1	Title :

2	Phthalate exposure in pregnant women and their children in central Taiwan
3	Authors names and affiliations:
4	Susana <u>Lin</u>
5	E-mail: susanalin@nhri.org.tw
6	Affiliation: Division of Environmental Health and Occupational Medicine, National
7	Health Research Institutes, Taiwan
8	Hsiu-Ying <u>Ku</u>
9	E-mail: shiuo@nhri.org.tw
10	Affiliation: Graduate Institute of Life Science, National Defense Medical Center
11	Pen-Hua <u>Su</u>
12	E-mail: jen@csh.org.tw
13	Affiliation 1: Department of Pediatrics, Chung Shan Medical University Hospital,
14	Taichung, Taiwan.
15	Affiliation 2: School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
16	Jein-Wen <u>Chen</u>
17	E-mail: jwchen@nhri.org.tw
18	Affiliation: Division of Environmental Health and Occupational Medicine, National
19	Health Research Institutes, Taiwan
20	Po-Ching <u>Huang</u>
21	E-mail: pchuang@nhri.org.tw
22	Affiliation: Division of Environmental Health and Occupational Medicine, National
23	Health Research Institutes, Taiwan
24	Jürgen <u>Angerer</u>
25	E-mail: juergen.angerer@ipasum.imed.uni-erlangen.de

26	Affiliation: Institute ad Outpatient Clinic of Occupational, Social and Environmental
27	Medicine, University of Erlangen-Nurenberg
28	Shu-Li <u>Wang</u>
29	E-mail: slwang@nhri.org.tw
30	Affiliation 1: Division of Environmental Health and Occupational Medicine, National
31	Health Research Institutes, Taiwan
32	Affiliation 2: School of Medicine, Chung Shan Medical University, Taichung, Taiwan
33	Corresponding author:
34	Shu-Li Wang
35	National Health Research Institutes
36	Division of Evironmental Health and Occupational Medicine
37	No35, Keyan Road, Zhunan Town, Miaoli County 35035, Taiwan.
38	E-mail: slwang@nhri.org.tw
39	Phone: +886-37-246166-36519
40	Fax: +886-37-587406

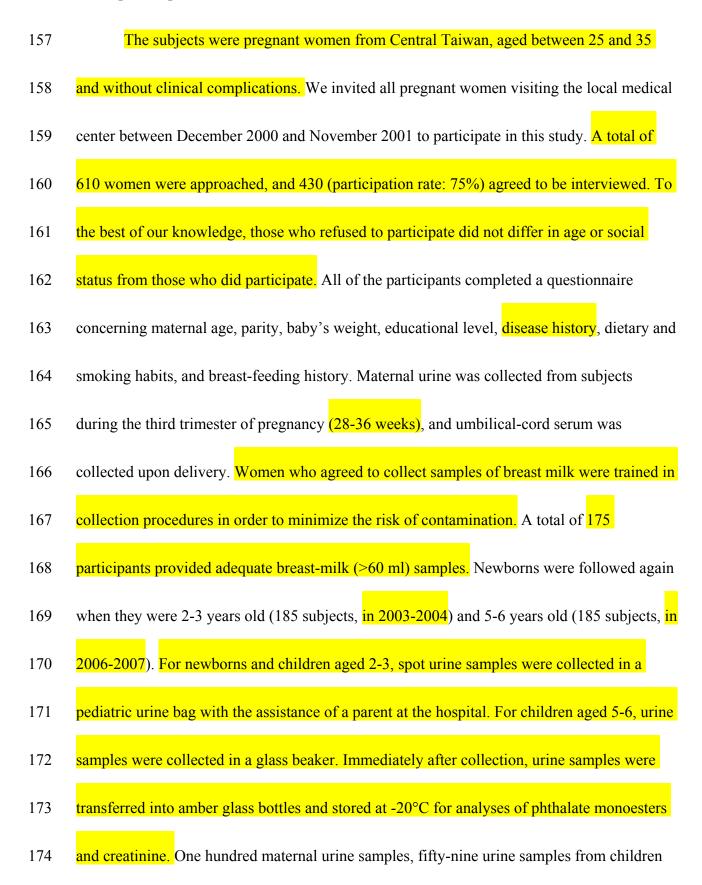
42 Abstract

Δ	3
т	2

44	Phthalate exposure has been found to be associated with endocrine disruption,
45	respiratory effects, and reproductive and developmental toxicity. The intensive use of plastics
46	may be increasing the exposure to phthalates in the Taiwanese population, particularly for
47	young children.
48	We studied phthalate metabolites in pregnant women and their newborns in a general
49	population in Central Taiwan. A total of 430 pregnant women agreed to participate and one
50	hundred maternal urine samples and thirty paired cord blood and milk samples were
51	randomly selected from those participants. Eleven phthalate metabolites (MEHP,
52	5OH-MEHP, 2cx-MEHP, 5cx-MEPP, 5oxo-MEHP, MiBP, MnBP, MBzP, OH-MiNP,
53	oxo-MiNP, and cx-MiNP) representing exposure to five commonly used phthalates (DEHP,
54	DiBP, DnBP, BBP, DiNP) were measured in the urine of pregnant women, cord serum and
55	breast milk after delivery, and in the urine of their children. Exposure was estimated based on
56	excretion factors and correlation among metabolites of the same parental compound. Thirty
57	and fifty-nine urinary samples from 2 and 5 years-old children, respectively, were randomly
58	selected from the 185 children who were followed successfully.
59	The total urinary phthalate metabolite concentration (geometric mean, $\mu g/L$) was
60	found to be higher in 2-year-olds (398.6) and 5-year-olds (333.7) than in pregnant women

61	(205.2). Metabolites in urine are mainly from DEHP. The proportion of DiNP metabolites
62	was higher in children's urine (4.39 and 8.31%, ages 2 and 5) than in that of adults (0.83%)
63	(p<0.01). When compared with urinary levels, phthalate metabolite levels were low in cord
64	blood (37.45) and milk (14.90). DEHP metabolite levels in women's urine and their
65	corresponding cord blood were significantly correlated. When compared to other populations
66	in the world, DEHP derived metabolites in maternal urine in Taiwan were higher, while
67	phthalate metabolite levels in milk and cord blood were similar. The levels of phthalate
68	metabolites in milk and cord blood were comparable to those found in other populations.
69	Further studies of the effects on health related to DEHP and DiNP exposure are necessary.
70	Keywords:
71	Phthalate; environmental exposure; Taiwan; cord blood
71 72	Phthalate; environmental exposure; Taiwan; cord blood
	Phthalate; environmental exposure; Taiwan; cord blood
72	Phthalate; environmental exposure; Taiwan; cord blood Introduction
72 73	
72 73 74	Introduction
72 73 74 75	Introduction Phthalates are chemicals widely used in commercial products such as plastic softeners
 72 73 74 75 76 	Introduction Phthalates are chemicals widely used in commercial products such as plastic softeners and solvents in personal care products, lubricants and insect repellents (Fay et al., 1999; Koo

80	cellulose acetate plastics, latex adhesives, nail polish and other cosmetic products; butyl
81	benzyl phthalate (BBP) is found in vinyl flooring, adhesives, sealants, food packaging,
82	furniture upholstery, vinyl tile, carpet tiles, artificial leather, and di-isononyl phthalate (DiNP)
83	is widely used in children's toys (Sathyanarayana, 2008). Recent studies suggest that the
84	intensive use of plastic material in Taiwan may be increasing the exposure to DEHP in the
85	Taiwanese population (Chen et al., 2008).
86	According to some epidemiological studies, phthalate exposure is associated with
87	adverse health outcomes, such as shorter anogenital distances at birth (Swan, 2006),
88	respiratory effects (Hoppin et al., 2004; Jaakkola et al., 1999; Jaakkola et al., 2000), and
89	increased waist circumference and insulin resistance (Stahlhut et al., 2007). Exposure to
90	MnBP, mono-benzyl phthalate (MBzP), and Mono-2-ethylhexyl phthalate (MEHP) is
91	associated with an overall pattern of decline in sperm motility (Duty et al., 2004).
92	Pregnant and lactating women represent a population of special concern because of
93	the potential impact of their exposure to phthalates on the fetus and nursing infant. I Exposure
94	data for children under age 6 are scarce (Jahnke et al., 2005; McKee, 2004; NTP-CERHR,
95	2003a). Metabolites of DEHP, DBP and BBP have been monitored in children aged 2-6
96	(Koch et al., 2004; Koch et al., 2005). A decrease in the anogenital distance in male infants
97	has been found to be associated with phthalate exposure, as determined by urinary MEP,
98	MBP, MBzP and MiBP levels (Swan et al 2005). In another study, MBP in maternal urine


99	and amniotic fluid was found to be associated with a shorter anogenital distance only in
100	female infants (Huang et al., 2009). In pregnant women, urinary MBP is negatively correlated
101	with thyroxine, free thyroxine and FT4 levels (Huang et al., 2007).
102	Many experimental studies using different laboratory animals (primarily rats) have
103	examined the reproductive toxicity, developmental toxicity, endocrine disruption, and
104	genotoxicity that might be induced by phthalic acids. For example, anti-androgenic effects
105	including delayed puberty in F_0 , decreased sperm production and fecundity in F_1 ,
106	malformations in F_1 reproductive organs, and decreased F_2 litter size, were reported for DBP
107	(NTP-CERHR, 2003b). DBP's metabolite, MBP, is responsible for the toxic effects
108	associated with DBP exposure. These include increased prenatal mortality, decreased fetal
109	weight, cleft palate, fused sternebrae, reduced anogenital distance in males, cryptorchidism,
110	hypospadias, and agenesis of the epididymides or seminal vesicles (NTP-CERHR, 2003b).
111	High doses of DiNP caused an increase in liver weight, peroxisomal proliferation, skeletal
112	variations and renal toxicity in a one-generation and a two-generation toxicity study
113	(Moorman et al., 2000; NTP-CERHR, 2003a). In rats, BBP exposure was associated with
114	decreased testicular weight, reduced ano-genital distance, increased incidence of nipple
115	retention and decreased birth weight in both sexes of the first filial generation (Gray et al.,
116	2000; Parks et al., 2000). Treatment with DEHP was also associated with altered ano-genital

117 distance and nipple retention (NTP-CERHR, 2005).

In vitro studies help in understanding the possible mechanisms of toxicity. Phthalates 118 119 and their metabolites can bind to several nuclear receptors and act as endocrine disruptors or 120 metabolic disruptors (Desvergne et al., 2009). In a series of reporter gene assays, DBP, MBP 121 and DEHP have been found to have both anti-androgenic and androgenic activities at different concentrations. These compounds also showed thyroid receptor (TR) antagonistic 122 123 activity. Only DBP was reported to have estrogenic activity (Shen et al., 2009). BBP has an affinity for binding to estrogen receptors (ER) (Blair et al., 2000; Hashimoto et al., 2000; 124 Matthews et al., 2000; Zacharewski et al., 1998), and activates ER-mediated transcription 125 (Coldham et al., 1997; Harris et al., 1997; Hashimoto et al., 2000; Nishihara et al., 2000; 126 Zacharewski et al., 1998). DEHP has a weak agonistic activity at aryl hydrocarbon receptors 127 128 (AhR) (Kruger et al., 2008), constitutive androstane receptors (CAR, Nr1i3) (Eveillard et al., 129 2009), and Pregnane X nuclear receptors (PXR, Nr1i2) (Cooper et al., 2008; Hurst and 130 Waxman, 2004). Phthalates, especially MEHP, interfere with steroid production, particularly 131 estradiol production and aromatase expression. A possible mechanism for this interference is 132 through mediation at peroxisome proliferator-activated receptors (PPAR) (Lovekamp-Swan 133 et al., 2003; Lovekamp and Davis, 2001). MEHP is a true ligand for all three PPAR isotypes 134 and a selective modulator of PPAR gamma (Desvergne et al., 2009). BBP does not activate progesterone receptor-mediated transcription (Tran et al., 1996) or AR-mediated transcription 135 136 (Sohoni and Sumpter, 1998). While BBP alone did not show a significant agonistic AhR

137	effect, it enhanced TCDD induced AhR activity in a dose-dependent manner (Kruger et al.,
138	2008). BBP exposure in female rats is also associated with a significant increase in liver
139	Ethoxyresorufin-O-deethylation (EROD) activity (Singletary et al., 1997). BBP also induces
140	human breast cancer cell proliferation (Harris et al., 1997; Korner et al., 1998; Soto et al.,
141	1997).
142	We monitored eleven phthalate metabolites (MEHP, 5OH-MEHP, 2cx-MEHP,
143	5cx-MEPP, 5oxo-MEHP, MiBP, MnBP, MBzP, OH-MiNP, oxo-MiNP, and cx-MiNP) in
144	pregnant women (urine, serum and milk), their newborns (cord blood) and prospectively in
145	their children at ages 2-3 and 5-6 (urine) from a general population in Central Taiwan. These
146	eleven metabolites were derived from exposure to five commonly used phthalates: DEHP
147	(MEHP, 5OH-MEHP, 2cx-MEHP, 5cx-MEPP, and 5oxo-MEHP), DiBP (MiBP), DnBP
148	(MnBP), BBP (MnBP and MBzP), and DiNP (OH-MiNP, oxo-MiNP, and cx-MiNP).
149	Exposure to phthalic acids was estimated based on the 95% confidence interval for the level
150	of each measured urinary metabolite, and excretion fraction published in the literature.
151	Correlations among metabolites of the same parental compounds and among different types
152	of samples from pregnant women and their corresponding children were also tested.
153	
154	Methods

156 Participants, specimen and data collection

175	aged 5-6, 30 urine samples from children aged 2-3, and 30 paired cord blood samples and
176	milk samples were randomly retrieved and sent for analysis. The difference in the number of
177	children's samples was due to freshness and budget limitations, and the fact that one of the
178	samples had insufficient volume for creatinine analysis.
179	
180	Analysis of phthalate metabolites
181	The concentrations of eleven phthalate metabolites (MEHP, 5OH-MEHP, 2cx-MEHP,
182	5cx-MEPP, 5oxo-MEHP, MiBP, MnBP, MBzP, OH-MiNP, oxo-MiNP, and cx-MiNP) in
183	urine, cord serum and breast milk were determined with LC-MS-MS methods as described in
184	previous publications (Koch et al., 2003; Preuss et al., 2005) by Dr Jürgen Angerer's lab at
185	the University of Erlangen, Germany. Metabolite concentrations are expressed as " μ g/L" or
186	"μg/g creatinine". "Total metabolites" refers to the sum of metabolites calculated by adding
187	the concentrations of all metabolites.
188	
189	Determination of creatinine levels in urine
190	Urinary creatinine levels were measured by Kaohsiung Medical University Chung-Ho
191	Memorial Hospital, using the spectrophotometric method, with picric acid as the reactive
192	agent, and read at 520nm.
193	

195	We verified the distribution of data for phthalate metabolites for normality. As the
196	data were generally skewed slightly to the right, log transformations of phthalate metabolite
197	values and geometric means were applied in parametric statistical tests. Metabolite levels
198	under the limits of detection (<lod) as="" from<="" half="" lod="" recorded="" samples="" td="" the="" value.="" were=""></lod)>
199	male and female children were considered both separately and together to determine gender
200	differences. Pearson's correlation tests (r = Pearson correlation coefficient) were used to
201	check for correlations among values of metabolites from the same parental compound in
202	different matrices. The metabolite profile of the urine samples from each subject was
203	expressed as a percentage. The geometric means of the groups were used for parametric tests
204	and medians were used for non parametric tests. The Statistical Package for Social Science
205	(version 15.0; SPSS, Chicago, IL, USA) was used for statistical analysis.
206	
207	Estimation of parental compound levels
208	The amount of parental phthalate to which each subject might have been exposed was
209	estimated using excretion fractions reported in the literature (Wittassek et al., 2007). We
210	calculated the range of possible original parental compound levels, based on the 95%
211	confidence interval for the level of each urinary metabolite.

213 (1) Parental compound = metabolite concentration × excretion fraction

215	We also calculated the daily intake (Estimated Daily Intake, EDI) for these parental
216	compounds, taking into account an average body weight of 55 kg for Taiwanese women, 16.5
217	kg for children aged 2-3, and 20 kg for children aged 5-6 (DOH 2000). A daily urine
218	excretion of 0.8-2.2L was calculated for pregnant women, 0.6L for children aged 2-3 and 0.7
219	L for children aged 5-6 (Fleisher et al., 2002).
220	
221	(2) Estimated daily intake = estimated parental compound concentration × daily urine
222	excretion × average body weight
223	
224	As an example, to estimate the maximum exposure to BBP for children aged 5 and 6,
	As an example, to estimate the maximum exposure to BBP for children aged 5 and 6, we used the MnBP concentration in their urine (GM max= 4.86), and an excretion rate of
224	
224 225	we used the MnBP concentration in their urine (GM max= 4.86), and an excretion rate of
224 225 226	we used the MnBP concentration in their urine (GM max= 4.86), and an excretion rate of 73%, as reported by Wittassek et al 2007; therefore, the parental compounds from which this
224 225 226 227	we used the MnBP concentration in their urine (GM max= 4.86), and an excretion rate of 73%, as reported by Wittassek et al 2007; therefore, the parental compounds from which this metabolite originated should be $4.86 \times 100 \div 73 = 6.66 \mu g/L$. For the estimation of daily intake,
 224 225 226 227 228 	we used the MnBP concentration in their urine (GM max= 4.86), and an excretion rate of 73%, as reported by Wittassek et al 2007; therefore, the parental compounds from which this metabolite originated should be $4.86 \times 100 \div 73 = 6.66 \mu g/L$. For the estimation of daily intake, a daily urinary excretion of 0.7L urine/day for children this age was multiplied by the

233 **Results**

234

235 General characteristics of the population

236	Table 1 shows the general characteristics of participating subjects, including maternal
237	age, maternal education level, and breast feeding patterns. The average age of the mothers
238	was 29, and the average pre-pregnant BMI was 21. Forty-one percent of the breast-feeding
239	mothers were taking supplements: vitamins, calcium, folic acid or Chinese herbs. Forty-six
240	percent of the infant subjects were male. Mean body weights at birth for the 2-3-year-old
241	cohort and the 5-6-year-old cohort were 3290±460g and 3240±450g, respectively.
242	
243	Urinary metabolite levels
244	Urinary phthalate metabolite levels in children at ages 2 and 5 and pregnant women
245	were compared using values with and without creatinine adjustment (Table 2). Generally,
246	metabolite levels were higher in children than in pregnant women. This could be observed
247	whether creatinine adjustment was applied or not. Total phthalate metabolite concentrations
248	without creatinine adjustment were found to be higher in 2-year-old children (GM =
249	398.6µg/L, 282.6–562.3) and 5-year-old children (333.7µg/L, 251.8–442.2) than in pregnant

women (205.2µg/L, 172.7–243.8). When creatinine adjustment was applied, children

251 appeared to have even higher phthalate metabolite concentrations; however, we should take

252	into account the fact that the level of creatinine in pregnant women's urine was higher than
253	that in children (PW: 76.60µg/L; 5Y: 59.53µg/L; and 2Y: 62.28µg/L).
254	Analysis of the proportion of metabolites in urine helps identify the parental
255	compound and source of exposure. Phthalate metabolites in urine were mainly those from
256	DEHP, followed by metabolites from DnBP or BBP and those from DiNP. The sums of
257	urinary DEHP metabolites, with a GM of 102.2 μ g/L for pregnant women, 152.3 μ g/L for
258	5-year old children and 200.3 μ g/L for 2-year old children, were proportionally higher. The
259	second most abundant metabolite was MnBP (Pw: 72.29µg/L; 5y: 75.09µg/L; 2y:
260	100.44µg/L). It was followed by MiBP (Pw: 12.49µg/L; 5y: 25.24µg/L; 2y: 17.21µg/L), and
261	MBzP (Pw: 0.96µg/L; 5y: 3.61µg/L; 2y: 3.40µg/L). The ratio of DiNP metabolites/Total
262	phthalate metabolites observed in children's urine samples was higher than that in adult
263	samples. The total DiNP metabolite concentration was 1.71µg/L for pregnant women,
264	$27.73\mu g/L$ for 5-year old children and $17.46\mu g/L$ for 2-year old children. The proportion of
265	each metabolite over total phthalate metabolite is shown in Table 3. No gender difference
266	was found at any age, either for the total concentration or for any particular metabolite.
267	
268	Phthalate metabolites in cord sera and milk samples
269	Only MEHP, MiNP and MnBP were detected in some of the breast milk samples

270 (Table 4). MEHP was detected in 73% of the samples. When compared to urine, the

271	concentrations of phthalate metabolites were much lower in milk and cord blood samples.
272	The compositions of the phthalate metabolites found in these matrices were also very
273	different. The most abundant metabolite in cord blood serum samples was MEHP, rather than
274	oxidized metabolites of DEHP (Table 4).
275	
276	Correlational studies
277	We found that DEHP metabolite concentrations in urine samples of pregnant women
278	(without creatinine adjustment) and their corresponding cord blood samples were
279	significantly correlated for two of the metabolites, 5cxMEPP (r=0.53, p<0.01) and
280	2cxMMHP (<i>r</i> =0.44, p<0.01) (Table 5). This correlation was still observed when the
281	creatinine adjustment was applied to the urine samples (data not shown). Oxo-MiNP
282	concentrations in urinary samples of children at both ages were well correlated ($r = 0.41$,
283	p<0.05).
284	Concentrations of different metabolites derived from DEHP and DiNP within the
285	same sample were well correlated as were the sum of metabolites from the same parental
286	compound (Pearson's correlation between 0.7 and 0.988). DBzP-derived metabolites are
287	MBzP and MnBP. We observed no correlation between the concentrations of these two
288	metabolites (data not shown). DnBP is another source for MnBP. This lack of DBzP
289	derivation suggests that DnBP is the main contributing source for the formation of MnBP.

291	Estimation of parental compound exposure
292	The estimated parental contribution to actual phthalate metabolite levels in urinary
293	samples and the estimated daily intake of these compounds suggested that children were
294	more exposed to phthalate than were pregnant women. Children aged 2-3 seem to have been
295	exposed to more total phthalate, particularly to DEHP and DnBP at that younger age than
296	when they were 5-6 years old. An estimated daily intake of each parental compound and a
297	tolerable daily intake (TDI) reference are shown in Table 6. The exposure of the participants
298	in this project did not exceed tolerable daily intake as determined by the European Food
299	Safety Authority (2005).
300	
301	Discussion
302	Compared to a CDC study of a population aged 6 and older in the USA (EPA, 2005),
303	the phthalate metabolite levels in the current study (as a geometric mean) were higher for
304	MEHP, 50H MEHP, 50x0MEHP, 5cxMEPP and MnBP, and lower for MBzP. When
305	compared to a German study of nursery school children aged 2-6 (Koch et al., 2004), the
306	level of MEHP in our study (as a median) was higher, while the levels of 5OH MEHP, 5oxo
307	MEHP, MnBP and MBzP were lower. When compared to levels in children aged 3-5 in the
308	GerES IV study (Becker et al 2009), only the MEHP level in our study was higher. The levels

309	of 5OH MEHP, 5oxo MEHP and MnBP in our study were lower than those in a Japanese
310	study performed exclusively on pregnant women (Suzuki et al., 2009). As stated in previous
311	reports about human DEHP metabolism, the urinary DEHP metabolites are oxidized products,
312	rather than monoesters, and the simple monoester MEHP was the dominant metabolite in
313	blood serum (Wittassek et al., 2007). The MEHP concentration was also found to be higher
314	than that of other oxidized metabolites in our cord serum samples (Table 4). Although
315	phthalate metabolite levels in milk and cord sera were low, cord blood metabolite levels were
316	well correlated with maternal urinary metabolite levels (Table 5); therefore, maternal urinary
317	metabolite levels may be useful in prenatal exposure studies.
318	The phthalate metabolites detected in breast milk in this study were mainly MEHP
319	and MnBP (Table 4). The levels of MEHP in milk were lower than those reported from the
320	USA (Calafat et al 2004), Denmark (Mortensen et al 2005, Main et al 2006), Finland (Main
321	et al 2006) and Italy (Latini et al 2009). Levels of MnBP were second highest in the studies in
322	Finland and Italy Concentrations of phthalate metabolites in milk, blood and serum were
323	close to the limit of detection; therefore, phthalate metabolites in urine maybe more
324	informative than those in milk or serum (Hogberg et al., 2008).
325	We found no correlation among levels of metabolites in different matrices from the
326	same person, i.e., urine sample, milk sample, and cord blood. This observation is in
327	agreement with previous studies, where authors concluded that phthalate concentrations in

328	urine were higher than those in serum, milk or saliva, and did not reflect the concentrations of
329	oxidative metabolites in other body fluids, especially milk (Hines et al., 2009, Hogberg et al.,
330	2008). The composition of phthalate metabolites was very different in urine and milk samples.
331	Although it is not clear how phthalate metabolites are secreted into different body fluids or
332	travel across the placenta, they probably have different rates of secretion. An in vitro
333	experiment where the placenta was perfused with different phthalate monoesters showed
334	differential diffusion rates across the placenta for different phthalate metabolites (Mose et al
335	2007). This suggested that physical-chemical properties of the compounds may influence
336	the tissue distribution of the metabolites. This may also explain the lack of correlation among
337	different matrices in the same subject. In general, DEHP and DiNP derived metabolites better
338	represented the overall phthalate exposure as they were the most important contributors in
339	
	pregnant women and children, respectively.
340	pregnant women and children, respectively. The phthalate exposure profile suggests that the major health risks that might be
340 341	
	The phthalate exposure profile suggests that the major health risks that might be
341	The phthalate exposure profile suggests that the major health risks that might be associated with this population could be anti-androgenic activity and tyrosine receptor
341 342	The phthalate exposure profile suggests that the major health risks that might be associated with this population could be anti-androgenic activity and tyrosine receptor antagonistic activity related to MBP, DEHP, and DBP exposure. Mixtures of phthalate esters
341342343	The phthalate exposure profile suggests that the major health risks that might be associated with this population could be anti-androgenic activity and tyrosine receptor antagonistic activity related to MBP, DEHP, and DBP exposure. Mixtures of phthalate esters exhibit cumulative, largely dose-additive effects on male rat reproductive tract development

347	Mixtures including BB	P, DBP, DEHP	, DiBP and DPP reduced	testosterone production in a
-----	-----------------------	--------------	------------------------	------------------------------

- 348 dose-additive manner (Howdeshell, Wilson et al 2008).
- 349 DiNP is widely used in toys and the proportions of its metabolites differed among
- 350 urine samples from 2-3 year-olds, 5-6 year-olds, and mothers. Our levels tended to be lower
- than those in Japanese (Suzuki et al., 2009), US (CDC, 2005; Swan et al., 2005), and German
- 352 populations (Becker et al., 2009). Higher exposure to DiNP in children could be associated
- 353 with renal toxicity or problems in skeletal development.
- 354 MnBP and MBzP are breakdown products of BBP. In an experiment where stable
- isotope-labelled BBP was administered to eight volunteers in a single dose, 73% was
- as MBzP and 6% as MnBP on a molar basis (Anderson et al., 2001). We found that
- the concentration of MnBP was much larger than that of MBzP in our urine samples. Because
- 358 MnBP can also be derived from DnBP, our results suggest that DnBP is probably the
- 359 principal contributor of MnBP in this population.

360 Although estimated daily intake values were below the tolerable daily intake

- according to CSTEE 1998 (Koch et al, 2003) and EFSA (2005), MiBP and MnBP levels in
- 362 maternal urine were higher than those reported for mothers who gave birth to newborns with
- 363 shorter ano-genital distances (Swan, 2006; Swan et al., 2005), indicating a potential risk for
- anti-androgenic effects in this population.

365	Higher exposures to DEHP in general and to DiNP in children seem to characterize
366	the phthalate exposure in this population. Although the daily intake values estimated from
367	urinary metabolites were within the tolerable daily intake levels as published by the European
368	Food Safety Authority (EFSA, 2005), it is worth noting that phthalate acids are currently
369	banned for use in toys and school supplies and, therefore, TDI is no longer applicable.
370	Further studies will look deeper into the health effects reported as a result of exposure to
371	DEHP and DiNP, e.g., gender-related behaviour, obesity, liver function, bone density, and
372	allergy, in the population we have been following for several years.
373	
374	Conclusions
375	Eleven phthalate metabolites derived from exposure to five commonly used phthalates
376	were monitored. Higher exposures to DEHP in general, to DiNP for children, and lower
377	exposure to BBP are the characteristics of phthalate exposure for pregnant women and their
378	children in Central Taiwan.
379	We found no association between metabolite levels in the mothers and in their
380	children at ages 2 or 5. This may be due to differences in types of ingested food and habits.
381	Metabolite levels in different matrices from the same person, i.e., urine sample, milk sample,
382	and cord blood were not associated. Metabolites derived from the same parental compound,
383	as in the cases of DEHP and DiNP, were well correlated. Although the metabolites derived

384	from a particular phthalic acid are inter-correlated, the additive effects and variability of the
385	secretion fraction suggest that the measurement of individual metabolites is necessary in
386	order to estimate the total exposure.
387	Compared to other populations in the world, the phthalate metabolite levels found in
388	this study were higher for DEHP derived metabolites in urine, whether or not the data was
389	adjusted by creatinine. The levels of phthalate metabolites in milk and cord blood were
390	comparable to those found in other populations. Further follow up studies on health effects

391 related to DEHP and DiNP exposure are necessary.

392	Acknowledgements
393	We greatly appreciate the excellent assistance of Ms. Hsiao-Yen Chen for the various
394	specimen collections.
395	
396	Grant
397	This work was supported by National Health Research Institutes, Taiwan (EO-97-PP-05 and
398	EO-98-PP-03)
399	

401	References
-----	------------

403	Anderson, W.A., Castle, L., Scotter, M.J., Massey, R.C., Springall, C., 2001. A biomarker
404	approach to measuring human dietary exposure to certain phthalate diesters. Food
405	Addit. Contam. 18(12):1068-74.
406	Becker, K. Göen, T., Seiwert M., Conrad, A., Pick-Fuss, H., Müller, J., Wittassek, M.,
407	Schultz, C., Kolossa-Gehring, M., 2009. GerES IV: Phthalate metabolites and
408	bisphenol A in urine of German children. Int. J. Hyg. Environ. Health
409	212(6):685-692.
410	Blair, R.M., Fang, H., Branham, W.S., Hass, B.S., Dial, S.L., Moland, C.L., Tong, W., Shi,
411	L., Perkins, R., Sheehan, D.M., 2000. The estrogen receptor relative binding affinities
412	of 188 natural and xenochemicals: structural diversity of ligands. Toxicol. Sci.
413	54(1):138-53.
414	Calafat, A.M., Slakman, A.R., Silva, M.J., Herbert, A.R., Needham, L.L., 2004. Automated
415	solid phase extraction and quantitative analysis of human milk for 13 phthalate
416	metabolites. J of Chromatogr B Analyt Technol Biomed Life Sci, 805:49-56.
417	Chen, M.L., Chen, J.S., Tang, C.L., Mao, I.F., 2008. The internal exposure of Taiwanese to
418	phthalate - an evidence of intensive use of plastic materials. Environ. Int. 34(1):79-85.

419	Coldham, N.G., Dave, M., Sivapathasundaram, S., McDonnell, D.P., Connor, C., , Sauer,
420	M.J., 1997. Evaluation of a recombinant yeast cell estrogen screening assay. Environ.
421	Health Perspect. 105(7):734-42.
422	Cooper, B.W., Cho, T.M., Thompson, P.M., Wallace, A.D., 2008. Phthalate induction of
423	CYP3A4 is dependent on glucocorticoid regulation of PXR expression. Toxicol. Sci.
424	103(2):268-77.
425	Desvergne, B., Feige, J.N., Casals-Casas, C., 2009. PPAR-mediated activity of phthalates: A
426	link to the obesity epidemic? Mol. Cell. Endocrinol. 304(1-2):43-8.
427	DOH (Department of Health, Taiwan), 2000. Nutrition and Health Survey in Taiwan
428	(NAHSIT) 1993-1996.
429	Duty, S.M., Calafat, A.M., Silva, M.J., Brock, J.W., Ryan, L., Chen, Z., Overstreet, J.,
430	Hauser, R., 2004. The relationship between environmental exposure to phthalates and
431	computer-aided sperm analysis motion parameters. J. Androl. 25(2):293-302.
432	European Food Safety Authority. 2005. [BBP] The EFSA Journal. 241: 1-14
433	European Food Safety Authority. 2005. [DBP] The EFSA Journal. 242:1-17
434	European Food Safety Authority. 2005. [DEHP] The EFSA Journal. 243: -20
435	European Food Safety Authority. 2005. [DINP] The EFSA Journal. 244:1-18
436	European Food Safety Authority. 2005. [DIDP] The EFSA Journal. 245:1-14

437	Eveillard, A., Mselli-Lakhal, L., Mogha, A., Lasserre, F., Polizzi, A., Pascussi, J.M., Guillou,
438	H., Martin, P.G., Pineau, T., 2009. Di-(2-ethylhexyl)-phthalate (DEHP) activates the
439	constitutive androstane receptor (CAR): a novel signalling pathway sensitive to
440	phthalates. Biochem. Pharmacol. 77(11):1735-46.
441	Fay, M., Donohue, J.M., De Rosa, C., 1999. ATSDR evaluation of health effects of
442	chemicals. VI. Di(2-ethylhexyl)phthalate. Agency for Toxic Substances and Disease
443	Registry. Toxicol. Ind. Health 15(8):651-746.
444	Fleisher, G., Ludwig, S. 2002. Synopsis of Pediatric Emergency Medicine Philadelphia, PA.
445	Lippincott Williams & Wilkins.
446	Gray, L.E.Jr., Ostby, J., Furr, J., Price, M., 2000. Veeramachaneni DN, Parks L. Perinatal
447	exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP,
448	alters sexual differentiation of the male rat. Toxicol. Sci. 58(2):350-65.
449	Harris, C.A., Henttu, P., Parker, M.G., Sumpter, J.P., 1997. The estrogenic activity of
450	phthalate esters in vitro. Environ. Health Perspect. 105(8):802-11.
451	Hashimoto, Y., Moriguchi, Y., Oshima, H., Nishikawa, J., Nishihara, T., Nakamura, M., 2000.
452	Estrogenic activity of chemicals for dental and similar use in vitro. J. Mater. Sci.
453	Mater. Med. 11(8):465-8.

454	Hines, E.P., Calafat, A.M., Silva, M.J., Mendola, P., Fenton, S.E., 2009. Concentrations of
455	phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina
456	women. Environ. Health Perspect. 117(1)86-92.
457	Högberg, J., Hanberg, A., Berglund, M., Skerfving, S., Remberger, M., Calafat, A.M.,
458	Filipsson, A.F., Jansson, B., Johansson, N., Appelgren, M., Håkansson, H., 2008.
459	Phthalate diesters and their metabolites in human breast milk, blood or serum, and
460	urine as biomarkers of exposure in vulnerable populations. Environ. Health Perspect.
461	116(3):334-9.
462	Hoppin, J.A., Ulmer, R., London, S.J., 2004. Phthalate exposure and pulmonary function.
463	Environ. Health Perspect. 112(5):571-4.
464	Howdeshell, K.L., Rider, C.V., Wilson, V.S., Gray, L.E. Jr., 2008. Mechanisms of actions of
465	phthalate esters, individually and in combination, to induce abnormal reproductive
466	development in male laboratory rats. Environ Res 108:168-176.
467	Howdeshell, K.L., Wilson, V.S., Furr, J., Lambright, C.R., Rider, C.V., Blystone, C.R.,
468	Hotchkiss, A.K., Gray, L.E. Jr., 2008. A Mixture of five phthalate esters inhibits fetal
469	testicular testosterone production in the Sprague-Dawly rat in a cumulative,
470	dose-additive manner. Toxicolog Sci 105(1), 153-165.
471	Howdeshell, K.L., Furr, J., Lambright, C.R., Rider, C.V., Wilson, V.S., Gray, L.E. Jr. 2007.
472	Cumulative Effects of Dibutyl Phthalate and Diethylhexyl Phthalate on Male Rat

473 Reproductive Tract Development: Altered Fetal Steroid Hormones and Gene

- 474 Toxicolog Sci 99(1):190-202.
- 475 Huang, P.C., Kuo, P.L., Chou, Y.Y., Lin, S.J., Lee, C.C., 2009. Association between prenatal
- 476 exposure to phthalates and the health of newborns. Environ. Int. 35(1):14-20.
- 477 Huang, P.C., Kuo, P.L., Guo, Y.L., Liao, P.C., Lee, C.C., 2007. Associations between urinary
- 478 phthalate monoesters and thyroid hormones in pregnant women. Hum. Reprod.
- 479 22(10):2715-22.
- 480 Hurst, C.H., Waxman, D.J., 2004. Environmental phthalate monoesters activate pregnane X

481 receptor-mediated transcription. Toxicol Appl Pharmacol 199(3):266-74.

- 482 Jaakkola, J.J., Oie, L., Nafstad, P., Botten, G., Samuelsen, S.O., Magnus, P., 1999. Interior
- 483 surface materials in the home and the development of bronchial obstruction in young
- 484 children in Oslo, Norway. Am. J. Public Health 89(2):188-92.
- 485 Jaakkola, J.J., Verkasalo, P.K., Jaakkola, N., 2000. Plastic wall materials in the home and

486 respiratory health in young children. Am. J. Public Health 90(5):797-9.

- 487 Jahnke, G.D., Iannucci, A.R., Scialli, A.R., Shelby, M.D., 2005. Center for the evaluation of
- 488 risks to human reproduction--the first five years. Birth Defects. Res. B. Dev. Reprod.
- 489 Toxicol. 74(1):1-8.

490	Koch, H.M., Drexler, H., Angerer, J., 2004. Internal exposure of nursery-school children and
491	their parents and teachers to di(2-ethylhexyl)phthalate (DEHP). Int J Hyg Environ
492	Health; 207(1):15-22.
493	Koch, H.M., Gonzalez-Reche, L.M., Angerer, J., 2003. On-line clean-up by multidimensional
494	liquid chromatography-electrospray ionization tandem mass spectrometry for high
495	throughput quantification of primary and secondary phthalate metabolites in human
496	urine. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 784(1):169-82.
497	Koch, H.M., Preuss, R., Drexler, H., Angerer, J., 2005. Exposure of nursery school children
498	and their parents and teachers to di-n-butylphthalate and butylbenzylphthalate. Int
499	Arch Occup Environ Health 78(3):223-9.
500	Koo, H.J., Lee, B.M., 2004. Estimated exposure to phthaiates in cosmetics and risk
501	assessment. J. Toxicol. Environ. Health A 67(23-24):1901-14.
502	Korner, W., Hanf, V., Schuller, W., Bartsch, H., Zwirner, M., Hagenmaier, H., 1998.
503	Validation and application of a rapid in vitro assay for assessing the estrogenic
504	potency of halogenated phenolic chemicals. Chemosphere 37(9-12):2395-407.
505	Kruger, T., Long, M., Bonefeld-Jorgensen, E.C., 2008. Plastic components affect the
506	activation of the aryl hydrocarbon and the androgen receptor. Toxicology
507	246(2-3):112-23.

508	Latini, G., Wittassek, M., Del Vecchio, A., Presta, G., De Felice, C., Angerer, J., 2009.
509	Lactational exposure to phthalates in Southern Italy. Environ. Int. 35(2):236-9.
510	Lee, S.K., Owens, G.A., Veeramachaneni, D.N., 2005. Exposure to low concentrations of
511	di-n-butyl phthalate during embryogenesis reduces survivability and impairs
512	development of Xenopus laevis frogs. J. Toxicol. Environ. Health A 68(10):763-72.
513	Lovekamp-Swan T, Jetten AM, Davis BJ. 2003. Dual activation of PPARalpha and
514	PPARgamma by mono-(2-ethylhexyl) phthalate in rat ovarian granulosa cells. Mol
515	Cell Endocrinol 201(1-2):133-41.
516	Lovekamp, T.N., Davis, B.J., 2001. Mono-(2-ethylhexyl) phthalate suppresses aromatase
517	transcript levels and estradiol production in cultured rat granulosa cells. Toxicol. Appl.
518	Pharmacol. 172(3):217-24.
519	Main, K.M., Mortensen, G.K., Kaleva, M.M., Boisen, K.A., Damgaard, I.N., Chellakooty, M.,
520	Schmidt, I.M., Suomi, A.M., Virtanen, H.E., Petersen, D.V., Andersson, A.M.,
521	Toppari, J., Skakkebaek, N.E., 2006. Human Breast Milk Contamination with
522	Phthalates and Alterations of Endogenous Reproductive Hormones in Infants Three
523	Months of Age. Environ Health Perspect 114(2):270-276.
524	Matthews, J., Celius, T., Halgren, R., Zacharewski, T., 2000. Differential estrogen receptor
525	binding of estrogenic substances: a species comparison. J. Steroid Biochem. Mol. Biol.
526	74(4):223-34.

527	McKee, R.H., 2004. Phthalate exposure and early thelarche. Environ. Health Perspect.
528	112(10):A541-3.
529	Moorman, W.J., Ahlers, H.W., Chapin, R.E., Daston, G.P., Foster, P.M., Kavlock, R.J.,
530	Morawetz, J.S., Schnorr, T.M., Schrader, S.M., 2000. Prioritization of NTP
531	reproductive toxicants for field studies. Reprod. Toxicol. 14(4):293-301.
532	Mortensen, G.A., Main, K.M., Andersson, A.M., Leffers, H., Skakkebaek, N.E., 2005.
533	Determination of phthalate monoesters in human milk, consumer milk, and infant
534	formula by tandem mass spectrometry (LC-MS-MS). Anal Bioanal Chem
535	382:1084-1092.
536	Mose, T., Mortensen, G.K., Hedegaard, M., Knudsen, L.E., 2007. Phthalate monoesters in
537	perfusate from a dual placenta perfusion system, the placenta tissue and umbilical
538	cord blood. Reprod Toxicology 23:83-91.
539	Nishihara, E., Nagayama, Y., Inoue, S., Hiroi, H., Muramatsu, M., Yamashita, S., Koji, T.,
540	2000. Ontogenetic changes in the expression of estrogen receptor alpha and beta in rat
541	pituitary gland detected by immunohistochemistry. Endocrinology 141(2):615-20.
542	National Toxicology Program – Center for the Evaluation of Risks to Human Reproduction.
543	2000. NTP-CERHR Monograph on the Potential Human Reproductive and
544	Developmental Effects of Di-isononyl Phthalate (DINP). Ntp Cerhr DINP 00.

545	National Toxicology Program – Center for the Evaluation of Risks to Human Reproduction.
546	2000. NTP-CERHR Monograph on the Potential Human Reproductive and
547	Developmental Effects of Di-n-Butyl Phthalate (DBP). Ntp Cerhr DBP 00.
548	Parks, L.G., Ostby, J.S., Lambright, C.R., Abbott, B.D., Klinefelter, G.R., Barlow, N.J., Gray,
549	L.E.Jr., 2000. The plasticizer diethylhexyl phthalate induces malformations by
550	decreasing fetal testosterone synthesis during sexual differentiation in the male rat.
551	Toxicol Sci 58(2):339-49.
552	Preuss, R., Koch, H.M., Angerer, J. 2005. Biological monitoring of the five major
553	metabolites of di-(2-ethylhexyl)phthalate (DEHP) in human urine using
554	column-switching liquid chromatography-tandem mass spectrometry. J Chromatogr B
555	Analyt Technol Biomed Life Sci 816(1-2):269-80.
556	Rastogi, S.K., Kesavachadran, C., Mahdi, F., Pandey, A., 2006. Phthalate exposure and
557	health outcomes. Indian J Occup Environ Med 10(3):111-115.
558	Sathyanarayana, S., 2008. Phthalates and Children's Health. Curr Probl Pediatr Adolesc.
559	Health Care 38:34-49.
560	Shen, O., Du, G., Sun, H., Wu, W., Jiang, Y., Song, L., Wang, X., 2009. Comparison of in
561	vitro hormone activities of selected phthalates using reporter gene assays. Toxicol.
562	Lett. 191:9-14.

563	Singletary, K., MacDonald, C., Wallig, M., 1997. The plasticizer benzyl butyl phthalate (BBP)
564	inhibits 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary DNA adduct
565	formation and tumorigenesis. Carcinogenesis 18(8):1669-73.
566	Sohoni, P., Sumpter, J.P., 1998. Several environmental oestrogens are also anti-androgens. J.
567	Endocrinol. 1998; 158(3):327-39.
568	Soto, A.M., Fernandez, M.F., Luizzi, M.F., Oles Karasko, A.S., Sonnenschein, C., 1997.
569	Developing a marker of exposure to xenoestrogen mixtures in human serum. Environ.
570	Health Perspect. 105 Suppl 3:647-54.
571	Stahlhut, R.W., van Wijngaarden, E., Dye, T.D., Cook, S., Swan, S.H., 2007. Concentrations
572	of urinary phthalate metabolites are associated with increased waist circumference
573	and insulin resistance in adult U.S. males. Environ. Health Perspect. 115(6):876-82.
574	Suzuki, Y., Niwa, M., Yoshinaga, J., Watanabe, C., Mizumoto, Y., Serizawa, S., Shiraishi, H.
575	2009. Exposure assessment of phthalate esters in Japanese pregnant women by using
576	urinary metabolite analysis. Environ Health Prev Med 14:180-187.
577	Swan, S.H., 2006. Prenatal phthalate exposure and anogenital distance in male infants.
578	Environ. Health Perspect. 114(2):A 88-9.
579	Swan, S.H., Main, K.M., Liu, F., Stewart, S.L., Kruse, R.L., Calafat, A.M., Mao, C.S.,
580	Redmon, J.B., Ternand, C.L., Sullivan S, Teague, JL. 2005 Decrease in anogenital

581	distance among male infants with prenatal phthalate exposure. Environ Health
582	Perspect 113(8):1056-61.
583	Tran, D.Q., Klotz, D.M., Ladlie, B.L., Ide, C.F., McLachlan, J.A., Arnold, S.F., 1996.
584	Inhibition of progesterone receptor activity in yeast by synthetic chemicals. Biochem.
585	Biophys. Res. Commun. 229(2):518-23.
586	USEPA, 2010. Urinary Phthalate Level.
587	<http: cfpub.epa.gov="" eroe="" index.cfm?fuseaction="detail.viewMidImg&lShowInd=0&</td"></http:>
588	subtop=208&lv=list.listByAlpha&r=188260#9581> Last updated on Wednesday,
589	January 20th, 2010.
590	Wittassek, M., Wiesmüller, G.A., Koch, H.M., Eckard, R., Dobler, L., Muller, J., Angerer, J.,
591	Schlüter, C., 2007. Internal phthalate exposure over the last two decadesa
592	retrospective human biomonitoring study. Int. J. Hyg. Environ. Health
593	210(3-4):319-33.
594	Zacharewski, T.R., Meek, M.D., Clemons, J.H., Wu, Z.F., Fielden, M.R., Matthews, J.B.,
595	1998. Examination of the in vitro and in vivo estrogenic activities of eight commercial
596	phthalate esters. Toxicol Sci 46(2):282-93.