-associated protein, E6-AP, is a 437 coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 19: 438 1182-1189, 1999. 439 25. Rhim JS, and Kung HF. Human prostate carcinogenesis. Crit Rev Oncog 8: 440 305-328, 1997.

| 441 | 26. | Scher HI, Sarkis A, Reuter V, Cohen D, Netto G, Petrylak D, Lianes P, Fuks     |
|-----|-----|--------------------------------------------------------------------------------|
| 442 |     | Z, Mendelsohn J, and Cordon-Cardo C. Changing pattern of expression of         |
| 443 |     | the epidermal growth factor receptor and transforming growth factor alpha in   |
| 444 |     | the progression of prostatic neoplasms. Clin Cancer Res 1: 545-550, 1995.      |
| 445 | 27. | Sheflin L, Keegan B, Zhang W, and Spaulding SW. Inhibiting proteasomes in      |
| 446 |     | human HepG2 and LNCaP cells increases endogenous androgen receptor levels.     |
| 447 |     | Biochem Biophys Res Commun 276: 144-150, 2000.                                 |
| 448 | 28. | Shi XB, Ma AH, Xia L, Kung HJ, and de Vere White RW. Functional                |
| 449 |     | analysis of 44 mutant androgen receptors from human prostate cancer. Cancer    |
| 450 |     | <i>Res</i> 62: 1496-1502, 2002.                                                |
| 451 | 29. | Shigemura K, Isotani S, Wang R, Fujisawa M, Gotoh A, Marshall FF, Zhau         |
| 452 |     | HE, and Chung LW. Soluble factors derived from stroma activated androgen       |
| 453 |     | receptor phosphorylation in human prostate LNCaP cells: Roles of ERK/MAP       |
| 454 |     | kinase. Prostate 2009.                                                         |
| 455 | 30. | Tan M, Jing T, Lan KH, Neal CL, Li P, Lee S, Fang D, Nagata Y, Liu J,          |
| 456 |     | Arlinghaus R, Hung MC, and Yu D. Phosphorylation on tyrosine-15 of             |
| 457 |     | p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance |
| 458 |     | to taxol-induced apoptosis. Mol Cell 9: 993-1004, 2002.                        |
| 459 | 31. | Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C,             |
| 460 |     | Claassen E, van Rooij HC, Trapman J, Brinkmann AO, and Mulder E. A             |
| 461 |     | mutation in the ligand binding domain of the androgen receptor of human        |
| 462 |     | LNCaP cells affects steroid binding characteristics and response to            |
| 463 |     | anti-androgens. Biochem Biophys Res Commun 173: 534-540, 1990.                 |
| 464 |     |                                                                                |
| 465 |     |                                                                                |
| 466 |     |                                                                                |

467 Figure Legends

| 468 | Fig. 1. Comparisons of morphology and cell growth between parental LNCaP                   |
|-----|--------------------------------------------------------------------------------------------|
| 469 | and LNCaPdcc cells. A: The morphology of two cell lines was photographed in 16X            |
| 470 | and 160X magnification. B: LNCaP cells were seeded into 24-well plates at a density        |
| 471 | of $4 \times 10^4$ cells/well in phenol red-positive RPMI-1640 culture medium (10% serum). |
| 472 | After 24 hours, the cell counting were carried out every day and lasted for six days by    |
| 473 | trypan blue staining assay ( $n = 4$ ). The LNCaPdcc cells were seeded into 24-well        |
| 474 | plates at a density of $5 \times 10^4$ cells/well in phenol red-negative RPMI-1640 culture |
| 475 | medium (10% charcoal-stripped serum). After 48 hours, the cell counting were carried       |
| 476 | out every two days and lasted for 12 days ( $n = 4$ ). The values of error bars indicated  |
| 477 | the mean $\pm$ standard error of the mean (SEM).                                           |
| 478 |                                                                                            |
| 479 | Fig. 2. Analyses of cell cycle distribution and cell cycle-relate protein expressions      |
| 480 | in both cell lines. A: Cells were stained by propidium iodide for 30 min and followed      |
| 481 | by the analysis of flow cytometry as described in "Materials and Methods" (n=3). The       |
| 482 | figure indicated the average distribution of cell cycle. The values of error bars are      |

483 given as the mean  $\pm$  SEM. *B*: Immunoblotting was performed and specific antibodies

484 were utilized to investigate the expression levels of proteins indicated.  $\beta$ -actin served

485 as an internal control.

| 487 | Fig. 3. Comparisons of AR-related proteins, AR subcellular distribution, and AR                   |
|-----|---------------------------------------------------------------------------------------------------|
| 488 | stability between two cell lines. A: Immunoblotting was performed and specific                    |
| 489 | antibodies were utilized to investigate the levels of protein expression and                      |
| 490 | phosphorylation. B: Protein fractionation was performed on LNCaP and LNCaPdcc                     |
| 491 | cell lysates. AR proteins were immunoblotted in both nuclear (N) and cytosolic (C)                |
| 492 | fractions. PARP and $\alpha$ -tubulin served as markers for the cytosolic and nuclear             |
| 493 | fractions, respectively. C: Cycloheximide (CHX) (10 ng/mL) was treated on LNCaP                   |
| 494 | and LNCaPdcc cells for 0, 2, 4, and 8 hours in respective culture conditions. The                 |
| 495 | endogenous AR protein degradation was monitored by immunoblotting.                                |
| 496 |                                                                                                   |
| 497 | Fig. 4. Difference of androgen sensitivity on proliferation of two cell lines. The                |
| 498 | cells were seeded separately into 96-well plates at densities of $1.5 \times 10^4$ cells/well     |
| 499 | (LNCaP) and $2 \times 10^4$ cells/ well (LNCaPdcc) in steroid-deprived medium. After 48           |
| 500 | hours, the R1881 (synthetic androgen) was added to the medium at the concentration                |
| 501 | of 0, 0.1, 1, and 10 nM for four days. Cell proliferation was analyzed by using MTT               |
| 502 | assay (n = 8). Control value of cell proliferation was set at 100%. The values of error           |
| 503 | bars are given as the mean $\pm$ SEM. <b>**</b> , $P < 0.01$ versus control group of LNCaP cells; |
| 504 | ##, $P < 0.01$ and #, $P < 0.05$ versus control group of LNCaPdcc cells.                          |

| 506 | Fig. 5. Comparisons of Her2-related issues between two cell lines. A:                    |
|-----|------------------------------------------------------------------------------------------|
| 507 | Immunoblotting was performed and specific antibodies were utilized to investigate        |
| 508 | the levels of protein expression and phosphorylation in LNCaP and LNCaPdcc cells.        |
| 509 | B: HRG was treated on both cell lines at the concentration of 10 ng/mL in a              |
| 510 | time-course manner (0, 1, 12, and 24 hours) under serum-free condition.                  |
| 511 | Immunoblotting was performed and specific antibodies were utilized to investigate        |
| 512 | the levels of phosphorylation and protein expression. C: The cells were seeded           |
| 513 | separately into 96-well plates as described in Fig 4. After cells attached, AG825 (25    |
| 514 | $\mu M)$ and Herceptin (20 ng/mL) added in respective complete medium were treated to    |
| 515 | cells. Cell proliferation was analyzed by using MTT assay (n=8). Control value of cell   |
| 516 | proliferation was set at 100%. The values of error bars are given as the mean $\pm$ SEM. |
| 517 | **, $P < 0.01$ versus control group of LNCaPdcc cells.                                   |
| 518 |                                                                                          |
| 519 | Fig. 6. Comparisons of Her2 activity-dependent AR protein stability between two          |
| 520 | cell lines. A: AG825 (25 $\mu$ M) was treated to LNCaP and LNCaPdcc cells for 24 hours.  |
| 521 | AR protein degradation was monitored by immunoblotting after different time              |
| 522 | intervals of CHX treatment (10 ng/mL, 0, 3, 6, and 9 hours). B: AG825 (25 $\mu$ M, 24    |
| 523 | hours) was treated on both cell lines. The levels of phospho-Ser81 AR and AR protein     |

- 524 were detected by immunoblotting while  $\beta$ -actin served as an internal control. The
- 525 numbers below the gel images represent the relative levels of protein expressions after
- 526 quantification.
- 527

## Hsu *et al*., 2010



Β





β**-actin** 





# Hsu *et al*., 2010





Α





