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Summary

Tetracyanonickelate (II) (TCN) has been proved to be
degraded by Klebsiella oxytoca. In order to examine
the physiological responses of TCN degradation by
this bacterium, two-dimensional (2-DE) electrophore-
sis approach and Matrix-assisted laser desorption/
ionization-time of flight-mass spectrometry allow us
to identify 91 proteins spots that were significantly
altered in the presence of 1 mM TCN in relative to that
in 1 mM ammonia when K. oxytoca grown at the late-
log phase. Among them, 43 proteins were success-
fully identified. Fractions enriched in hydrophobic
proteins were obtained with a specific extraction
method based on temperature-dependent phase par-
titioning with Triton X-114, with the successful identi-
fication of 26 proteins out of 41 differential proteins.
Some proteins were related with TCN metabolism.
OsmC-like protein, molecular chaperone DnaK, glu-
tathione S-transferase, alkyl hydroperoxide reduc-
tase, DNA protection during starvation conditions
and DNA binding ferritin-like protein can counteract
the oxidative stress from TCN biodegradation. The
nitrogenase had been suggested to participate in TCN
degradation by K. oxytoca, and was upregulated in
TCN-treated cells as expected. The induction of
glutamine synthetase could enhance the assimilation
of limited nitrogen source produced from the biocon-
version of TCN into ammonia as the alternate nitrogen
source for bacteria growth. These findings could

provide new insights into the inducible mechanisms
underlying the capacity of K. oxytoca to tolerate TCN
stress.

Introduction

Cyanide (KCN) is highly toxic to living organisms (Chena
and Liu, 1999; Yanase et al., 2000) by inactivating the
respiration system by tightly binding to terminal oxidases
(Porter et al., 1983), and is produced by industry with a
total amount of 2–3 millions of tons per year (Raybuck,
1992). About 80% of KCN is used in the synthesis of
organic compounds such as nitriles, nylon, acrylic plas-
tics, painting, adhesives, cosmetics, dyes, drugs, chelat-
ing agents, etc. (Luque-Almagro et al., 2007). As cyanide
is a very toxic compound and the waste products gener-
ally contain other contaminants including heavy metals
such as nickel, copper, zinc and iron (Silva-Avalos et al.,
1990), the metal–cyano complexes are major forms in
metal containing waste because of the quick binding of
KCN with metals (Chen et al., 2009). Such metal–cyano
complexes are highly stable and more resistant to biologi-
cal attack compared with free cyanide (Chen et al., 2009).
Currently, wastewater containing cyanide is treated by
chemical oxidation methods (alkaline chlorination, ozo-
nization, wet-air oxidation) (Watanabe et al., 1998).
However, these methods are expensive and hazardous
chemicals are used as the reagent (chlorine and sodium
hypochlorite) (Watanabe et al., 1998). Moreover, these
techniques can not completely degrade all cyanide com-
plexes in many cases (Dubey and Holmes, 1995).

Based on the above discussions, biological treatment
would be a cost-effective and environmentally acceptable
method for KCN removal compared with the other tech-
niques currently in use (Raybuck, 1992; Dubey and
Holmes, 1995). It has been reported that tetracyanonick-
elate (II) (TCN) can be utilized as the nitrogen source by
some microorganisms such as Pseudomonas fluorescens
NCIMB 11764 (Rollinson et al., 1987), P. putida
BCN3(Silva-Avalos et al., 1990), Klebsiella sp. (Silva-
Avalos et al., 1990), Fusarium oxysporum (Barclay et al.,
1998), F. Solani (Barclay et al., 1998), F. oxysporum N-10
(Yanase et al., 2000), Cryptococcus humicolus MCN2
(Kwon et al., 2002) and Azotobacter vinelandii (Kao et al.,
2005). We previously showed that Klebsiella oxytoca, a
TCN-resistant strain, can effectively degrade 1 mM TCN
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into ammonia as an alternate nitrogen source for the
bacterial growth (Kao et al., 2004). Nevertheless, little is
known about the mechanisms of TCN biodegradation
carried out by aforementioned microorganisms, except for
Yanase et al. (Yanase et al., 2000) and our previous study
(Kao et al., 2004).

The two-dimensional (2-D) electrophoresis approach
has been successfully used to understand the molecular
basis of the physiological changes that occur in living
organisms to adapt to environmental changes (Luque-
Almagro et al., 2007). To study the physiological response
of TCN biodegradation by K. oxytoca, we first utilized a
proteomic approach based on the 2-D electrophoresis
technique and the Matrix-assisted laser desorption/
ionization-time of flight-mass spectrometry (MALDI-TOF-
MS) analysis to check differential protein expression in
response to TCN.

Results and discussion

Effect of TCN on the growth of K. oxytoca

The measured optical densities of ammonia- and TCN-
treated cells over time were shown in Fig. S1. According
to the plots, 1 mM ammonia-treated cells started to grow
quickly and finished at OD600nm 0.8. This bacterial density
was also observed in 1 mM TCN-treated cells, although
this growth rate was much more delayed compared with
that of ammonia-treated cells. This delayed growth in
TCN-treated cells could be attributed to the toxicity of TCN
on growth. The OD600nm 0.8 was chosen for harvesting the
cells.

Differential proteins

Protein lysates obtained from these cells treated with
1 mM ammonia and 1 mM TCN, respectively, were sub-
jected to 2-DE. A substantial part of the proteome of this
bacterium was visualized by using a isoelectric point (pI)
range of the IPG strips from 4 to 7. Among the differential
proteins, the upregulation of 67 proteins (at least twofold)
(P < 0.05) were found but expression of 24 proteins was
repressed in the TCN-treated cells relative to ammonia-
treated cells. These proteins were indicated on the 2-DE
protein map with an identification number (Fig. S2), and
then were excised from the gels and analysed by MALDI-
TOF-MS. After searching on-line using peptide mass
fingerprinting (PMF), 34 upregulated and nine downregu-
lated proteins (Table S1) were successfully identified. The
bacterial membrane proteins are encoded by about one
quarter to one-third of all bacterial genes and perform
essential physiological functions (Poetsch and Wolters,
2008). However, the analysis of this group of proteins has
been traditionally difficult (Alvarez-Chaver et al., 2007),

which could be due to the inability of the detergents
employed for separating hydrophobic proteins (HPB)
effectively, and the tendency of aggregation of these pro-
teins at their isoelectric point (Molloy, 2000).

In this study, we isolated HPB by using a specific protein
extraction method based on temperature-dependent
phase portioning with Triton X-114 (Bordier, 1981; Santoni
et al., 2000). Comparing 2-D maps obtained from HPB
proteins of 1 mM TCN-treated and 1 mM ammonia-
treated cells, we observed variations in the level of
expression of 41 proteins (Fig. S3), 26 of which were
identified (Table S2).

Proteins involved in oxidative stress

As shown in Table 1, there were eight proteins involved in
oxidative stress. Some differential proteins related with
oxidative stress were enlarged in Fig. 1. The role of glu-
tathione S-transferase (GST) in bacterial growth was
reported in many studies. For example, the upregulation
of OaGST, one type of GSTs, in Ochrobacturm anthropi
could function as a detoxifying agent within catabolism of
phenols and chlorophenols (Tamburro et al., 2004); three
GSTs of distinct classes in Escherichia coli were reported
to defence oxidative stress in spite of the structural diver-
sity (Tamburro et al., 2004), and the expression of Proteus
mirabilis glutathione-S-transferase B1-1 (PmGST B1-1) is
involved in the detoxification of antimicrobial agents and
oxidative stress generated by H2O2 (Allocati et al., 2003).
In our previous study (Tang et al., 2008), we indicated that
GST in K. oxytoca could be viewed as the detoxifying
enzyme for counteracting the oxidative stress generated
by succinonitrile, a complex of cyanide with organic acid.
The induction of alkyl hydroperoxide reductase (AHR)
(spot no. 48) in this study is involved in degrading H2O2

and organic peroxides, which can be generated at the
level of the upper complexes of the respiratory chain
(Messner and Imlay, 1999). Heat shock protein (spot no.
39) and chaperone (DnaK) (spot no. 8) could protect the
TCN-treated cells against oxidative stress. Heat shock
proteins can assist abnormal proteins accumulating under
stress conditions to regain their proper folding or assist
their proteolyic degradation (Lund, 2001). Most of chap-
erons and proteases, in addition to their protective func-
tions, may help reorchestrate the cell metabolism to the
needs of the oxidative stress response (Godon et al.,
1998). The induction of DNA starvation/stationary phase
protection protein (Dps) (spot no. 52) in TCN-treated cells
suggested that Dps can provide protection from oxidative
stress, as Dps homologues are widespread conservation
among prokaryotes, and may be a general strategy for
coping with oxidative stress (Martinez and Kolter, 1997).
The induction of osmotically inducible protein C (OsmC)
was observed in K. oxytoca treated with cyanide (Tang
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et al., 2008). OsmC is one component of peroxiredoxins
functional in bacterial antioxidant defence and can be
controlled by multiple general stress responsive regula-
tors (Dubbs and Mongkolsuk, 2007). Similarly, the induc-
tion of OsmC (spot no. 1) in K. oxytoca can enable this
bacterium to detoxify oxidative stress generated by TCN.

As the respiratory inhibition of K. oxytoca by cyanide
accompanied by the production of H2O2 (Kao et al., 2007),
we proposed that the induction of these above described
proteins can protect K. oxytoca from oxidative stress in
this study.

Proteins involved in the nitrogen metabolism

We previously suggested the utilization of TCN as the
alternate nitrogen source by the induction of nitrogenase

in K. oxytoca (Kao et al., 2004). Although the nitrogenase
is an anaerobic enzyme, we have demonstrated that K.
oxytoca with the self-protective mechanism can protect
the nitrogenase from oxygen destruction when this bac-
terium was grown in nitrogen-free glucose medium with
KCN as the sole nitrogen source (Chena and Liu, 1999).
As expected, the induction of nitrogenase (spot no. 47)
was detected using the analysis of 2-DE map in this study.

Ammonia is the preferred nitrogen source for most
microorganisms (Muro-Pastor et al., 2001). In the
nitrogen-limited conditions for bacterial growth, the high
level of glutamine synthetase could warrant the assimila-
tion of the small amount of free ammonium available
(Muro-Pastor et al., 2001). Thus, the glutamine syn-
thetase activity (spot no. 7 and 10) was activated by the
induction of glutamine synthetase enhancing the assimi-

Fig. 1. Enlarged regions of some proteins
related with oxidative stress identified from
2-DE gels of the control group versus
TCN-treated cells.
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lation of limited nitrogen source produced from the bio-
conversion of TCN to ammonia as the alternate nitrogen
source for bacterial growth. This protein was reported to
be induced only under nitrogen deprivation conditions and
be responsible for the ability of nitrogen-starved cells to
survive and thrive rapidly once ammonia is supplied as
nitrogen source (Atkinson et al., 2002).

Conclusion

Klebsiella oxytoca is able to induce many defence mecha-
nisms upon TCN stress such as the induction of antioxi-
dant enzymes and heat shock proteins. Additionally, the
induction of nitrogenase could be related with TCN deg-
radation. Overall, the resulting data identifying a number
of differential expressed TCN-associated proteins may
provide clues about the understanding of the underlying
mechanisms of TCN biodegradation by K. oxytoca
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Supporting information

Additional Supporting Information may be found in the online
version of this article:

Fig. S1. Growth curves of K. oxytoca in nitrogen-free glucose
(NFG) media containing 1 mM NH4Cl (�) or 1 mM TCN (�).
Protein samples were taken at late-log phase points indicated
by the arrows. K. oxytoca was grown on a NFG medium
containing Na2HPO4 2H2O (50 mM), KH2PO4 (100 mM),
MgSO4 (1 mM), CaCl2 (0.1 mM) and glucose (0.8%). The pH
value of this medium was adjusted to 7.0. Filter-sterilized
TCN or ammonia at indicated doses was added as nitrogen
source. K. oxytoca grown in NFG medium containing TCN
(1 mM) or ammonium (1 mM) was incubated in a Gyrotory
shaker at 30°C.
Fig. S2. 2-D electrophoresis of the cytoplasmic proteins in K.
oxytoca growth in NFG medium supplemented with 1 mM
NH4Cl (A) or with 1 mM TCN (B) at late-log phase. Differential
proteins were marked by arrowheads and numbered.
Fig. S3. 2-D electrophoresis of the hydrophobic proteins in K.
oxytoca growth in NFG medium supplemented with 1 mM
NH4Cl (A) or with 1 mM TCN (B) at late-log phase. Induced
proteins or overexpressed proteins of at least twofold were
marked by arrowheads and numbered.
Table S1. Identification of cytosolic proteins on 2-DE gels of
control versus TCN-treated cells.
Table S2. Isolation of proteins using Triton X-114 and then
identification of these proteins on 2-DE gels of control versus
TCN-treated cells.

Please note: Wiley-Blackwell are not responsible for the
content or functionality of any supporting materials supplied
by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the article.
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