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Abstract

Bladder cancer is a common urologic cancer. Radrafly plays an increasingly

important role in treatment bladder cancer due a@diatherapy preserves normal

bladder function. However, the five-year survivaler after radiotherapy for bladder

cancer patients is 30-50%. Some biologipabteins influence the outcome of

radiotherapy. One or two specific proteins may lm@tsufficient to predict the effect

of radiotherapy, analyzing multiple oncoproteinsl @amor suppressor proteins may

help the prediction. At present, no effective taghe has been used to predict the

outcome of radiotherapy by multiple protein expm@ssfile from a very limited

number of patients. The bootstrap technique prevaleew approach to improve the

accuracy of prediction the outcome of radiotherapgmall dataset analysis. In this

study, thirteen proteins in each cell line fromividual patient were measured and

then cell viability was determined after cells di@ed with 5, 10, 20, or 30 Gy of

cobalt-60. The modeling results showed that whean namber of training data

increased, the learning accuracy of the predictitnoutcome of radiotherapy was

enhanced stably, from 55% to 85%. Using this teplmito analyze the outcome of

radiotherapy related to protein expression prafifiendividual cell line provides an

example to help patients choosing radiotherapyréatment.



1. Introduction

The improvement in surgical techniques for radicgtectomy is effective in

preventing the development of new bladder tumorslo@dvic et al., 2007).

Radiotherapy, using high-energy rays to destroyoturells, is the nonsurgical

treatment in the attempt to save the bladder. Arestudy shows that the outcome for

radical cystectomy and radiotherapy treatment vasive bladder cancer is similar.

The five-year survival rates are 56.8% and 53.4%rd&diotherapy patients and for

surgery-treated patients, respectively. There alo difference in radiotherapy

patients and surgery-treated patients with 34% 2in8% recurrence, respectively

(Kotwal et al., 2008). Radiobiology has reinfordbd important role in the treatment

of bladder cancer. However, the cure rates witle&ysurvival in the range of only

30-50% and some biologic factors that influencedddst cancer progression and

radiation response should be evaluated.

Several proteins including activating oncoproteiasd suppressing tumor

suppressor proteins together contribute to therapigtance and the low survival rates

of bladder cancers. Oncoproteins involved in sigtrahsduction cause tumor

formation by uncontrolled cell cycle and cell growCyclin D1 with cdc2 kinase

positively regulate cell cycle progression. Cydlifh expression is significantly higher

in low-stage, well differentiated bladder tumoraif(€t al., 2001). Overexpression of



EGFR, c-erbB3, c-erbB4, neu, retinoblastoma prodeibcl-2 shows poor response to

radiotherapy (Colquhoun et al., 2006; Nix et a0p2; Pollack et al., 1997). In the

other hand, tumor suppressive proteins play an itapb role in inhibiting tumor

formation. p16, a tumor suppressor gene, blocksGte2 and cyclin-D complex

(Kubo et al., 1999)Deletion of p16 gene has been reported in blatideors and

bladder cell lines (Williamson et al., 1995). Lask Bax expression was related to

reduced patient's survival (Gonzalez-Campora et2807). These results show that

clusters of protein markers together better reftbet complexity of the underlying

biological network. It is expected that establighipersonalized protein expression

profile will help to predict the outcome of radietpy of patients with bladder

cancer.

To develop personalized radiotherapy of bladderceana profile of thirteen

protein expression related to resistance to radiafhy was established. The

expression intensity of thirteen proteins in eaeh lme was measured. Oncoproteins

of MDR, Topo Il, EGFR, Neu, c-ErbB-3, c-erbB-4, tgcA, cyclin D1, Cdc2 and

Bcl2 were scored with a positive value accordinghir expression intensity. Tumor

suppressive proteins of Rb, P16 and Bax were samithda negative value according

to their expression intensity. The nine immortaldaler cancer cell lines were treated

with 5, 10, 20, or 30 Gy of cobalt-60 (Co-60) ahérn determined the cell viability.



The cell resistance to radiotherapy will be infloeth by combination of oncoprotein

and tumor suppressive protein expression. A usefodlel of bootstrap technique

makes these data to define the protein expressigiileprelated to the outcome of

radiotherapy.

The research is organized as follows: Section Eflgrstates the references of

small sample set research; and Section 3 offersn@erical example and the detail

process of the proposed method. Computationalteeantl Conclusions are provided

in Section 4.

2. References of small sample set research

To overcome a very small dataset, computationahieg theory looks for some

answers to machine learning problems concerningokasize, such as: how many

training examples are needed to lead to a sucddeafming, how many reasonable

computations are needed for successful learningl what is the estimated

misclassifying rate in learning. A probably approgtely correct (PAC) concept has

been developed to identify classes of hypothesaisdin/cannot be learned from a

polynomial number of training examples with a rewdse amount of computation

(Anthony and Biggs, 1997). Furthermore, a sampte sis small if the ratio of the

number of training samples to the Vapnik-Chervoiedikmensions (VC dimensions)

of a learning machine function is less than 20deen defined (VIadimir, 2000).



However, these theories focus on general macharaifeg with a large number

of training samples, which cannot be applied tafcal cases with the small data set

learning model.

Adding some artificial data to the system is onfeaive approach to increase

learning accuracy. In Virtual Data Generation, nyossed in Pattern Recognition,

used prior knowledge obtained from the given snalining set to create virtual

examples for improving recognition ability. In thenethod, from a given 3-D view of

an object new views may be generated from any ahgte through mathematical

transformations. The new views generated are calledal samples. With these

virtual samples, a learning machine can verifyrestance more precisely. It has been

proved that the process of creating virtual sam@esathematically equivalent to

incorporating prior knowledge (Niyogi et al., 1998)

Few closely related studies in the field of mantfdng are found in the

literature: Li and Lin proposed the Functional Mat Population (FVP) approach

involving the use of a neural network in dynamicnof@acturing environments that

learn scheduling knowledge (Li and Lin, 2006). TiRéP approach was the first

method proposed for small data set learning foredahng problems, and it was

developed to expand the domain of the system atéthband generate a number of

virtual samples for constructing the so-called yadheduling knowledge. However,



based on a trial-and-error procedure, the FVP ambrarequires many steps to

complete the process.

In 2006, a unique data fuzzification technique, edmmega-fuzzification,

combined with a data trend estimation procedursysiematically expand the small

data set obtained in the early stages of manufagtyLi et al., 2006). In 1993, the

Adaptive-Network-based Fuzzy Inference System (ANFlwas applied to

neuro-fuzzy learning (Jang, 1993). Although acawgdio the results of ANFIS

achieved by mega-fuzzification improwvélde learning accuracy, the ANFIS is not

commonly accepted in real world industriaad insensitive in small data set learning

(Li et al., 2006).

Huang and Moraga combined the principle of infoioratdiffusion with a

traditional neural network, called a diffusion-naganetwork (DNN), for functional

learning (Huang and Moraga, 2004According to the results of their numerical

experiments, the DNN improved the accuracy of thacKpropagation Neural

Network (BPN). The information diffusion approachrimlly fills the information

gaps caused by data incompleteness via applyingy filzeories to derive new

samples, but the research does not provide claehicaitions for determining the

diffusion functions and diffusion coefficients. Ba#ss, the symmetric diffusion

technique sometimes over simplifies a generationesi samples, which could cause



over-estimation of the domain range. Either undgirreating or over-estimating the

ranges would lead to reduced accuracy.

Therefore, in order to fully fill the informationags, a technique called mega

diffusion was substituted a sample set for diffgsgamples one for one (Li et al.,

2007). Furthermore, a data trend estimation concepiombined with the mega

diffusion technique to avoid over-estimating. Tteshnique, which combines mega

diffusion and data trend estimation, was called aregnd-diffusion (Li et al., 2007).

Following mega-trend-diffusion, the production aftwal samples was proposed to

improve the FMS scheduling accuracy. Unfortunatlytheir research, the DNN is

adopted to extract knowledge. The DNN has twicenasy input factors as original

ones, and this situation means the network has rmmarlke complex calculations than

the ANN.

lvanescu et al. proposed a procedure to solve théelindata problem in batch

process industries. They assumed the job arrivahembs obey a Poisson arrival

process and utilized bootstrap procedure to gemenabther 250 the bootstrap jobs.

According to their results, the procedure they pegal has improved the regression

modeling performance (fmescu et al., 2006).

Tsai and Li utilized the bootstrap procedure orareefich input factor and a real

data set acquired from a Taiwanese manufacturenufi-layer ceramic capacitors



(MLCC) was used to illustrate the effectivenesshaf proposed procedure (Tsai and

Li, 2008). Based on their research, the predici@mecuracy was increased. This

research adopts the procedure proposed by TsalLiaadd attends to improve the

prediction accuracies of the effectiveness of Caegladder cancer cell lines.

3. The Detailed Processes

The bootstrap implies re-sampling a given datangtt replacement and is used

for measuring the accuracy of statistical estimg@dson and Tibshirani, 1993). In

this paper, we will attempt to use the bootstraphin to generate virtual samples and

solve the learning problem using the data sheetd@@ in total) provided by a

medical research center in Taiwan. At the beginihthis case study, we simulate a

situation that when only 5 data are available. Tiwesuse only 5 data for training the

neural network and then use the rest of the dateaadation. Following this, we will

try other data scales (5 to 30, in increments @bShe training set each time.

To explain the procedure in detail, a total of 3adare obtained from the

medical research center, shown in Table 1. Amomgnththis research randomly

selects a specific number (5 to 30, in incremeh®) @f data as the training set from

Table 1, and used the rest as the testing daviduating the average learning error

rates of the ANN. Thus the experimental scalesim $tudy are 5, 10, 15, 20, 25 and

30 training data. The following is an example @& grocess with 10 training data, and



the procedure is depicted in steps:
[Insert Table 1 here]

Step 1. Select 10 data randomly from Table 1 asréneing data for training the
ANN. The selected data set is listed in Table 2.

[Insert Table 2 here]

Step 2. Execute the bootstrap procedure for tha maffable 2 once for each
input and output factors to acquire virtual samplRspeating the procedure 100 times,
we can acquire 100 virtual samples (the deternunatf the optimal number of
virtual samples needs further study). The resulth@values of each factor are given
in Table 3.

[Insert Table 3 here]

Step 3. Apply the data in Table 2 and 3 togethethadraining data to train an
ANN.

The resistance to radiotherapy value in Table 23aisdthe value assigned to the
output node of the ANN; others are the inputs efAINN. Although other researchers,
such as Amirakian and Nishimura and Wang et abyiged algorithms suggesting
ways to determine the number of hidden nodes addehi layers, the number of
hidden nodes and hidden layers are believed terdifise by case (Amirakian and

Nishimura, 1994; Wang et al., 1994). In this stutlg optimal structure of the ANN is

10



determined by the Evolutionary Optimizer tool oftig software. Pythia is a

program for the development and design of Neuratwhikks and features

Backpropagation Networks.

This tool executes genetic algorithm (GA) with coger rate equals 0.2 and

mutation rate equals 0.04. Initially, the origirggneration containing 50 randomly

created networks and each network within this gt will be trained shortly and

its fitness determined according to the paraméteiGoals to achieve”. The 10 fittest

networks of the old generation are leaved as thenps of the next generation. It

works persistently until it finds a network with faness of 100 or the 1000th

generation.

The “Goals to achieve” is a setting to specify wikia¢ network should be

optimized for. There are three goals possible:

1. Optimize for medium deviation (& deviation<)

2. Optimize for max. deviation within the pattern geteviation<)

3. Optimize for size (# neurons<=)

In this research, we use the default setting ohiBysoftware. That is, the

medium deviation should be below 0.001, the maxiadi®n should be below 0.1 and

the network size should be below or equal 100. Bbtbcked goals will contribute

equally to the overall fitness of an evolutionargated network.

11



After determining the topology of network, trainket network until 1000
repetitions or 300 seconds have passed with leaten equals 0.5 as the default
settings.

Step 4. Use the rest of the data in Table 1 adesing data for the ANN to

calculate the average error rates. The averageratsois defined as:

Z“: |resistance to radiothergpyoutput of networlg|
= resistance to radiothergpy
n

where n is the number of the samples in validation set and, 2,... ,n and

in this examplen equals 26.

The resistance to radiotherapy and thatput of network values are shown in

Table 4, and the average error rate is 0.239478

[Insert Table 4 here]

Step 5. Repeat Steps 1 to 4 ten times and caldhlai@verage error rate.

Step 6. Repeat Steps 1 to 5 with different scdiémiming data sets.

4. Computational results and conclusions

The computational results are compared with theltebtained using the

primitive data, as represented in Table 5 and 6Fagugre 1 and 2.

[Insert Table 5 and 6 here]

[Insert Figure 1 and 2 here]

It is obviously although the average error raté&NN using only primitive data

12



decreases as the number of training samples iedased, the standard deviation does

not converge. That is, the ANN using only primitiglata cannot build up a robust

forecast neural network by using such rare pilotsrdata. However, the proposed

procedure of this study reveals lower and staldeniag errors. Hence, when the data

collected is insufficient, the procedure of thigdst works to make the forecast system

better and more stable. The above results are eagiog, and as shown in Figure 1

and 2, when the training data set increases, tleeage error rate and standard

deviation monotonically decrease.

From the p-value in Table 7, it is suggested thatd are significant differences

between ANN and the proposed procedure.

[Insert Table 7 here]

Analyze the cell sensitivity to cobalt-60 (Co-60)daprotein expression profile

of each cell line can be a useful forecast moderedlict the radiotherapy outcome of

bladder cancer. Several factors including tumorgestand age influence the

radiotherapy outcome of bladder cancer. This modaly offer the potential to

improve cure rate and reduce adverse effects basehke protein expression profile

of individual patient. The studies of small sames few at present, and there is a lot

of potential to seek better theories to obtainghér rate of accuracy. This research

may be applied in the determination of the effemiess of radiotherapy in the

13



treatment of bladder cancer.
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Table 1: The 36 data obtained from medical reseceaker

_ _ _ Co-60 Resistance
No. Cell line MDR Topoll Rb EGFR Neu c-ErbB-3 c-ErbB-4 CyclinA CyclinD1 P16 Cdc2 Bcl-2 Bax Gy) to

Y radiotherapy
1 HT 1376 1 1 05 5 0.5 6.5 6.5 0.7 0.1 -05 28 1.8 -0.3 5 97
2 HT 1376 1 1 -05 5 0.5 6.5 6.5 0.7 0.1 -05 238 18 -03 10 90
3 HT 1376 1 1 05 5 0.5 6.5 6.5 0.7 0.1 -05 28 1.8 -0.3 20 84
4 HT 1376 1 1 -05 5 0.5 6.5 6.5 0.7 0.1 -05 238 18 -03 30 82
5 HT 1197 1 2 -13 3 0.3 3 25 0.1 13 -1.3 25 01 -08 5 92
6 HT 1197 1 2 -13 3 0.3 3 25 0.1 1.3 -1.3 25 0.1 -0.8 10 78
7 HT 1197 1 2 -13 3 0.3 3 25 0.1 13 -1.3 25 01 -08 20 72
8 HT 1197 1 2 -13 3 0.3 3 25 0.1 13 -1.3 25 01 -08 30 73
9 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -23 28 0.1 -0.2 5 94
10 TCC-SUP 0.1 1 -1 15 01 01 3 0.1 0.8 -23 238 01 -02 10 70
11 TCC-SUP 0.1 1 -1 15 01 01 3 0.1 0.8 -23 238 01 -02 20 50
12 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -23 28 0.1 -0.2 30 41
13 J82 15 35 -0.7 2 1 15 25 2 25 23 2 2 -0.1 5 84
14 J82 15 35 -0.7 2 1 15 25 2 25 23 2 2 -0.1 10 70
15 J82 15 35 07 2 1 15 2.5 2 2.5 23 2 2 -0.1 20 48
16 J82 15 35 -0.7 2 1 15 25 2 25 23 2 2 -0.1 30 40
17 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 25 01 -13 5 82
18 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 25 0.1 -1.3 10 57
19 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 25 01 -13 20 39
20 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 25 01 -13 30 36
21 T24 0.3 1.3 27 2.2 1 0.1 2.5 0.5 2 -0.1 25 1.3 -0.2 5 90
22 T24 0.3 13 27 22 1 0.1 25 0.5 2 -0.1 25 13 -02 10 58
23 T24 0.3 13 27 22 1 0.1 25 0.5 2 -0.1 25 13 -02 20 39
24 T24 0.3 1.3 27 2.2 1 0.1 2.5 0.5 2 -0.1 25 1.3 -0.2 30 34
25 5637 1 13 -1 8.5 03 01 35 0.3 0.8 -28 25 1 -1.3 5 83
26 5637 1 13 -1 8.5 03 01 35 0.3 0.8 -28 25 1 -1.3 10 50
27 5637 1 1.3 -1 8.5 0.3 0.1 35 0.3 0.8 -28 25 1 -1.3 20 32
28 5637 1 13 -1 8.5 03 01 35 0.3 0.8 -28 25 1 -1.3 30 28
29 TSGH-8301 2 0.3 -0.3 9 35 45 6.5 0.1 0.1 -0.1 25 13 -15 5 60
30 TSGH-8301 2 0.3 -0.3 9 3.5 4.5 6.5 0.1 0.1 -0.1 25 1.3 -1.5 10 30
31 TSGH-8301 2 0.3 -0.3 9 35 45 6.5 0.1 0.1 -0.1 25 13 -15 20 29
32 TSGH-8301 2 0.3 -0.3 9 35 45 6.5 0.1 0.1 -0.1 25 13 -15 30 30
33 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 25 01 2 0.1 -1.5 5 63
34 BFTC-905 1.8 0.1 25 7 0.8 1 1 0.3 25 01 2 01 -15 10 33
35 BFTC-905 1.8 0.1 25 7 0.8 1 1 0.3 25 01 2 01 -15 20 21
36 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 0.1 2 0.1 -1.5 30 18

Table 2: The 10 training data selected randomlignftbe total data set

_ ' _ Co-60 Resistance
No. Cell line MDR Topoll Rb EGFR Neu c-ErbB-3 c-ErbB-4 CyclinA CyclinD1 P16 Cdc2 Bcl-2 Bax (Gy) to

Y radiotherapy
1 HT 1376 1 1 -05 5 0.5 6.5 6.5 0.7 0.1 -05 238 18 -03 5 97
9 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -23 28 0.1 -0.2 5 94
12 TCC-SUP 0.1 1 -1 15 01 01 3 0.1 0.8 -23 238 01 -02 30 41
13 J82 15 35 07 2 1 15 2.5 2 2.5 23 2 2 -0.1 5 84
16 J82 15 35 07 2 1 15 2.5 2 2.5 23 2 2 -0.1 30 40
21 T24 0.3 13 27 22 1 0.1 25 0.5 2 -0.1 25 13 -02 5 90
25 5637 1 1.3 -1 8.5 0.3 0.1 35 0.3 0.8 -28 25 1 -1.3 5 83
28 5637 1 1.3 -1 8.5 0.3 0.1 35 0.3 0.8 -28 25 1 -1.3 30 28
30 TSGH-8301 2 0.3 -0.3 9 35 45 6.5 0.1 0.1 -0.1 25 13 -15 10 30
36 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 0.1 2 0.1 -1.5 30 18
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Table 3: The 100 virtual sample values acquireStap 3

_ _ Co-60 Resistance
No. MDR Topoll Rb EGFR Neu c-ErbB-3 c-ErbB-4 CyclinA CyclinD1 P16 Cdc2 Bcl-2 Bax Gy) to
y radiotherapy
1 15 1.3 0.7 22 0.3 0.1 6.5 0.7 2 -23 2.8 2 -0.1 30 28
2 15 1 25 9 0.5 6.5 3 0.5 0.8 -0.1 28 01 -01 30 41
3 0.3 1.3 -1 7 0.1 0.1 6.5 2 2.5 -23 25 1.8 -1.3 30 83
4 15 13 -1 22 0.3 15 25 0.1 0.1 -23 25 1 -0.1 5 40
5 0.1 1 -25 85 0.3 15 25 0.1 0.1 -05 25 1 -1.5 30 84
6 0.1 1 -0.7 2 1 0.1 6.5 0.3 0.8 -0.1 28 0.1 -0.2 5 84
7 0.1 13 -1 7 0.1 15 25 0.1 0.8 -28 28 01 -01 5 30
8 0.1 13 -1 9 0.1 0.1 25 0.7 25 -05 25 1 -0.3 30 40
9 0.3 35 -2.5 9 1 0.1 25 0.3 0.8 -2.8 2.8 2 -1.5 5 28
10 0.1 35 -03 15 0.1 45 35 0.1 25 01 2 1 -1.3 5 97
11 15 0.1 -1 15 1 45 25 0.3 0.1 -0.125 2 -0.3 30 83
12 1.8 0.1 -2.7 5 1 1 3 2 2.5 01 2 2 -0.2 5 41
13 1 1 -1 15 35 6.5 35 0.7 0.8 01 2 13 -13 10 40
14 1 13 -1 7 0.1 0.1 35 0.1 0.8 -23 25 01 -15 5 97
15 0.1 0.1 25 15 1 1.5 6.5 0.3 0.1 -05 25 2 -0.2 10 83
16 15 13 -0.7 22 0.3 15 25 0.3 0.1 -01 2 01 -01 30 84
17 0.1 0.3 25 15 0.3 0.1 6.5 0.7 0.8 -23 28 1 -0.2 5 28
18 0.1 0.3 -1 7 0.3 0.1 35 2 2.5 23 2 1.3 -1.3 5 97
19 2 1 25 15 1 0.1 3 0.1 0.1 -23 25 13 -03 30 40
20 18 1 -1 2.2 1 15 25 0.1 25 -0.1 2.8 13 -03 5 97
21 0.1 35 -1 2.2 0.1 0.1 35 2 2.5 -28 25 2 -1.3 30 40
22 0.3 13 25 7 1 4.5 1 0.3 25 -0.1 25 2 -0.2 30 90
23 15 0.3 -0.7 22 1 0.1 6.5 0.3 25 -23 238 13 -02 5 30
24 1 1.3 -1 7 0.8 0.1 6.5 0.3 0.8 28 2 1 -0.1 30 94
25 0.3 13 -05 2 0.3 0.1 25 0.5 0.1 -0.1 25 01 -01 30 41
26 1 35 -05 85 1 15 1 0.1 0.8 -0.1 2.8 13 -15 5 97
27 1 0.1 -2.5 7 0.1 0.1 3 0.3 0.8 -28 25 2 -1.5 5 18
28 0.1 13 25 15 0.1 6.5 35 2 0.8 -0.1 28 13 -15 5 18
29 1 35 -0.7 22 1 1 3 2 2 23 25 18 -13 5 83
30 1 3.5 -1 2.2 0.1 0.1 3 2 2.5 -0.1 28 2 -0.2 30 83
31 1 0.3 -0.3 9 0.3 0.1 1 0.7 25 -28 28 01 -13 5 97
32 1 0.1 -0.5 2 0.3 0.1 35 0.5 25 -23 28 2 -0.1 10 30
33 2 1.3 -1 5 1 0.1 2.5 0.5 0.1 -0.1 2.8 1 -0.2 30 41
34 15 1 25 85 0.5 0.1 1 2 0.8 -23 28 2 -1.5 5 84
35 1 1 -25 85 1 0.1 25 0.3 25 -23 238 01 -02 5 18
36 1 1.3 -1 2 1 1.5 35 2 2 -0.1 2.8 1 -1.5 5 28
37 1 1 -0.7 85 0.1 0.1 35 0.1 0.1 -23 25 1 -1.3 30 30
38 1 1 27 22 1 6.5 25 0.5 25 -23 25 1 -0.2 30 94
39 0.3 1 -0.3 5 0.5 1.5 6.5 0.3 25 -28 2 1.8 -0.2 30 97
40 1 3.5 27 15 35 45 6.5 0.3 0.1 -05 28 1 -0.1 10 97
41 1 1 -1 8.5 0.1 15 25 0.3 0.8 -23 25 18 -15 5 84
42 1 1.3 -0.7 85 0.8 1.5 2.5 0.3 25 -23 25 2 -0.3 5 84
43 0.3 35 -1 9 0.1 1.5 35 2 0.1 23 2 2 -1.3 10 84
44 0.1 13 -0.7 15 1 0.1 25 0.1 0.1 -23 25 01 -02 5 90
45 1 3.5 -03 85 0.3 45 2.5 2 2 23 25 1.8 -0.2 30 30
46 1.5 1 -1 2.2 1 0.1 6.5 0.1 0.8 -0.1 2 2 -0.3 5 30
47 1 35 -1 8.5 0.8 6.5 35 0.1 25 23 2 1 -1.3 5 40
48 2 1.3 0.7 15 1 1.5 6.5 0.1 2 23 2 0.1 -0.1 5 41
49 1.5 1.3 -2.7 7 1 6.5 35 0.3 0.1 -28 2 1.3 -1.5 5 97
50 0.3 1 -2.7 5 1 15 35 2 0.1 -23 25 2 -0.3 30 97
51 1 1 -05 15 1 1 6.5 0.5 0.1 -0.1 28 1 -0.2 5 94
52 1 1.3 -0.7 7 0.8 6.5 6.5 0.3 0.1 01 2 2 -1.5 10 94
53 2 13 -1 8.5 0.8 0.1 25 2 0.8 -28 25 13 -02 5 83
54 1 1.3 -1 15 1 1.5 35 0.3 25 -2.8 25 1 -0.1 5 97
55 1 0.3 27 22 0.8 0.1 6.5 2 0.1 05 2 1.3 -0.1 30 90
56 15 13 -1 2.2 0.1 0.1 6.5 0.5 0.8 01 2 1 -0.2 30 28
57 1 1.3 -1 15 35 0.1 6.5 0.1 0.8 23 2 2 -1.3 5 41
58 2 1 -2.7 7 0.3 0.1 2.5 2 0.8 01 2 1.8 -0.2 5 40
59 15 0.1 -05 9 1 4.5 6.5 2 0.8 -23 28 01 -13 5 94
60 1.5 0.1 -0.7 9 0.1 0.1 6.5 2 0.8 -28 2.8 1 -1.5 30 90
61 0.1 0.3 -0.7 9 35 0.1 6.5 0.3 0.8 28 2 1 -0.2 30 84
62 2 0.1 -1 2.2 35 0.1 25 0.3 0.1 01 2 13 02 30 41
63 0.3 35 -1 2 35 0.1 35 2 2.5 -23 28 2 -1.5 10 83
64 0.1 35 27 22 0.8 0.1 2.5 2 0.1 -23 28 2 -1.5 5 84
65 2 0.1 -0.5 2 1 0.1 25 0.3 0.1 -01 2 01 -01 30 18
66 1.8 1 -27 85 0.5 0.1 3 2 0.8 -23 28 1.8 -0.2 5 28
67 0.3 1 -1 9 0.1 1 3 0.1 2.5 23 2 0.1 -1.5 5 18
68 0.1 1.3 -1 2 1 0.1 2.5 2 0.8 -2.3 25 18 -13 10 41
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69 1 13 -07 85 35 45 1 0.1 0.8 -0.1 28 01 -15 5 40
70 1 1 -07 85 1 0.1 3 0.3 25 28 2 1 -03 30 83
71 01 01 07 7 0.1 0.1 1 0.5 25 01 2 2 01 30 97
72 1.8 1 07 5 0.1 15 6.5 0.3 2 23 25 18 -15 5 18
73 01 1 -1 15 01 15 3 0.3 25 01 2 2 02 30 41
74 1 1 07 22 1 6.5 6.5 0.1 0.8 0.1 28 1 -15 10 94
75 15 13 27 85 1 45 35 0.3 25 0.1 25 1 01 5 83
76 2 1.3 -1 2 08 01 6.5 0.1 0.1 23 25 01 -15 5 97
77 1.8 1 -1 2.2 1 0.1 25 0.1 0.8 0.1 25 1 -02 30 30
78 15 35 07 85 0.1 0.1 6.5 2 0.8 05 2 01 -15 30 90
79 1.8 1 05 85 05 15 1 0.5 0.8 23 25 2 -15 5 83
80 2 1 -1 2 0.8 0.1 1 0.1 2 05 25 01 -13 30 84
81 2 13 07 15 35 45 3 0.3 0.8 23 25 01 -01 30 84
82 1 1 25 9 1 6.5 3 0.3 0.8 23 25 18 -13 5 28
83 1 0.3 -1 22 05 45 6.5 0.3 0.1 23 2 1 -02 10 41
84 03 35 07 2 0.5 15 3 2 0.1 05 2 01 -01 30 97
85 1.8 13 -03 15 1 0.1 3 2 0.1 23 28 13 -13 5 90
8 0.1 1 05 9 0.5 0.1 25 0.3 0.8 23 28 01 -13 5 83
87 1 35 25 85 0.1 0.1 25 0.3 25 0.1 28 1.8 -02 30 84
88 0.1 0.3 -1 15 1 45 6.5 0.5 0.1 2325 1 02 5 41
89 0.1 03 25 2 1 1 6.5 0.3 0.8 01 2 2 01 10 41
90 15 13 05 15 08 15 1 2 2.5 28 25 1 03 5 94
91 01 03 07 5 1 0.1 35 0.5 0.1 23 28 2  -15 10 30
92 01 0.1 -1 2 1 0.1 35 0.7 25 0.5 25 1.8 -13 5 40
93 1 35 03 22 1 15 6.5 0.5 0.8 05 2.8 2 01 30 83
94 1 35 27 22 1 6.5 35 0.1 0.8 0.1 28 1 01 5 41
95 2 1 -1 2 0.5 0.1 6.5 0.3 25 0.1 25 01 -15 5 90
96 1.5 1.3 -1 9 0.3 1 35 0.3 0.8 01 2 2 01 5 30
97 1 1.3 -1 22 01 15 6.5 0.1 0.8 0.1 25 01 -02 30 28
98 1 1 25 85 0.1 0.1 25 2 0.1 23 2 2 13 5 30
99 15 0.3 -1 85 05 45 35 0.3 25 0.1 25 1.8 -02 30 83
100 0.1 0.3 -1 8.5 1 0.1 3 0.1 0.8 2.8 2.8 1 -02 30 18
Table 4: The 26 Resistance to radiotherapy andaditput of network values
Resistance to 84 70 72 36 30 50 82
radiotherapy
output 91.54935 84.62182 68.93678 22.52767 22.452962.90501 90.76537
Resistance to 60 39 92 32 50 48 63
radiotherapy
output 40.21373 25.78362 89.06696 4357823 64.70494 48.0058 22.40537
Resistance to 57 33 34 39 78 82 58
radiotherapy
output 32.48688 21.88049 28.70464 48.82519 86.3288937.5627 80.14252
Res_lstance to 29 90 73 21
radiotherapy
output 24.43233 91.80353 39.7655 67.35411 21.37013
Table 5. The computational results (average eata)r
Size of training data set 5 10 15 20 25 30
ANN 48.6726% 37.4388% 27.7921% 28.1446% 20.1596% 16.7608%
Bootstrip 45.5735% 32.0283% 24.9350% 23.9485% 18.5067% 15.2223%
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Table 6. The computational results (standard dieviat

Size of training data set 5 10 15 20 25 30
ANN 17.1742% 15.4628% 5.9298% 7.8212% 5.0277% 5.8859%
Bootstrip 3.3111% 3.2479% 3.0056% 2.8743% 2.4845% 1.4231%

Table 7. The computational results (p-value)

Size of training data set 5 10 15 20 25 30

p-value 1.86357E-05 3.83816E-05 0.027710176 0.003205308 0.02372162 0.000123237
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