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Abstract 

Bladder cancer is a common urologic cancer. Radiotherapy plays an increasingly 

important role in treatment bladder cancer due to radiotherapy preserves normal 

bladder function. However, the five-year survival rate after radiotherapy for bladder 

cancer patients is 30-50%. Some biological proteins influence the outcome of 

radiotherapy. One or two specific proteins may not be sufficient to predict the effect 

of radiotherapy, analyzing multiple oncoproteins and tumor suppressor proteins may 

help the prediction. At present, no effective technique has been used to predict the 

outcome of radiotherapy by multiple protein expression file from a very limited 

number of patients. The bootstrap technique provides a new approach to improve the 

accuracy of prediction the outcome of radiotherapy in small dataset analysis. In this 

study, thirteen proteins in each cell line from individual patient were measured and 

then cell viability was determined after cells irradiated with 5, 10, 20, or 30 Gy of 

cobalt-60. The modeling results showed that when the number of training data 

increased, the learning accuracy of the prediction the outcome of radiotherapy was 

enhanced stably, from 55% to 85%. Using this technique to analyze the outcome of 

radiotherapy related to protein expression profile of individual cell line provides an 

example to help patients choosing radiotherapy for treatment.  
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1. Introduction 

The improvement in surgical techniques for radical cystectomy is effective in 

preventing the development of new bladder tumors (Milosevic et al., 2007). 

Radiotherapy, using high-energy rays to destroy tumor cells, is the nonsurgical 

treatment in the attempt to save the bladder. A recent study shows that the outcome for 

radical cystectomy and radiotherapy treatment in invasive bladder cancer is similar. 

The five-year survival rates are 56.8% and 53.4% for radiotherapy patients and for 

surgery-treated patients, respectively. There is also no difference in radiotherapy 

patients and surgery-treated patients with 34% and 37.5% recurrence, respectively 

(Kotwal et al., 2008). Radiobiology has reinforced the important role in the treatment 

of bladder cancer. However, the cure rates with 5-year survival in the range of only 

30–50% and some biologic factors that influence bladder cancer progression and 

radiation response should be evaluated. 

Several proteins including activating oncoproteins and suppressing tumor 

suppressor proteins together contribute to therapy resistance and the low survival rates 

of bladder cancers. Oncoproteins involved in signal transduction cause tumor 

formation by uncontrolled cell cycle and cell growth. Cyclin D1 with cdc2 kinase 

positively regulate cell cycle progression. Cyclin D1 expression is significantly higher 

in low-stage, well differentiated bladder tumors (Tut et al., 2001). Overexpression of 
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EGFR, c-erbB3, c-erbB4, neu, retinoblastoma protein or bcl-2 shows poor response to 

radiotherapy (Colquhoun et al., 2006; Nix et al., 2005; Pollack et al., 1997). In the 

other hand, tumor suppressive proteins play an important role in inhibiting tumor 

formation. p16, a tumor suppressor gene, blocks the Cdc2 and cyclin-D complex 

(Kubo et al., 1999). Deletion of p16 gene has been reported in bladder tumors and 

bladder cell lines (Williamson et al., 1995). Lack of Bax expression was related to 

reduced patient's survival (Gonzalez-Campora et al., 2007). These results show that 

clusters of protein markers together better reflect the complexity of the underlying 

biological network. It is expected that establishing personalized protein expression 

profile will help to predict the outcome of radiotherapy of patients with bladder 

cancer.  

To develop personalized radiotherapy of bladder cancer, a profile of thirteen 

protein expression related to resistance to radiotherapy was established. The 

expression intensity of thirteen proteins in each cell line was measured. Oncoproteins 

of MDR, Topo II, EGFR, Neu, c-ErbB-3, c-erbB-4, cyclin A, cyclin D1, Cdc2 and 

Bcl2 were scored with a positive value according to their expression intensity. Tumor 

suppressive proteins of Rb, P16 and Bax were scored with a negative value according 

to their expression intensity. The nine immortal bladder cancer cell lines were treated 

with 5, 10, 20, or 30 Gy of cobalt-60 (Co-60) and then determined the cell viability. 
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The cell resistance to radiotherapy will be influenced by combination of oncoprotein 

and tumor suppressive protein expression. A useful model of bootstrap technique 

makes these data to define the protein expression profile related to the outcome of 

radiotherapy. 

The research is organized as follows: Section 2 briefly states the references of 

small sample set research; and Section 3 offers a numerical example and the detail 

process of the proposed method. Computational results and Conclusions are provided 

in Section 4. 

2. References of small sample set research 

To overcome a very small dataset, computational learning theory looks for some 

answers to machine learning problems concerning sample size, such as: how many 

training examples are needed to lead to a successful learning, how many reasonable 

computations are needed for successful learning, and what is the estimated 

misclassifying rate in learning. A probably approximately correct (PAC) concept has 

been developed to identify classes of hypotheses that can/cannot be learned from a 

polynomial number of training examples with a reasonable amount of computation 

(Anthony and Biggs, 1997). Furthermore, a sample size as small if the ratio of the 

number of training samples to the Vapnik-Chervonenkis dimensions (VC dimensions) 

of a learning machine function is less than 20 has been defined (Vladimir, 2000). 
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However, these theories focus on general machine learning with a large number 

of training samples, which cannot be applied to practical cases with the small data set 

learning model. 

Adding some artificial data to the system is one effective approach to increase 

learning accuracy. In Virtual Data Generation, mostly used in Pattern Recognition, 

used prior knowledge obtained from the given small training set to create virtual 

examples for improving recognition ability. In their method, from a given 3-D view of 

an object new views may be generated from any other angle through mathematical 

transformations. The new views generated are called virtual samples. With these 

virtual samples, a learning machine can verify an instance more precisely. It has been 

proved that the process of creating virtual samples is mathematically equivalent to 

incorporating prior knowledge (Niyogi et al., 1998). 

Few closely related studies in the field of manufacturing are found in the 

literature: Li and Lin proposed the Functional Virtual Population (FVP) approach 

involving the use of a neural network in dynamic manufacturing environments that 

learn scheduling knowledge (Li and Lin, 2006). The FVP approach was the first 

method proposed for small data set learning for scheduling problems, and it was 

developed to expand the domain of the system attributes and generate a number of 

virtual samples for constructing the so-called early scheduling knowledge. However, 
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based on a trial-and-error procedure, the FVP approach requires many steps to 

complete the process. 

In 2006, a unique data fuzzification technique, named mega-fuzzification, 

combined with a data trend estimation procedure to systematically expand the small 

data set obtained in the early stages of manufacturing (Li et al., 2006). In 1993, the 

Adaptive-Network-based Fuzzy Inference System (ANFIS) was applied to 

neuro-fuzzy learning (Jang, 1993). Although according to the results of ANFIS 

achieved by mega-fuzzification improved the learning accuracy, the ANFIS is not 

commonly accepted in real world industries, and insensitive in small data set learning 

(Li et al., 2006). 

Huang and Moraga combined the principle of information diffusion with a 

traditional neural network, called a diffusion-neural-network (DNN), for functional 

learning (Huang and Moraga, 2004). According to the results of their numerical 

experiments, the DNN improved the accuracy of the Backpropagation Neural 

Network (BPN). The information diffusion approach partially fills the information 

gaps caused by data incompleteness via applying fuzzy theories to derive new 

samples, but the research does not provide clear indications for determining the 

diffusion functions and diffusion coefficients. Besides, the symmetric diffusion 

technique sometimes over simplifies a generation of new samples, which could cause 
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over-estimation of the domain range. Either under-estimating or over-estimating the 

ranges would lead to reduced accuracy. 

Therefore, in order to fully fill the information gaps, a technique called mega 

diffusion was substituted a sample set for diffusing samples one for one (Li et al., 

2007). Furthermore, a data trend estimation concept is combined with the mega 

diffusion technique to avoid over-estimating. This technique, which combines mega 

diffusion and data trend estimation, was called mega-trend-diffusion (Li et al., 2007). 

Following mega-trend-diffusion, the production of virtual samples was proposed to 

improve the FMS scheduling accuracy. Unfortunately, in their research, the DNN is 

adopted to extract knowledge. The DNN has twice as many input factors as original 

ones, and this situation means the network has much more complex calculations than 

the ANN. 

Ivănescu et al. proposed a procedure to solve the limited data problem in batch 

process industries. They assumed the job arrival moments obey a Poisson arrival 

process and utilized bootstrap procedure to generate another 250 the bootstrap jobs. 

According to their results, the procedure they proposed has improved the regression 

modeling performance (Ivănescu et al., 2006). 

Tsai and Li utilized the bootstrap procedure once for each input factor and a real 

data set acquired from a Taiwanese manufacturer of multi-layer ceramic capacitors 
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(MLCC) was used to illustrate the effectiveness of the proposed procedure (Tsai and 

Li, 2008). Based on their research, the prediction accuracy was increased. This 

research adopts the procedure proposed by Tsai and Li and attends to improve the 

prediction accuracies of the effectiveness of Co-60 to bladder cancer cell lines. 

3. The Detailed Processes 

The bootstrap implies re-sampling a given data set with replacement and is used 

for measuring the accuracy of statistical estimates (Efron and Tibshirani, 1993). In 

this paper, we will attempt to use the bootstrap method to generate virtual samples and 

solve the learning problem using the data sheet (36 data in total) provided by a 

medical research center in Taiwan. At the beginning of this case study, we simulate a 

situation that when only 5 data are available. Thus, we use only 5 data for training the 

neural network and then use the rest of the data for validation. Following this, we will 

try other data scales (5 to 30, in increments of 5) to the training set each time. 

To explain the procedure in detail, a total of 36 data are obtained from the 

medical research center, shown in Table 1. Among them, this research randomly 

selects a specific number (5 to 30, in increments of 5) of data as the training set from 

Table 1, and used the rest as the testing data for evaluating the average learning error 

rates of the ANN. Thus the experimental scales in this study are 5, 10, 15, 20, 25 and 

30 training data. The following is an example of the process with 10 training data, and 
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the procedure is depicted in steps: 

[Insert Table 1 here] 

Step 1. Select 10 data randomly from Table 1 as the training data for training the 

ANN. The selected data set is listed in Table 2. 

[Insert Table 2 here] 

Step 2. Execute the bootstrap procedure for the data in Table 2 once for each 

input and output factors to acquire virtual samples. Repeating the procedure 100 times, 

we can acquire 100 virtual samples (the determination of the optimal number of 

virtual samples needs further study). The results of the values of each factor are given 

in Table 3. 

[Insert Table 3 here] 

Step 3. Apply the data in Table 2 and 3 together as the training data to train an 

ANN. 

The resistance to radiotherapy value in Table 2 and 3 is the value assigned to the 

output node of the ANN; others are the inputs of the ANN. Although other researchers, 

such as Amirakian and Nishimura and Wang et al., provided algorithms suggesting 

ways to determine the number of hidden nodes and hidden layers, the number of 

hidden nodes and hidden layers are believed to differ case by case (Amirakian and 

Nishimura, 1994; Wang et al., 1994). In this study, the optimal structure of the ANN is 
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determined by the Evolutionary Optimizer tool of Pythia software. Pythia is a 

program for the development and design of Neural Networks and features 

Backpropagation Networks. 

This tool executes genetic algorithm (GA) with crossover rate equals 0.2 and 

mutation rate equals 0.04. Initially, the original generation containing 50 randomly 

created networks and each network within this generation will be trained shortly and 

its fitness determined according to the parameters in “Goals to achieve”. The 10 fittest 

networks of the old generation are leaved as the parents of the next generation. It 

works persistently until it finds a network with a fitness of 100 or the 1000th 

generation. 

The “Goals to achieve” is a setting to specify what the network should be 

optimized for. There are three goals possible: 

1. Optimize for medium deviation (Ø deviation<) 

2. Optimize for max. deviation within the pattern set (*deviation<) 

3. Optimize for size (# neurons<=) 

In this research, we use the default setting of Pythia software. That is, the 

medium deviation should be below 0.001, the max. deviation should be below 0.1 and 

the network size should be below or equal 100. Both checked goals will contribute 

equally to the overall fitness of an evolutionary created network. 
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After determining the topology of network, trains the network until 1000 

repetitions or 300 seconds have passed with learn rate equals 0.5 as the default 

settings. 

Step 4. Use the rest of the data in Table 1 as the testing data for the ANN to 

calculate the average error rates. The average error rate is defined as: 

1

resistance to radiotherapy

resistance to radiotherapy

n
i i

i i

output of network

n
=

−
∑

 

where n  is the number of the samples in validation set and 1, 2, ,i n= K  and 

in this example n  equals 26. 

The resistance to radiotherapy and the output of network  values are shown in 

Table 4, and the average error rate is 0.239478 

[Insert Table 4 here] 

Step 5. Repeat Steps 1 to 4 ten times and calculate the average error rate. 

Step 6. Repeat Steps 1 to 5 with different scales of training data sets. 

4. Computational results and conclusions 

The computational results are compared with the results obtained using the 

primitive data, as represented in Table 5 and 6 and Figure 1 and 2. 

[Insert Table 5 and 6 here] 

[Insert Figure 1 and 2 here] 

It is obviously although the average error rate of ANN using only primitive data 
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decreases as the number of training samples is increased, the standard deviation does 

not converge. That is, the ANN using only primitive data cannot build up a robust 

forecast neural network by using such rare pilot runs data. However, the proposed 

procedure of this study reveals lower and stable learning errors. Hence, when the data 

collected is insufficient, the procedure of this study works to make the forecast system 

better and more stable. The above results are encouraging, and as shown in Figure 1 

and 2, when the training data set increases, the average error rate and standard 

deviation monotonically decrease. 

From the p-value in Table 7, it is suggested that there are significant differences 

between ANN and the proposed procedure. 

[Insert Table 7 here] 

Analyze the cell sensitivity to cobalt-60 (Co-60) and protein expression profile 

of each cell line can be a useful forecast model to predict the radiotherapy outcome of 

bladder cancer. Several factors including tumor stage and age influence the 

radiotherapy outcome of bladder cancer. This model may offer the potential to 

improve cure rate and reduce adverse effects based on the protein expression profile 

of individual patient. The studies of small samples are few at present, and there is a lot 

of potential to seek better theories to obtain a higher rate of accuracy. This research 

may be applied in the determination of the effectiveness of radiotherapy in the 
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treatment of bladder cancer.  
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Figure 1. The computational results (average error rate) 

 

Figure 2. The computational results (standard deviation) 
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Table 1: The 36 data obtained from medical research center 

No. Cell line MDR Topo II Rb EGFR Neu c-ErbB-3 c-ErbB-4 Cyclin A Cyclin D1 P16 Cdc 2 Bcl-2 Bax 
Co-60 
(Gy) 

Resistance 
to 

radiotherapy  
1 HT 1376 1 1 -0.5 5 0.5 6.5 6.5 0.7 0.1 -0.5 2.8 1.8 -0.3 5 97 
2 HT 1376 1 1 -0.5 5 0.5 6.5 6.5 0.7 0.1 -0.5 2.8 1.8 -0.3 10 90 
3 HT 1376 1 1 -0.5 5 0.5 6.5 6.5 0.7 0.1 -0.5 2.8 1.8 -0.3 20 84 
4 HT 1376 1 1 -0.5 5 0.5 6.5 6.5 0.7 0.1 -0.5 2.8 1.8 -0.3 30 82 
5 HT 1197 1 2 -1.3 3 0.3 3 2.5 0.1 1.3 -1.3 2.5 0.1 -0.8 5 92 
6 HT 1197 1 2 -1.3 3 0.3 3 2.5 0.1 1.3 -1.3 2.5 0.1 -0.8 10 78 
7 HT 1197 1 2 -1.3 3 0.3 3 2.5 0.1 1.3 -1.3 2.5 0.1 -0.8 20 72 
8 HT 1197 1 2 -1.3 3 0.3 3 2.5 0.1 1.3 -1.3 2.5 0.1 -0.8 30 73 
9 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 5 94 
10 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 10 70 
11 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 20 50 
12 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 30 41 
13 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 5 84 
14 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 10 70 
15 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 20 48 
16 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 30 40 
17 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 2.5 0.1 -1.3 5 82 
18 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 2.5 0.1 -1.3 10 57 
19 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 2.5 0.1 -1.3 20 39 
20 Sca-BER 1.2 0.8 -1.5 10 0.5 0.1 5 0.1 2.7 -0.1 2.5 0.1 -1.3 30 36 
21 T24 0.3 1.3 -2.7 2.2 1 0.1 2.5 0.5 2 -0.1 2.5 1.3 -0.2 5 90 
22 T24 0.3 1.3 -2.7 2.2 1 0.1 2.5 0.5 2 -0.1 2.5 1.3 -0.2 10 58 
23 T24 0.3 1.3 -2.7 2.2 1 0.1 2.5 0.5 2 -0.1 2.5 1.3 -0.2 20 39 
24 T24 0.3 1.3 -2.7 2.2 1 0.1 2.5 0.5 2 -0.1 2.5 1.3 -0.2 30 34 
25 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 5 83 
26 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 10 50 
27 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 20 32 
28 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 30 28 
29 TSGH-8301 2 0.3 -0.3 9 3.5 4.5 6.5 0.1 0.1 -0.1 2.5 1.3 -1.5 5 60 
30 TSGH-8301 2 0.3 -0.3 9 3.5 4.5 6.5 0.1 0.1 -0.1 2.5 1.3 -1.5 10 30 
31 TSGH-8301 2 0.3 -0.3 9 3.5 4.5 6.5 0.1 0.1 -0.1 2.5 1.3 -1.5 20 29 
32 TSGH-8301 2 0.3 -0.3 9 3.5 4.5 6.5 0.1 0.1 -0.1 2.5 1.3 -1.5 30 30 
33 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 -0.1 2 0.1 -1.5 5 63 
34 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 -0.1 2 0.1 -1.5 10 33 
35 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 -0.1 2 0.1 -1.5 20 21 
36 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 -0.1 2 0.1 -1.5 30 18 

 

Table 2: The 10 training data selected randomly from the total data set 

No. Cell line MDR Topo II Rb EGFR Neu c-ErbB-3 c-ErbB-4 Cyclin A Cyclin D1 P16 Cdc 2 Bcl-2 Bax 
Co-60 
(Gy) 

Resistance 
to 

radiotherapy 
1 HT 1376 1 1 -0.5 5 0.5 6.5 6.5 0.7 0.1 -0.5 2.8 1.8 -0.3 5 97 
9 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 5 94 
12 TCC-SUP 0.1 1 -1 1.5 0.1 0.1 3 0.1 0.8 -2.3 2.8 0.1 -0.2 30 41 
13 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 5 84 
16 J82 1.5 3.5 -0.7 2 1 1.5 2.5 2 2.5 -2.3 2 2 -0.1 30 40 
21 T24 0.3 1.3 -2.7 2.2 1 0.1 2.5 0.5 2 -0.1 2.5 1.3 -0.2 5 90 
25 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 5 83 
28 5637 1 1.3 -1 8.5 0.3 0.1 3.5 0.3 0.8 -2.8 2.5 1 -1.3 30 28 
30 TSGH-8301 2 0.3 -0.3 9 3.5 4.5 6.5 0.1 0.1 -0.1 2.5 1.3 -1.5 10 30 
36 BFTC-905 1.8 0.1 -2.5 7 0.8 1 1 0.3 2.5 -0.1 2 0.1 -1.5 30 18 
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Table 3: The 100 virtual sample values acquired in Step 3 

No. MDR Topo II Rb EGFR Neu c-ErbB-3 c-ErbB-4 Cyclin A Cyclin D1 P16 Cdc 2 Bcl-2 Bax 
Co-60 
(Gy) 

Resistance 
to 

radiotherapy 
1 1.5 1.3 -0.7 2.2 0.3 0.1 6.5 0.7 2 -2.3 2.8 2 -0.1 30 28 
2 1.5 1 -2.5 9 0.5 6.5 3 0.5 0.8 -0.1 2.8 0.1 -0.1 30 41 
3 0.3 1.3 -1 7 0.1 0.1 6.5 2 2.5 -2.3 2.5 1.8 -1.3 30 83 
4 1.5 1.3 -1 2.2 0.3 1.5 2.5 0.1 0.1 -2.3 2.5 1 -0.1 5 40 
5 0.1 1 -2.5 8.5 0.3 1.5 2.5 0.1 0.1 -0.5 2.5 1 -1.5 30 84 
6 0.1 1 -0.7 2 1 0.1 6.5 0.3 0.8 -0.1 2.8 0.1 -0.2 5 84 
7 0.1 1.3 -1 7 0.1 1.5 2.5 0.1 0.8 -2.8 2.8 0.1 -0.1 5 30 
8 0.1 1.3 -1 9 0.1 0.1 2.5 0.7 2.5 -0.5 2.5 1 -0.3 30 40 
9 0.3 3.5 -2.5 9 1 0.1 2.5 0.3 0.8 -2.8 2.8 2 -1.5 5 28 
10 0.1 3.5 -0.3 1.5 0.1 4.5 3.5 0.1 2.5 -0.1 2 1 -1.3 5 97 
11 1.5 0.1 -1 1.5 1 4.5 2.5 0.3 0.1 -0.1 2.5 2 -0.3 30 83 
12 1.8 0.1 -2.7 5 1 1 3 2 2.5 -0.1 2 2 -0.2 5 41 
13 1 1 -1 1.5 3.5 6.5 3.5 0.7 0.8 -0.1 2 1.3 -1.3 10 40 
14 1 1.3 -1 7 0.1 0.1 3.5 0.1 0.8 -2.3 2.5 0.1 -1.5 5 97 
15 0.1 0.1 -2.5 1.5 1 1.5 6.5 0.3 0.1 -0.5 2.5 2 -0.2 10 83 
16 1.5 1.3 -0.7 2.2 0.3 1.5 2.5 0.3 0.1 -0.1 2 0.1 -0.1 30 84 
17 0.1 0.3 -2.5 1.5 0.3 0.1 6.5 0.7 0.8 -2.3 2.8 1 -0.2 5 28 
18 0.1 0.3 -1 7 0.3 0.1 3.5 2 2.5 -2.3 2 1.3 -1.3 5 97 
19 2 1 -2.5 1.5 1 0.1 3 0.1 0.1 -2.3 2.5 1.3 -0.3 30 40 
20 1.8 1 -1 2.2 1 1.5 2.5 0.1 2.5 -0.1 2.8 1.3 -0.3 5 97 
21 0.1 3.5 -1 2.2 0.1 0.1 3.5 2 2.5 -2.8 2.5 2 -1.3 30 40 
22 0.3 1.3 -2.5 7 1 4.5 1 0.3 2.5 -0.1 2.5 2 -0.2 30 90 
23 1.5 0.3 -0.7 2.2 1 0.1 6.5 0.3 2.5 -2.3 2.8 1.3 -0.2 5 30 
24 1 1.3 -1 7 0.8 0.1 6.5 0.3 0.8 -2.8 2 1 -0.1 30 94 
25 0.3 1.3 -0.5 2 0.3 0.1 2.5 0.5 0.1 -0.1 2.5 0.1 -0.1 30 41 
26 1 3.5 -0.5 8.5 1 1.5 1 0.1 0.8 -0.1 2.8 1.3 -1.5 5 97 
27 1 0.1 -2.5 7 0.1 0.1 3 0.3 0.8 -2.8 2.5 2 -1.5 5 18 
28 0.1 1.3 -2.5 1.5 0.1 6.5 3.5 2 0.8 -0.1 2.8 1.3 -1.5 5 18 
29 1 3.5 -0.7 2.2 1 1 3 2 2 -2.3 2.5 1.8 -1.3 5 83 
30 1 3.5 -1 2.2 0.1 0.1 3 2 2.5 -0.1 2.8 2 -0.2 30 83 
31 1 0.3 -0.3 9 0.3 0.1 1 0.7 2.5 -2.8 2.8 0.1 -1.3 5 97 
32 1 0.1 -0.5 2 0.3 0.1 3.5 0.5 2.5 -2.3 2.8 2 -0.1 10 30 
33 2 1.3 -1 5 1 0.1 2.5 0.5 0.1 -0.1 2.8 1 -0.2 30 41 
34 1.5 1 -2.5 8.5 0.5 0.1 1 2 0.8 -2.3 2.8 2 -1.5 5 84 
35 1 1 -2.5 8.5 1 0.1 2.5 0.3 2.5 -2.3 2.8 0.1 -0.2 5 18 
36 1 1.3 -1 2 1 1.5 3.5 2 2 -0.1 2.8 1 -1.5 5 28 
37 1 1 -0.7 8.5 0.1 0.1 3.5 0.1 0.1 -2.3 2.5 1 -1.3 30 30 
38 1 1 -2.7 2.2 1 6.5 2.5 0.5 2.5 -2.3 2.5 1 -0.2 30 94 
39 0.3 1 -0.3 5 0.5 1.5 6.5 0.3 2.5 -2.8 2 1.8 -0.2 30 97 
40 1 3.5 -2.7 1.5 3.5 4.5 6.5 0.3 0.1 -0.5 2.8 1 -0.1 10 97 
41 1 1 -1 8.5 0.1 1.5 2.5 0.3 0.8 -2.3 2.5 1.8 -1.5 5 84 
42 1 1.3 -0.7 8.5 0.8 1.5 2.5 0.3 2.5 -2.3 2.5 2 -0.3 5 84 
43 0.3 3.5 -1 9 0.1 1.5 3.5 2 0.1 -2.3 2 2 -1.3 10 84 
44 0.1 1.3 -0.7 1.5 1 0.1 2.5 0.1 0.1 -2.3 2.5 0.1 -0.2 5 90 
45 1 3.5 -0.3 8.5 0.3 4.5 2.5 2 2 -2.3 2.5 1.8 -0.2 30 30 
46 1.5 1 -1 2.2 1 0.1 6.5 0.1 0.8 -0.1 2 2 -0.3 5 30 
47 1 3.5 -1 8.5 0.8 6.5 3.5 0.1 2.5 -2.3 2 1 -1.3 5 40 
48 2 1.3 -0.7 1.5 1 1.5 6.5 0.1 2 -2.3 2 0.1 -0.1 5 41 
49 1.5 1.3 -2.7 7 1 6.5 3.5 0.3 0.1 -2.8 2 1.3 -1.5 5 97 
50 0.3 1 -2.7 5 1 1.5 3.5 2 0.1 -2.3 2.5 2 -0.3 30 97 
51 1 1 -0.5 1.5 1 1 6.5 0.5 0.1 -0.1 2.8 1 -0.2 5 94 
52 1 1.3 -0.7 7 0.8 6.5 6.5 0.3 0.1 -0.1 2 2 -1.5 10 94 
53 2 1.3 -1 8.5 0.8 0.1 2.5 2 0.8 -2.8 2.5 1.3 -0.2 5 83 
54 1 1.3 -1 1.5 1 1.5 3.5 0.3 2.5 -2.8 2.5 1 -0.1 5 97 
55 1 0.3 -2.7 2.2 0.8 0.1 6.5 2 0.1 -0.5 2 1.3 -0.1 30 90 
56 1.5 1.3 -1 2.2 0.1 0.1 6.5 0.5 0.8 -0.1 2 1 -0.2 30 28 
57 1 1.3 -1 1.5 3.5 0.1 6.5 0.1 0.8 -2.3 2 2 -1.3 5 41 
58 2 1 -2.7 7 0.3 0.1 2.5 2 0.8 -0.1 2 1.8 -0.2 5 40 
59 1.5 0.1 -0.5 9 1 4.5 6.5 2 0.8 -2.3 2.8 0.1 -1.3 5 94 
60 1.5 0.1 -0.7 9 0.1 0.1 6.5 2 0.8 -2.8 2.8 1 -1.5 30 90 
61 0.1 0.3 -0.7 9 3.5 0.1 6.5 0.3 0.8 -2.8 2 1 -0.2 30 84 
62 2 0.1 -1 2.2 3.5 0.1 2.5 0.3 0.1 -0.1 2 1.3 -0.2 30 41 
63 0.3 3.5 -1 2 3.5 0.1 3.5 2 2.5 -2.3 2.8 2 -1.5 10 83 
64 0.1 3.5 -2.7 2.2 0.8 0.1 2.5 2 0.1 -2.3 2.8 2 -1.5 5 84 
65 2 0.1 -0.5 2 1 0.1 2.5 0.3 0.1 -0.1 2 0.1 -0.1 30 18 
66 1.8 1 -2.7 8.5 0.5 0.1 3 2 0.8 -2.3 2.8 1.8 -0.2 5 28 
67 0.3 1 -1 9 0.1 1 3 0.1 2.5 -2.3 2 0.1 -1.5 5 18 
68 0.1 1.3 -1 2 1 0.1 2.5 2 0.8 -2.3 2.5 1.8 -1.3 10 41 
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69 1 1.3 -0.7 8.5 3.5 4.5 1 0.1 0.8 -0.1 2.8 0.1 -1.5 5 40 
70 1 1 -0.7 8.5 1 0.1 3 0.3 2.5 -2.8 2 1 -0.3 30 83 
71 0.1 0.1 -0.7 7 0.1 0.1 1 0.5 2.5 -0.1 2 2 -0.1 30 97 
72 1.8 1 -0.7 5 0.1 1.5 6.5 0.3 2 -2.3 2.5 1.8 -1.5 5 18 
73 0.1 1 -1 1.5 0.1 1.5 3 0.3 2.5 -0.1 2 2 -0.2 30 41 
74 1 1 -0.7 2.2 1 6.5 6.5 0.1 0.8 -0.1 2.8 1 -1.5 10 94 
75 1.5 1.3 -2.7 8.5 1 4.5 3.5 0.3 2.5 -0.1 2.5 1 -0.1 5 83 
76 2 1.3 -1 2 0.8 0.1 6.5 0.1 0.1 -2.3 2.5 0.1 -1.5 5 97 
77 1.8 1 -1 2.2 1 0.1 2.5 0.1 0.8 -0.1 2.5 1 -0.2 30 30 
78 1.5 3.5 -0.7 8.5 0.1 0.1 6.5 2 0.8 -0.5 2 0.1 -1.5 30 90 
79 1.8 1 -0.5 8.5 0.5 1.5 1 0.5 0.8 -2.3 2.5 2 -1.5 5 83 
80 2 1 -1 2 0.8 0.1 1 0.1 2 -0.5 2.5 0.1 -1.3 30 84 
81 2 1.3 -0.7 1.5 3.5 4.5 3 0.3 0.8 -2.3 2.5 0.1 -0.1 30 84 
82 1 1 -2.5 9 1 6.5 3 0.3 0.8 -2.3 2.5 1.8 -1.3 5 28 
83 1 0.3 -1 2.2 0.5 4.5 6.5 0.3 0.1 -2.3 2 1 -0.2 10 41 
84 0.3 3.5 -0.7 2 0.5 1.5 3 2 0.1 -0.5 2 0.1 -0.1 30 97 
85 1.8 1.3 -0.3 1.5 1 0.1 3 2 0.1 -2.3 2.8 1.3 -1.3 5 90 
86 0.1 1 -0.5 9 0.5 0.1 2.5 0.3 0.8 -2.3 2.8 0.1 -1.3 5 83 
87 1 3.5 -2.5 8.5 0.1 0.1 2.5 0.3 2.5 -0.1 2.8 1.8 -0.2 30 84 
88 0.1 0.3 -1 1.5 1 4.5 6.5 0.5 0.1 -2.3 2.5 1 -0.2 5 41 
89 0.1 0.3 -2.5 2 1 1 6.5 0.3 0.8 -0.1 2 2 -0.1 10 41 
90 1.5 1.3 -0.5 1.5 0.8 1.5 1 2 2.5 -2.8 2.5 1 -0.3 5 94 
91 0.1 0.3 -0.7 5 1 0.1 3.5 0.5 0.1 -2.3 2.8 2 -1.5 10 30 
92 0.1 0.1 -1 2 1 0.1 3.5 0.7 2.5 -0.5 2.5 1.8 -1.3 5 40 
93 1 3.5 -0.3 2.2 1 1.5 6.5 0.5 0.8 -0.5 2.8 2 -0.1 30 83 
94 1 3.5 -2.7 2.2 1 6.5 3.5 0.1 0.8 -0.1 2.8 1 -0.1 5 41 
95 2 1 -1 2 0.5 0.1 6.5 0.3 2.5 -0.1 2.5 0.1 -1.5 5 90 
96 1.5 1.3 -1 9 0.3 1 3.5 0.3 0.8 -0.1 2 2 -0.1 5 30 
97 1 1.3 -1 2.2 0.1 1.5 6.5 0.1 0.8 -0.1 2.5 0.1 -0.2 30 28 
98 1 1 -2.5 8.5 0.1 0.1 2.5 2 0.1 -2.3 2 2 -1.3 5 30 
99 1.5 0.3 -1 8.5 0.5 4.5 3.5 0.3 2.5 -0.1 2.5 1.8 -0.2 30 83 
100 0.1 0.3 -1 8.5 1 0.1 3 0.1 0.8 -2.8 2.8 1 -0.2 30 18 

 

Table 4: The 26 Resistance to radiotherapy and the output of network  values 

Resistance to 
radiotherapy 

84 70 72 36 30 50 82 

output 91.54935 84.62182 68.93678 22.52767 22.4529 62.90501 90.76537 
Resistance to 
radiotherapy 

60 39 92 32 50 48 63 

output 40.21373 25.78362 89.06696 43.57823 64.70494 48.0058 22.40537 
Resistance to 
radiotherapy 

57 33 34 39 78 82 58 

output 32.48688 21.88049 28.70464 48.82519 86.32889 37.5627 80.14252 
Resistance to 
radiotherapy 

29 90 73 70 21   

output 24.43233 91.80353 39.7655 67.35411 21.37013   

 

 

Table 5. The computational results (average error rate) 

Size of training data set 5 10 15 20 25 30 

ANN 48.6726% 37.4388% 27.7921% 28.1446% 20.1596% 16.7608% 
Bootstrip 45.5735% 32.0283% 24.9350% 23.9485% 18.5067% 15.2223% 
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Table 6. The computational results (standard deviation) 

Size of training data set 5 10 15 20 25 30 

ANN 17.1742% 15.4628% 5.9298% 7.8212% 5.0277% 5.8859% 
Bootstrip 3.3111% 3.2479% 3.0056% 2.8743% 2.4845% 1.4231% 

 

Table 7. The computational results (p-value) 

Size of training data set 5 10 15 20 25 30 

p-value 1.86357E-05 3.83816E-05 0.027710176 0.003205308 0.02372162 0.000123237 
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