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Predictive Biomarkers and Personalized Medicine

Polymorphisms inside MicroRNAs and MicroRNA Target Sites
Predict Clinical Outcomes in Prostate Cancer Patients Receiving
Androgen-Deprivation Therapy

Bo-Ying Bao1,2, Jiunn-Bey Pao3, Chun-Nung Huang4, Yeong-Shiau Pu5, Ta-Yuan Chang6,
Yu-Hsuan Lan1, Te-Ling Lu1, Hong-Zin Lee1, Shin-Hun Juang7, Lu-Min Chen8,
Chi-Jeng Hsieh9,10, and Shu-Pin Huang4,11,12

Abstract
Purpose: Recent evidence indicates that small noncoding RNA molecules, known as microRNAs

(miRNAs), are involved in cancer initiation and progression. We hypothesized that genetic variations

in miRNAs and miRNA target sites could be associated with the efficacy of androgen-deprivation therapy

(ADT) in men with prostate cancer.

Experimental Design: We systematically evaluated 61 common single nucleotide polymorphisms

(SNPs) insidemiRNAs andmiRNA target sites in a cohort of 601menwith advanced prostate cancer treated

with ADT. The prognostic significance of these SNPs on disease progression, prostate cancer-specific

mortality (PCSM) and all-cause mortality (ACM) after ADT were assessed by Kaplan–Meier analysis and

Cox regression model.

Results: Four, seven, and four SNPs were significantly associated with disease progression, PCSM, and

ACM, respectively, after ADT in univariate analysis. KIF3C rs6728684, CDON rs3737336, and IFI30

rs1045747 genotypes remained as significant predictors for disease progression; KIF3C rs6728684, PALLD

rs1071738, GABRA1 rs998754, and SYT9 rs4351800 remained as significant predictors for PCSM; and

SYT9 rs4351800 remained as a significant predictor for ACM in multivariate models that included

clinicopathologic predictors. Moreover, strong combined genotype effects on disease progression and

PCSM were also observed. Patients with a greater number of unfavorable genotypes had a shorter time to

progression and worse prostate cancer-specific survival during ADT (P for trend < 0.001).

Conclusion: SNPs inside miRNAs and miRNA target sites have a potential value to improve outcome

prediction in prostate cancer patients receiving ADT. Clin Cancer Res; 17(4); 928–36. �2010 AACR.

Introduction

With the advent of prostate-specific antigen (PSA)
screening, prostate cancer is being detected and treated
earlier. However, approximately 10% to 20% of newly
diagnosed prostate cancer patients present advanced dis-
ease, and many others will eventually relapse despite local
treatments. Androgen deprivation therapy (ADT) is the
most commonly used first-line treatment for advanced
prostate cancer (1). Despite frequent responses, many
patients on ADT progress to castration-resistant disease
within 2–3 years (2). Once castration-resistant prostate
cancer develops, the life expectancy of the patient is
approximately 16–18 months (3). A variety of prediction
parameters, such as tumor stage, Gleason score, and PSA
kinetics, have been used in clinical practice to define the
presentation of prostate cancer and adapt the treatment
strategy (4–6). However, their prognostic capabilities are
still limited andmight be improved by the incorporation of
other factors including genetic markers. Germ line genetic
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variants have been demonstrated to have the potential in
identifying predisposition to aggressive prostate cancer and
providing insight into biological pathways of initiation and
progression of this complex disease (7).
MicroRNAs (miRNAs) are endogenous, small (about 22

nucleotides), nonprotein-coding, single-stranded RNA
molecules involved in regulating the expression of other
genes. MiRNAs are first transcribed as primary miRNAs
(pri-miRNAs) with several hundred nucleotides, processed
to the 70- to 100-nucleotides RNA hairpin intermediates,
defined as pre-miRNAs, and then exported to cytoplasm
and processed to mature miRNAs as part of the RNA-
induced silencing complex (8). MiRNAs regulate gene
expression by base pairing with sequences within the 30-
untranslated regions of target mRNAs, leading to mRNA
cleavage or translation repression (9). Numerous studies
have shown that aberrant expression of miRNAs contri-
butes to the etiology of many common human diseases
including cancer (10).
Genetic variants withinmiRNA genes might alter miRNA

processing and ultimately change the expression level of
the miRNA. Alternatively, genetic variants located in the
miRNA binding sites of target mRNAs might disrupt
miRNA-target interaction, resulting in the deregulation
of target gene expression. In this regard, the most common
genetic variation, single nucleotide polymorphisms
(SNPs), in miRNA genes and their target sites might be
ideal candidate biomarkers for cancer prognosis. To our
knowledge, this is the first study conducting a genome-
wide search for SNPs located in pre-miRNAs and putative
miRNA target sites, and investigating their prognostic sig-
nificance on disease progression, prostate cancer-specific

mortality (PCSM), and all-cause mortality (ACM) in a
cohort of prostate cancer patients receiving ADT.

Materials and Methods

Patient recruitment and data collection
The study population was extended from our hospital-

based prostate cancer case-control study that has been
described previously (11–16). In brief, patients with diag-
nosed and pathologically confirmed prostate cancer were
actively recruited from 3 medical centers in Taiwan: Kaoh-
siung Medical University Hospital, Kaohsiung Veterans
General Hospital, and National Taiwan University Hospi-
tal. The prostate cancer patients who had been treated with
ADT (orchiectomy or LHRH agonist with or without anti-
androgen), including those with disease recurrence after
local treatments (radical prostatectomy or radiotherapy),
were identified and followed up prospectively to evaluate
genetic variants as prognostic predictors of clinical out-
comes during ADT. Patients were excluded if the clinico-
pathologic information or follow-up period were
insufficient, leaving 601 patients in this cohort. This study
was approved by the Institutional Review Board of the 3
hospitals, and informed consent was obtained from each
participant.

Data were collected on patients with disease baseline and
clinicopathologic characteristics, as well as 3 treatment
outcomes: time to progression, PCSM, and ACM. The
PSA nadir was defined as the lowest PSA value achieved
during ADT treatment (6, 17). Time to PSA nadir was
defined as the duration of time it took for the PSA value
to reach nadir after ADT initiation (4). Disease progression
was defined as a serial rise in PSA, at least 2 rises in PSA (>
1 week apart), greater than the PSA nadir (18). Initiation of
secondary hormone treatment for rising PSA was also
considered as a progression event. Time to progression
was defined as the duration of time it took to have a
progression event once ADT was started. In general,
patients are followed every month with PSA tests at 3-
monthly intervals. The cause of death was obtained by
matching patient personal identification numbers with the
official cause of death registry provided by the Department
of Health, Executive Yuan, Taiwan. Overall, 145 deaths
were identified and 101 of these were from prostate cancer.

SNP selection and genotyping
We identified SNPs within miRNAs by intersection Hap-

Map SNPs CHB (Han Chinese) table with sno/miRNA
table (19), and identified SNPs within miRNA target sites
by intersection HapMap SNPs CHB table with TS (TargetS-
can) miRNA sites table (20) from the UCSC table browser
(NCBI36/hg18) (21). SNPs with a minor allele frequency
less than 5% in HapMap CHB population or inside snoR-
NAs were excluded. Fourteen SNPs inmiRNAs and 59 SNPs
in miRNA target sites were initially selected for analysis.

Genomic DNA was extracted from peripheral blood
using the QIAamp DNA Blood Mini Kit (Qiagen) and
stored at –80�C until the time of study. Genotyping was

Translational Relevance

Androgen-deprivation therapy (ADT) is the most
common and effective systemic therapy for advanced
prostate cancer, but outcome predictors for the efficacy
of ADT are still scarce. Recent studies suggest that
microRNAs might participate in cancer progression.
Therefore, we hypothesized that single-nucleotide poly-
morphisms (SNPs) in microRNAs and microRNA target
sites might have tremendous implications for prognosis
after ADT. In the present study, we conducted a genome-
wide search for SNPs located in pre-microRNAs and
putative microRNA target sites, and investigated their
prognostic significance on 3 outcomes of ADT: disease
progression, prostate cancer-specific mortality, and all-
cause mortality. Multivariate Cox proportional hazards
analysis revealed that several SNPs located in microRNA
genes and putative microRNA target sites were signifi-
cantly associated with the 3 outcomes of ADT. Our
results suggest that a simple and pretreatment analysis
for microRNA SNPs might add significant prognostic
value to the currently used indicators for outcome
prediction in patients receiving ADT.
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performed as described previously (14) using Sequenom
iPLEX matrix-assisted laser desorption/ionization-time of
flight (MALDI-TOF) mass spectrometry technology at the
National Genotyping Center, Academia Sinica, Taiwan.
The average genotype call rate for these SNPs was 97.1%
and the average concordance rate was 99.8% among 55
blind duplicated quality control samples. Any SNP that did
not conform to Hardy–Weinberg equilibrium (P < 0.001),
below a genotyping call rate of 80%, or with a minor allele
frequency less than 3%, was removed (n¼ 12). Thus, a total
of 61 SNPs were included for further statistical analyses.

Statistical analysis
Patient clinicopathologic characteristics were summar-

ized as number and percentage of patients or median and
interquartile range of values. The continuous factors were
dichotomized at the median value within the cohort, with
the exception of PSA nadir, which was dichotomized at 0.2
ng/mL because of its correlation with disease progression
and PCSM (5–6). The heterozygous and rare homozygous
genotypes were collapsed in the analysis if the frequency of
the rare homozygote was low (<2%) or if the homozygous
and heterozygous genotypes had the same direction of
effect. The associations of 61 individual SNPs and clinico-
pathologic characteristics with time to progression, PCSM,
and ACM were assessed using the Kaplan-Meier analysis
with log-rank test. Multivariate analyses to determine the
interdependency of genotypes and other known prognostic
factors, such as age at diagnosis, clinical stage, Gleason
score, PSA at ADT initiation, PSA nadir, and time to PSA
nadir, were carried out using Cox proportional hazards
regression model. As we were testing 61 SNPs, false-dis-
covery rates (q values) were calculated to determine the
degree to which the tests for association were prone to false-
positives (22). q values were estimated using R q value
package (http://genomics.princeton.edu/storeylab/qvalue/)
on the observed distribution of P values from the log-rank
test for 61 SNPs. Statistical Package for the Social Sciences
software version 16.0.1 (SPSS Inc.) was used for other
statistical analyses. A2-sidedP valueof<0.05was considered
statistically significant.

Results

The patients’ demographic and clinicopathologic char-
acteristics are summarized in Table 1. Four hundred and
fifteen (69%) patients had disease progression after ADT
initiation, and the median time to progression was
22 months with a mean follow-up of 30.3 months (range,
3–120 months). One hundred and forty-five (24%)
patients died, and 101 (17%) died of prostate cancer after
a mean follow-up of 39 months (range, 3–125 months).
The mean times to PCSM and ACM were 138 and 123
months, respectively. Metastatic stage of the disease, Glea-
son scores 8–10, higher PSA nadir, and shorter time to PSA
nadir were significantly associated (P� 0.006) with shorter
time to progression, PCSM, and ACM. Age at diagnosis was
only associated with ACM, and PSA level at ADT initiation

was associated with shorter time to PCSM and ACM, but
not time to progression.

Of the 61 SNPs evaluated, 4, 7, and 4 polymorphisms
showed a statistically significantly correlation with time to
progression, PCSM, and ACM respectively, according to the
log-rank test (Supplementary Table 1). KIF3C rs6728684,
CDON rs3737336, ETS1 rs1128334, and IFI30 rs1045747
were associated with disease progression during ADT
(nominal P � 0.031), and all had a false-discovery rate
(q value) less than 0.218 (Table 2). To assess the predictive
effects of these SNPs beyond the clinical features to influ-
ence disease progression, we performed a multivariate
analysis, adjusting for age at diagnosis, clinical stage, Glea-
son score, PSA level at ADT initiation, PSA nadir, and time
to PSA nadir. After adjusting for these predictors, KIF3C
rs6728684, CDON rs3737336, and IFI30 rs1045747
remained significant (P � 0.035). A strong gene-dosage
effect on disease progression during ADT was observed
when these 3 SNPs were analyzed in combination (log-
rank P < 0.001, Table 2 and Fig. 1A left panel). The time to
progression decreased as the number of unfavorable geno-
types increased, and the combined genotype remained as a
significant predictor after adjusting for clinical factors (P for
trend < 0.001, Table 2).

hsa-mir-423 rs6505162, KIF3C rs6728684, PALLD
rs1071738, ACSL1 rs2292899, GABRA1 rs998754, SYT9
rs4351800, and ZDHHC7 rs3210967 had statistically sig-
nificant effects on PCSM (P � 0.037), and all had a q value
less than 0.187 (Table 3). Four SNPs, KIF3C rs6728684,
PALLD rs1071738, GABRA1 rs998754, and SYT9
rs4351800, and their combined genotype remained as
significant predictors for time to PCSM after adjusting
for clinical factors (P � 0.039). A significant combined
genotype effect on PCSMwas also observed, and the hazard
ratios (HRs) for PCSM during ADT increased as the number
of unfavorable genotypes increased (P for trend < 0.001,
Table 3 and Fig. 1B left panel).

Four SNPs, ACSL1 rs2292899, MTRR rs9332, GABRA1
rs998754, and SYT9 rs4351800, were significantly asso-
ciated with time to ACM in the univariate analysis (P �
0.046), and all had a q value less than 0.222 (Table 4).
However, after adjusting for clinical predictors, only SYT9
rs4351800 remained a significant predictor for time to
ACM in patients receiving ADT (HR 2.55, 95% CI 1.65–
3.95, P < 0.001). Kaplan–Meier survival curves and log-
rank test showed that the SYT9 rs4351800 CC genotype
was significantly associated with poorer overall survival
compared with the AA/AC genotypes (P ¼ 0.001, Fig. 1C
left panel).

To further evaluate the clinical relevance of these miRNA
SNPs, a substratification of high-risk patients based on
clinical staging is performed. The combined genotypes
and SYT9 rs4351800 still had significant effects on disease
progression, PCSM, and ACM in patients with or without
distant metastasis, respectively (P � 0.040, Fig. 1 middle
and right panels). This additional information leads to
better risk prediction, and also supports that SNPs inside
miRNAs and miRNA target sites might be independent
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predictors of clinical outcomes following ADT along with
current clinicopathologic prognostic markers.

Discussion

In this study, we found that 6 of 61 SNPs inside miRNAs
and miRNA target sites were significantly associated with
the disease progression, PCSM, or ACM in prostate cancer
patients receiving ADT, thus validating our hypothesis.
Notably, in multivariate analysis, these SNPs retained their
association with the efficacy of ADT while controlling for
the known clinicopathologic risk factors (age at diagnosis,
clinical stage, Gleason score, PSA level at ADT initiation,
PSA nadir, and time to PSA nadir), suggesting that these
host genetic factors add information above and beyond
currently used predictors. Moreover, strong combined gen-

otype effects on disease progression and PCSM were also
observed. To our knowledge, this is the first study to
demonstrate a potential value of variants in miRNAs and
miRNA target sites as predictors for the outcomes of ADT.

Of the 61 SNPs evaluated, KIF3C rs6728684, CDON
rs3737336, and IFI30 rs1045747 showed significant asso-
ciations with disease progression after adjusting for all
clinical predictors. KIF3C, kinesin family member 3C,
belongs to the family of kinesin motor proteins. Kinesins
are microtubule-dependent molecular motors involved in
intracellular transport and mitosis (23–24). KIF3C expres-
sion is highly enriched in nervous systems. Although the
precise functions of KIF3C remain unknown, biochemical
studies suggest that KIF3C is an anterograde motor
which might be involved in synaptic vesicle trafficking,
specialized functions that are associated with the normal

Table 1. Clinicopathologic characteristics of the study population and analyses of factors that predicted
disease progression, PCSM, and ACM during ADT

Variable No.* (%) Disease progression PCSM ACM

No. of
events*

Median
(months)

P† No. of
events*

Mean
(months)

P† No. of
events*

Mean
(months)

P†

All patients 601 415 22 101 138 145 123
Age at diagnosis (years)

Median (IQR) 73 (67–79)
�73 320 (53.2) 228 21 0.219 51 141 0.280 61 135 0.001
>74 281 (46.8) 186 25 50 127 84 105

Clinical stage at diagnosis
T1/T2 189 (31.7) 117 25 0.005 13 145 <0.001 26 130 <0.001
T3/T4/N1 184 (30.8) 123 25 21 149 32 138
M1 224 (37.5) 172 17 67 110 87 94

Gleason score at diagnosis
2–6 194 (33.0) 128 26 0.006 20 154 <0.001 34 141 <0.001
7 180 (30.6) 124 25 19 134 32 116
8–10 214 (36.4) 153 17 61 108 77 97

PSA at ADT initiation (ng/mL)
Median (IQR) 35.0 (11.4–129)
<35 287 (49.6) 184 25 0.083 24 146 <0.001 44 132 <0.001
�35 292 (50.4) 211 19 76 117 98 103

PSA nadir (ng/mL)
Median (IQR) 0.18 (0.01–1.33)
<0.2 301 (50.8) 186 31 <0.001 20 159 <0.001 37 145 <0.001
�0.2 292 (49.2) 228 14 80 110 106 95

Time to PSA nadir (months)
Median (IQR) 10 (5–18)
<10 293 (49.4) 220 10 <0.001 65 121 <0.001 89 105 <0.001
�10 300 (50.6) 194 33 35 150 54 136

NOTE. P � 0.05 are in boldface.
Abbreviations: ADT, androgen-deprivation therapy; PCSM, prostate cancer-specific mortality; ACM, all-cause mortality; PSA,
prostate-specific antigen; IQR, interquartile range.
*Column subtotals do not sum to 601 for no. of patients, 415 for no. of disease progression, 101 for PCSM, and 145 for ACM due to
missing data.
†P values were calculated using the log-rank test.
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development of nervous system and the formation of
neuroendocrine tumors (25). ADT works through inhibi-
tion of androgen receptor in the prostate epithelium, or
suppression of the secretion of factors from prostate stro-
mal cells that are critical for the survival of prostate epithe-
lial cells. Because neuroendocrine cells lack androgen
receptor and are likely androgen-independent, it is con-
ceivable that ADT will not eliminate these cells. Instead,
neuroendocrine cells might be enriched after ADT to sti-
mulate androgen-independent proliferation of prostate
cancer, leading to the disease progression. A number of
studies have also demonstrated that the presence of neu-
roendocrine phenotype in tumors is associated with worse
prognosis and facilitation of prostate cancer progression
during ADT (26). On the other hand, overexpression of
KIF3C has been found to mediate docetaxel resistance in
breast cancer cells by increasing the pools of free tubulin
and promoting the dissociation of tubulin from microtu-
bules to antagonize the effect of docetaxel (27). CDON, cell
adhesion molecule-related/downregulated by oncogenes
(cdon) homolog, is initially identified as a component
of cell surface receptor complex that mediates cell–cell
interactions during myogenic differentiation. Recent stu-
dies showed that CDON interacts with all Hedgehog (Hh)
proteins and positively regulates Hh signaling (28). CDON
maps to chromosome 11q23-q24, a region with frequent
loss of heterozygosity in lung, breast, and ovarian cancers,
suggesting that CDON could play a role in oncogenesis
(29–31). Notably, androgen deprivation highly upregu-
lated the expression of Hh ligands and Hh target genes in
prostate cancer cells (32). The clinical relevance of this

observation is also supported by the increase of Hh ligand
production in prostate tumors after neoadjuvant hormone
treatment (33). IFI30, interferon gamma-inducible protein
30, encodes a lysosomal thiol reductase that cleaves protein
disulfide bonds, and is thought to have an important role
in MHC class II-restricted antigen processing in antigen-
presenting cells. Establishment of long-term immunity to
block tumor recurrence depends on the recruitment and
activation of T cells (34). Tumors can constitutively express
both MHC class I and II molecules, necessary for tumor
antigen presentation to T cells. Yet, malignant cells might
evade or avoid T-cell surveillance through modulation of
the IFI30 expression to disrupt the pathways for MHC-
restricted tumor antigen presentation (35–36). Therefore, it
is possible that the effect of these miRNA SNPs on ADT
efficacy might be a result of their influence on the gene
expressions of KIF3C, CDON, and IFI30, altering tumor
neuroendocrine differentiation, Hh signaling, and host
immunity.

Four SNPs, KIF3C rs6728684, PALLD rs1071738,
GABRA1 rs998754, and SYT9 rs4351800, were significantly
associated with PCSM after controlling for known clinical
prognostic factors. Of these, SYT9 rs4351800 also showed
significant association with ACM during ADT. PALLD,
paladin, encodes a cytoskeletal protein that plays an essen-
tial role in the assembly and maintenance of several types
of actin-dependent structures to control cell morphology,
motility, cell adhesion and cell-extracellular matrix inter-
actions. PALLD knockout mouse displayed defects in actin
organization, cell adhesion, and cell motility (37), whereas
PALLD is overexpressed in the most invasive population of

Table 2. Genotyping frequencies and the association of genotype with disease progression during ADT

Gene SNP Genotype No. of
patients

No. of
events

Median
(months)

P* q HR (95% CI) P†

KIF3C TT/TG 577 399 22 0.002 0.056 1.00
rs6728684 GG 16 12 17 2.41 (1.31–4.43) 0.005

CDON TT/TC 543 385 21 0.004 0.056 1.00
rs3737336 CC 47 24 37 0.59 (0.38–0.91) 0.018

ETS1 GG/GA 512 343 24 0.011 0.103 1.00
rs1128334 AA 58 48 16 1.16 (0.84–1.59) 0.368

IFI30 TT/TC 524 361 22 0.031 0.218 1.00
rs1045747 CC 16 12 14 1.89 (1.05–3.39) 0.035

No. of unfavorable genotypes presentz
0 47 24 37 <0.001 1.00
1 519 367 22 1.63 (1.06–2.52) 0.027
>1 31 23 14 3.17 (1.74–5.78) <0.001

P-trend <0.001

NOTE. P � 0.05 are in boldface.
Abbreviations: ADT, androgen-deprivation therapy; HR, hazard ratio; 95% CI, 95% confidence interval; PSA, prostate-specific
antigen.
*P values were calculated using the log-rank test.
†HRs were adjusted for age, clinical stage, Gleason score, PSA at ADT initiation, PSA nadir, and time to PSA nadir.
zUnfavorable genotypes refer to GG in KIF3C rs6728684, TT/TC in CDON rs3737336, and CC in IFI30 rs1045747.
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cancer cells (38–40). These correlations suggested that
deregulated PALLD might contribute to the aggressive/
invasive pathologic cancer cell behavior. GABRA1,
gamma-aminobutyric acid (GABA) A receptor alpha 1, is
a member of the cys-loop family of ligand-gated ion

channels, responsible for mediating the major inhibitory
neurotransmitter, GABA, in the brain. GABRA1 maps to
chromosome 5q34-q35, the region that has been impli-
cated in the development and progression of bladder
cancer (41–42). SYT9 encodes for the vesicular transport
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Figure 1. Kaplan–Meier curves of: (A) time to progression during ADT for patients with 0, 1, or >1 unfavorable genotypes at the 3 genetic loci of interest;
(B) time to PCSM during ADT for patients with 0, 1, or >1 unfavorable genotypes at the 4 genetic loci of interest; (C) time to ACM during ADT stratified
by genotypes at SYT9 rs4351800; in all patients (left panel), in patients without distant metastasis (middle panel), or in patients with distant metastasis
(right panel). Numbers in parentheses indicate the number of patients.
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protein synaptotagmin IX, which regulates exocytosis of
synaptic vesicles and appears to serve as a calcium sensor to
trigger neurotransmitter release in neuroendocrine cells. A
genetic alteration in SYT9, D445N, was found in some

colorectal cancers (43). In addition, another closely related
synaptotagminmember, SYT7, has also been identified as a
prostate cancer-associated gene (44). Interestingly, both
GABAergic pathway and synaptotagmins seem to be

Table 3. Genotyping frequencies and the association of genotype with PCSM during ADT

Pre-miRNA/Gene
SNP

Genotype No. of
patients

No. of
events

Mean
(months)

P* q HR (95% CI) P†

hsa-mir-423 CC 388 74 135 0.037 0.187 1.00
rs6505162 CA/AA 207 26 141 0.64 (0.40–1.01) 0.054

KIF3C TT/TG 580 95 139 0.027 0.165 1.00
rs6728684 GG 16 5 55 2.65 (1.05–6.70) 0.039

PALLD GG 464 69 143 0.018 0.165 1.00
rs1071738 GC/CC 130 31 119 2.12 (1.36–3.29) 0.001

ACSL1 GG/GA 519 78 141 0.024 0.165 1.00
rs2292899 AA 73 19 121 1.31 (0.77–2.21) 0.316

GABRA1 TT 172 38 129 0.028 0.165 1.00
rs998754 TG/GG 400 59 137 0.59 (0.39–0.90) 0.015

SYT9 AA/AC 526 83 141 0.006 0.165 1.00
rs4351800 CC 66 18 82 2.89 (1.70–4.91) <0.001

ZDHHC7 GG/GA 463 87 134 0.010 0.165 1.00
rs3210967 AA 133 13 144 0.77 (0.42–1.40) 0.389

No. of unfavorable genotypes presentz
0 271 35 137 <0.001 1.00
1 250 39 141 1.57 (0.97–2.54) 0.064
>1 79 27 85 4.20 (2.49–7.09) <0.001

P-trend <0.001

NOTE. P � 0.05 are in boldface.
Abbreviations: ADT, androgen-deprivation therapy;HR, hazard ratio; 95%CI, 95%confidence interval; PSA,prostate-specific antigen.
*P values were calculated using the log-rank test.
†HRs were adjusted for age, clinical stage, Gleason score, PSA at ADT initiation, PSA nadir, and time to PSA nadir.
zUnfavorable genotypes refer to GG in KIF3C rs6728684, GC/CC in PALLD rs1071738, TT in GABRA1 rs998754, and CC in SYT9
rs4351800.

Table 4. Genotyping frequencies and the association of genotype with ACM during ADT

Gene SNP Genotype No. of
patients

No. of
events

Mean
(months)

P* q HR (95% CI) P†

ACSL1 GG/GA 519 116 125 0.046 0.222 1.00
rs2292899 AA 73 25 109 1.25 (0.80–1.96) 0.326

MTRR CC/CT 571 132 125 0.033 0.222 1.00
rs9332 TT 17 7 76 1.27 (0.59–2.75) 0.545

GABRA1 TT 172 53 113 0.020 0.222 1.00
rs998754 TG/GG 400 86 123 0.70 (0.49–1.00) 0.051

SYT9 AA/AC 526 119 127 0.001 0.032 1.00
rs4351800 CC 66 26 69 2.55 (1.65–3.95) <0.001

NOTE. P � 0.05 are in boldface.
Abbreviations: ADT, androgen-deprivation therapy; HR, hazard ratio; 95% CI, 95% confidence interval; PSA, prostate-specific
antigen.
*P values were calculated using the log-rank test.
†HRs were adjusted for age, clinical stage, Gleason score, PSA at ADT initiation, PSA nadir, and time to PSA nadir.
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involved in the neuroendocrine differentiation of prostate
cancer (45). Taken together, systematically evaluating com-
mon variants in miRNAs and miRNA target sites, our
research lights up the pathways to influence the survival
after ADT, such as KIF3C, GABRA1, and SYT9 in neuroen-
docrine differentiation, as well as PALLD in cell motility.
However, the current findings are hypothesis-generating
and further investigation is needed to determine the role of
these SNPs/genes during prostate cancer progression.
In summary, we present the first epidemiologic evidence

supporting the involvement of genetic variants within
miRNAs and miRNA target sites in prostate cancer progres-
sion during ADT, and the use of individual as well as
combined genotypes of miRNA-related variants to predict
clinical outcomes after ADT. The results reported here are
limited by analyzing the small number of patients in
genetic subset and multiple comparisons. In addition,
our homogeneous Chinese Han population might make
our findings less generalizable to other ethnic groups.
Although this study on miRNA SNPs and efficacy of
ADT is at an early stage and the results need replication
and laboratory-based functional validation, our findings
are nevertheless encouraging in further investigating the
genetic candidates implicated by reported SNPs, under-

standing the pathways of prostate cancer progression dur-
ing ADT, and ultimately tailoring individual therapeutic
interventions.
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