1	Running title: thioredoxin h^2 with angiotensin converting
2	enzyme inhibitory activity
3	
4	Title of article:
5	Sweet potato storage root thioredoxin h^2 and their peptic
6	hydrolysates exhibited angiotensin converting enzyme
7	inhibitory activity in vitro
8	
9	Authors' name and address:
10	Guan-Jhong Huang ^{1,*} , Hsien-Jung Chen ^{2,*} , kitanaka Susumu ³ , Jin-Bin Wu ⁴ , Chieh-Hsi
11	Wu ⁵ , Ming-Jyh Sheu ⁵ , Yuan-Shiun Chang ¹ , Shyh-Shyun Huang ¹ , and Yaw-Huei Lin ^{6*}
12	¹ Institute of Chinese Pharmaceutical Sciences, China Medical University, Taichung
13	404, Taiwan;
14	² Department of Biological Sciences, National Sun Yat-sen University, kaohsiung 804,
15	Taiwan;
16	³ School of Pharmacy, College of Pharmacy, Nihon University, 7-7-1
17	Narashinodai, Funabashi,Chiba 274-8555, japan.
18	⁴ Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy, China
19	Medical University, Taichung, Taiwan;

20	⁵ Department of Physiology, School of Medicine, China Medical University, Taichung
21	404, Taiwan;
22	⁶ Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115,
23	Taiwan;
24	
25	Corresponding author:
26	Dr. Yaw-Huei Lin
27	Institute of Plant ¹ and Microbial Biology, Academia Sinica, Nankang,
28	Taipei 11529, Taiwan,
29	ROC
30	FAX: 886 (2) 2782-7954; TEL: 886 (2) 2789-9590 ext. 321
31	E-mail: <u>boyhlin@gate.sinica.edu.tw</u>
32	
33	* [*] These two authors contributed equally to this work.
34	
35	
36	
37	
38	

39 Abstract:

40	Recombinant thioredoxin h (Trx $h2$) overproduced in $E. \ coli$ (M15) was purified
41	by Ni ²⁺ -chelate affinity chromatography as previously reported (Huang et al., 2004a).
42	The molecular mass of Trx $h2$ is ca. 14 kDa determined by SDS (sodium dodecyl
43	sulfate)-PAGE (polyacrylamide gel electrophoresis). Trx $h2$ had antioxidant (Huang
44	et al., 2004b), dehydroascorbate reductase and monodehydroascorbate reductase
45	activity (Huang et al., 2008). Trx $h2$ was shown by spectrophotometric methods to
46	inhibit angiotensin converting enzyme (ACE) in a dose-dependent manner (50-200
47	μ g/mL, with 31.9 ~ 65.9% inhibition) using N-[3-(2-furyl) acryloyl]-Phe-Gly-Gly-
48	(FAPGG) as a substrate. The 50% inhibition (IC ₅₀) of ACE activity required
49	151.75 μ g/mL Trx <i>h</i> 2 compared to that of 10 nM (868 ng/mL) Captopril. The use of
50	TLC also showed Trx $h2$ as ACE inhibitor. Trx $h2$ acted as a mixed type inhibitor
51	against ACE using FAPGG as a substrate. When 200 μ g/mL Trx h2 were added,
52	Vmax and Km were, respectively, 0.010 \triangle A/min and 0.125 mM; while without Trx
53	<i>h</i> 2 they were 0.0096 \triangle A/min and 0.495 mM. Pepsin was used for Trx <i>h</i> 2 hydrolysis
54	for different times. It was found that the ACE inhibitory activity increased from 52%
55	to about 72% after 16 h hydrolysis. The results suggested that when small peptides
56	increased by pepsin hydrolysis of the Trx h^2 ACE inhibitory capacity also increased
57	up to 16 hr, then decreased may be due to disappearance of some conformational

58	requirements. Four peptides, namely EVPK, VVGAK, FTDVDFIK and MMEPMVK,
59	were synthesized based on the simulated pepsin digest of Trx $h2$, then tested for ACE
60	inhibitory activity. IC ₅₀ values of individual peptides were 1.73 \pm 0.24, 1.136 \pm 0.13,
61	0.416 ± 0.02 and 1.028 ± 0.58 mM, suggesting that FTDVDFIK might represent the
62	main active site for the ACE inhibition. Trx h^2 and its hydrolysates might be good for
63	hypertension and other disease control when people consume sweet potato tuberous
64	roots.
65	

Keywords: Angiotensin converting enzyme (ACE); thioredoxin *h*2; pepsin; sweet
potato.

69 INTRODUCTION

70 Many bioactive peptides have common structural properties that include a 71 relatively short peptide residue length (e.g. 2-9 amino acids), possessing hydrophobic 72 amino acid residues in addition to proline, lysine or arginine groups. Bioactive 73 peptides are among the many functional components identified in foods. These are 74 small protein fragments that have biological effects once they are released during 75 gastrointestinal digestion in the organism or by previous in vitro protein hydrolysis. 76 Bioactive peptides with immunostimulating (Parker et al., 1984; Fiat et al., 1993), 77 antithrombotic (Scarborough, 1991), caseino-phosphopeptic (Maubois, & Leonil, 78 1989), bactericidal (Bellamy et al., 1993), antioxidant or angiotensin-converting 79 enzyme inhibitor (Ehlers, & Riordan, 1989) functions have been the research focus in 80 recent years.

81 ACE (peptidyldipeptide hydrolyase EC 3.4.15.1) is a glycoprotein and a 82 dipeptide-liberating exopeptidase classically associated with the renin-angiotensin 83 system regulating peripheral blood pressure (Mullally et al., 1996). ACE removes a 84 dipeptide from the C-terminus of angiotensin I to form angiotensin II, a very hypertensive compound. Several endogenous peptides, such as enkephalins, 85 86 β -endorphin, and substance P, were reported to be competitive substrates and 87 inhibitors of ACE. Several food-derived peptides from α -lactoalbumin,

β-lactoglobulin (Pihlanto-Leppälä et al., 1998), casein (Maruyama et al., 1987), zein,
mucilage (Huang et al., 2006) and azein (Yano et al., 1996) also inhibited ACE.
Several antioxidant peptides (reduced glutathione and carnosine-related peptides)
(Hou et al., 2003) and synthetic peptides also exhibited ACE inhibitor activities (Chen
et al., 2003).

93 Thioredoxins, the ubiquitous small proteins with a redox active disulfide bridge, 94 are important regulatory elements in a number of cellular processes (Buchanan, 95 1991;). They all contain a distinct active site, WCGPC, which is able to reduce 96 disulfide bridges of target proteins. Initially described as hydrogen carriers in 97 ribonucleotide reduction in E. coli, they were found to serve as electron donors in a 98 variety of cellular redox reaction (Holmgren, 1985). From genome sequencing data, a 99 significant diversity of thioredoxin genes containing five different multigenic families 100 (f, m, x, o and h) was observed (Mestres-Ortega and Meyer, 1999; Meyer et al., 2002; 101 Balmer and Buchanan, 2002). The ferredoxin-thioredoxin system (thioredoxins f and 102 m) has been proved to regulate several enzymatic activities associated with 103 photosynthetic CO_2 assimilation in chloroplasts. Thioredoxin x contains a transit 104 peptide similar to those required for chloroplast and mitochondria targeting; however, 105 its function is not clearly defined (Mestres-Ortega and Meyer, 1999). A new type of 106 plant mitochondrial thioredoxin o was also shown to regulate the activities of several

107 mitochondrial proteins by disulfide bond reduction (Laloi et al., 2001).

108	Thioredoxin h is generally assumed to be cytosolic, which was supported by the
109	absence of a transit peptide in the genes cloned for the isoforms from tobacco (Marty
110	and Meyer, 2001; Arabidopsis (Rivera-Madrid et al., 1995), Triticum aestivum
111	(Gautier et al., 1998), germinating wheat seeds (Serrato etal., 2001) and barley seed
112	proteome (Kenji et al., 2003). Moreover, the existence of several forms of thioredoxin
113	h detected in spinach leaves (Florencio et al., 1988), and wheat flour (Johnson et al.,
114	1987) supports the view that higher plants possess multiple and divergent thioredoxin
115	genes (Rivera-Madrid et al., 1995).

116 In our previous report, Trx h^2 exhibited both dehydroascorbate reductase and 117 monodehydroascorbate reductase activities. And Trx h2 exhibited antioxidant activities against different radicals (Huang et al., 2004). In this work we report for the 118 119 first time that Trx h^2 exhibited dose-dependent ACE inhibitory activity when 120 Captopril was used as a positive control. Commercial bovine serum albumin (BSA), 121 which was frequently found in the literature as the peptide resources of ACE inhibitors, was chosen for comparison. The K_i values of Trx h2 against ACE were 122 123 calculated. We also used pepsin to hydrolyze Trx h^2 for different times, and the 124 changes of ACE inhibitory activity were determined. IC₅₀ of ACE inhibitory activities
125 by synthetic peptides were also determined.

126

127 MATERIALS and METHODS

128 Materials.

129	Tris,	electrophoretic	reagents,	and	silica	gel	60	F254	were	purchased	from	E.
-----	-------	-----------------	-----------	-----	--------	-----	----	------	------	-----------	------	----

130 Merck Inc. (Darmstadt, Germany); Captopril was purchased from Calbiochem Co.

131 (CA, USA); Seeblue prestained markers for SDS-PAGE including myosin (250 kDa),

132 BSA (98 kDa), glutamic dehydrogenase (64 kDa), alcohol dehydrogenase (50 kDa),

133 carbonic anhydrase (36 kDa), myoglobin (30 kDa), and lysozyme (16 kDa) were from

134 Invitrogen (Groningen, The Netherlands); FAPGG, ACE (1 unit, rabbit lung);

135 coomassie brilliant blue G-250; peptide (GL Biochem, China), and other chemicals

136 and reagents were purchased from Sigma Chemical Co. (St. Louis, MO, USA).

137

138 Expression of thioredoxin h2 in E. coli

Thioredoxin h^2 (Gene Bank accession number: AY344228; Trx h^2) was expressed in *E. coli*. The coding sequence was amplified from Trx h^2 cDNA using an oligonucleotide (5⁻-GAG A<u>GG ATC C</u>AA TGG GAG GGG CT-3⁻), with a *BamH*I site (underlined) at the putative initial Met redisue, and an oligonucleotide (5⁻- ATT

143	TG <u>A AGC TT</u> G ATT GAT GCT -3 [´]), with a <i>Hind</i> III site at the 3 [´] end. The PCR
144	fragment was subcloned in pGEM T-easy vector. And the plasmid was then digested
145	with BamHI and HindIII and subcloned in pQE32 expression vector (QIAexpress
146	expression system, Qiagen). The resulting plasmid, termed pQE-Trx $h2$, was
147	introduced into E. coli (M15). Cultures of the transformed E. coli (M15)
148	overexpressed a protein of the expected molecular mass, which was purified by
149	affinity chromatography in Ni-NTA columns (Qiagen), according to Huang et al
150	(Huang et al., 2007).
151	
152	Protein staining of thioredoxin $h2$ on 15% denaturing polyacrylamide gels.
153	Samples were mixed with sample buffer, namely 60 mM Tris-HCl buffer (pH 6.8)
154	containing 2% SDS, 25% glycerol, and 0.1% bromophenol blue with or without
155	2-mercaptoethanol. Coomassie brilliant blue G-250 was used for protein staining
156	(Huang et al., 2004).
157	
158	Determination of ACE inhibitory activity by spectrophotometry.
159	The ACE inhibitory activity was measured according to the method of Holmquist
160	et al. (Holmquist et al., 1979) with some modifications. Four microliters (4 microunits)
161	of commercial ACE (1 unit, rabbit lung) was mixed with 50µ L of different amounts

162	of Trx h2 or BSA (50, 100, and 200 μ g/mL), and then 200 μ L of 0.5 mM
163	N-[3-(2-furyl) acryloyl]-Phe-Gly-Gly [FAPGG, dissolved in 50 mM Tris-HCl buffer
164	(pH 7.5) containing 0.3 M NaCl] was added. The decreased absorbance at 345 nm (Δ
165	A inhibitor) was recorded during 5 min at room temperature. Deionized water was
166	used instead of sample solution for blank experiments (ΔA control). Captopril
167	(molecular mass 217.3 Da) was used as a positive control for ACE inhibitor (1.25, 2.5
168	5, 10, 20, 40, and 80 nM). The ACE activity was expressed as ΔA 345 nm, and the
169	ACE percent inhibition was calculated as follows: [1 - (ΔA inhibitor / ΔA control)] x
170	100. Means of triplicates were determined. The 50% inhibition (IC ₅₀) of ACE activity
171	was defined as the concentrations of samples that inhibited 50% of ACE activity
172	under experimental conditions.

174 Determination of ACE inhibitory activity by TLC.

The ACE inhibitory activity of Trx h^2 was determined by TLC method (Holmquist et al., 1979). The reactions between Trx h^2 and ACE or BSA and ACE were according to the method of Anzenbacherova et al. (Anzenbacherova et al., 2001) with some modifications. Each 100µ L of Trx h^2 and BSA (225µ g/mL) was premixed with 15 microunits ACE for 1 min, and then 200 µ L of 0.5 mM FAPGG was added and allowed to react at room temperature for 10 min. Then 800 µ L of

181	methanol was added to stop the reaction. The blank experiment contained FAPGG
182	only; in the control experiment, ACE reacted with FAPGG under the same conditions.
183	Each was dried under reduced pressure and redissolved with 400 μ L of methanol,
184	and 50 μ L was spotted on a silica gel 60 F254. The FAPGG and FAP (ACE
185	hydrolyzed product) were separated by TLC in 1-butanol-acetic acid-water, 4:1:1
186	(v/v/v), and observed under UV light.
187	
188	Determination of the kinetic properties of ACE inhibition by thioredoxin $h2$.
188 189	Determination of the kinetic properties of ACE inhibition by thioredoxin $h2$. The kinetic properties of ACE (4 mU) without or with Trx $h2$ (200 µg/mL) in a
188 189 190	Determination of the kinetic properties of ACE inhibition by thioredoxin $h2$. The kinetic properties of ACE (4 mU) without or with Trx $h2$ (200 µg/mL) in a total volume of 250 µL were determined using different concentrations of FAPGG as
188 189 190 191	Determination of the kinetic properties of ACE inhibition by thioredoxin $h2$. The kinetic properties of ACE (4 mU) without or with Trx $h2$ (200 µg/mL) in a total volume of 250 µL were determined using different concentrations of FAPGG as substrate (0.1 mM to 0.5 mM). The Km (without Trx $h2$) and Km ² (with Trx $h2$) were
188 189 190 191 192	Determination of the kinetic properties of ACE inhibition by thioredoxin $h2$. The kinetic properties of ACE (4 mU) without or with Trx $h2$ (200 µg/mL) in a total volume of 250 µL were determined using different concentrations of FAPGG as substrate (0.1 mM to 0.5 mM). The Km (without Trx $h2$) and Km ² (with Trx $h2$) were calculated from Lineweaver-Burk plots, where Km ² was the Michaelis constant in the
188 189 190 191 192 193	Determination of the kinetic properties of ACE inhibition by thioredoxin $h2$. The kinetic properties of ACE (4 mU) without or with Trx $h2$ (200 µg/mL) in a total volume of 250 µL were determined using different concentrations of FAPGG as substrate (0.1 mM to 0.5 mM). The Km (without Trx $h2$) and Km ² (with Trx $h2$) were calculated from Lineweaver-Burk plots, where Km ² was the Michaelis constant in the presence of 200 µg/mL Trx $h2$.

195 Determination of the ACE Inhibitory Activity of Peptic Hydrolysates of 196 Thioredoxin h2.

197 Six mg of Trx *h*2 were dissolved in 1 mL of 0.1 M KCl buffer (pH 2.0). Then 0.1
198 mL of 12 mg of pepsin was added at 37 °C for 8, 12, 24, and 32 h. After hydrolysis,

199	0.5 mL of 0.5 M Tris-HCl buffer (pH 8.3) was added, and the solution was heated at
200	100 °C for 5 min to stop enzyme reaction. The pepsin was heated before thioredoxin
201	h^2 hydrolysis for the 0 h reaction. Each of the 60 µL Trx h^2 hydrolysates was used for
202	determinations of ACE inhibition by spectrophotometry.
203	
204	Chromatograms of Peptic Hydrolysates of thioredoxin h2 on a Sephadex G-50
205	Column.
206	The unhydrolyzed Trx h^2 and peptic Trx h^2 hydrolysates at 24 h were separated
207	by Sephadex G-50 chromatography (1 x 60 cm). The column was eluted with 20 mM
208	Tris-HCl buffer (pH 7.9). The flow rate was 30 mL/h, and each fraction contained 2
209	mL, the absorbance of which was determined at 280 nm.
210	
211	Statistical Analysis. Means of triplicates were calculated. Student's t test was used
212	for comparison between two treatments. A difference was considered to be
213	statistically significant when $p < 0.05$.
214	

216 **RESULTS and DISCUSSION**

217	Expression and Purification of Thioredoxin h2. To express sweet potato
218	thioredoxin h in E. coli, the coding sequence of Trx2 was subcloned in a pQE-32
219	expression vector so that sweet potato Trx h^2 was produced with a 6x His-tag at the
220	N-terminus. SDS-PAGE analysis of crude extracts from transformed E. coli (M15)
221	showed a high level of a polypeptide with the expected molecular mass (ca. 14 kDa).
222	This polypeptide was found as a soluble protein in the supernatant and was absent in
223	protein extracts obtained from E. coli transformed with pQE-32 vector. The expressed
224	protein was purified from crude extracts by Ni ²⁺ -chelate affinity chromatography,
225	which yielded highly purified His-tagged thiredoxin $h2$ (Fig. 1).

226

227 Determination of ACE inhibitory Activity of Thioredoxin h2 by 228 Spectrophotometry.

229 The purified Trx *h*2 was used for determinations of ACE inhibitory activity. 230 Figure 2 shows time course of the effect of the different amounts of Trx *h*2 (0, 50, 100, 231 and 200 μ g/mL) on the ACE activity (ΔA 345 nm). Compared with the ACE only 232 (control), it was found that the higher the amount of Trx *h*2 added the lower the ΔA 233 345 nm found during 300 sec reaction period. Results of Figure 2 shows that purified 234 Trx *h*2 could inhibit ACE activity in a dose-dependent manner.

235

236 Effects of Thioredoxin h2, BSA and Captopril on ACE Activity shown by 237 Spectrophotometry.

It was interesting to know whether BSA also exhibited the ACE inhibitory activity. 238 239 Figure 3A shows the effects of Trx h2 (0, 50, 100, and 200 μ g/mL), BSA (0, 50, 100, 240 and 200 µg/mL) or Captopril (Figure 3B; 0, 1.25, 2.5, 5, 10, 20, 40 and 80 nM; 241 corresponding to 0, 108.5, 217, 434, 868, 1,736, 3,472 and 6,844 ng/mL, respectively) 242 on ACE activity. It was found that BSA showed less ACE inhibitory activity (less 243 than 15% inhibition) and without dose-dependent inhibition patterns. However, Trx 244 h2 exhibited dose-dependent ACE inhibitory activity (50~200 µg/mL giving, 245 respectively, $31.9 \sim 65.9\%$ inhibition). From calculations, the 50% inhibition (IC₅₀) of 246 Trx h2 against ACE activity was 151.75 µg/mL compared to that of 10 nM (868 247 ng/mL) for Captopril, which was similar to the report (7 nM) of Pihlanto-Leppälä" et 248 al. (Pihlanto-Leppälä et al., 1998); while the IC₅₀ of yam dioscorin was 250 μ g/mL 249 (Hsu et al., 2002). Both BSA and purified Trx h2 were proteins, but only the purified 250 Trx h2 showed specific dose-dependent ACE inhibitory activity. In the literature, the 251 protein hydrolysates were used as sources to purify peptides as ACE inhibitors 252 (Mullally et al., 1996; Maruyama et al., 1987). From calculations, the IC₅₀ of Trx h^2

253	against ACE activity was 151.75 μ g/mL, which was smaller than the synthetic peptide
254	α -lactorphin (YGLF, 322.7 µg/mL). Several identified peptide fragments exhibited
255	much lower IC ₅₀ values than our purified Trx $h2$; for example, Tyr-Pro of whey
256	proteins, 8.1 μ g/mL (Yamamoto et al., 1999) and HHL of soybean proteins, 2.2
257	μ g/mL (Shin et al., 2001). On the opposite, several identified peptide fragments
258	exhibited much higher IC ₅₀ values than our purified Trx $h2$; for example, hydrolysates
259	of whey proteins (α -lactalbumin and β -lactoglobulin) were effective with IC ₅₀ values
260	between 345-1,733 µg/mL (Pihlanto-Leppälä et al., 2000), LAHKAL of
261	α -lactalbumin hydrolysates, 406 μ g/mL; GLDIQK of β -lactoglobulin hydrolysates,
262	391 $\mu g/mL;$ and VAGTWY of β -lactoglobulin hydrolysates, 1,171 $\mu g/$ mL. In our
263	previous paper, the IC ₅₀ of ACE activity required 187.96 μ g/mL trypsin inhibitor
264	from sweet potato, which was higher IC ₅₀ values than our purified Trx h^2 (Huang et
265	al., 2007).

267 Determinations of ACE Inhibitory Activity of Thioredoxin *h*2 by TLC.

The FAPGG and FAP (product of ACE catalyzed hydrolysis reaction) were separated by TLC using water saturated 1-butanol: acetic acid: water, 4:1:1 (V/V/V) as developing solvents according to the method of Holmquist et al.(Holmquist et al., 1979). Figure 4 shows the qualitative results of TLC chromatograms of a silica gel 60

272	F254 about the effects of 225 μ g/mL of commercial BSA (lane 3) or Trx h2 (lane 4)
273	on 15 microunits of ACE. Compared to the control test (lane 2), it was found that Trx
274	h2 (lane 4) inhibited ACE reaction showing less amounts of FAP production observed
275	under UV light. However, similar amounts of FAP were found between the control
276	test (lane 2) and BSA (lane 3). These results demonstrated again that Trx $h2$ exhibited
277	ACE inhibitory activity.

279 Determination of the Kinetic Properties of ACE Inhibition by Thioredoxin h2. 280 The Lineweaver-Burk plots of ACE (4 mU) without or with purified Trx h2 (200 µg/mL) under different concentrations of FAPGG are shown in Figure 5. The results 281 282 indicated that purified Trx h^2 acted as a mixed type inhibitor against ACE using 283 FAPGG as a substrate. When 200 µg/mL Trx h2 were added, Vmax and Km were, 284 respectively, 0.010 $\triangle A/\min$ and 0.125 mM; while without Trx h2 they were 0.0096 285 \triangle A/min and 0.495 mM. In conclusion, Trx h2 exhibited dose-dependent ACE 286 inhibitory activity and acted as a mixed type inhibitor with respect to the substrate 287 (FAPGG). A similar work was reported with the calculated Km as 0.255 mM FAPGG 288 for ACE and in the presence of purified dioscorin, the calculated Km⁻ was 0.3304 mM (Hsu et al., 2002). 289

291 Determination of the ACE Inhibitory Activity of peptic Thioredoxin *h*2 292 Hydrolysates and their peptide Distributions.

293	The pepsin was frequently used for protein hydrolysis to purify potential ACE
294	inhibitory peptides (Pihlanto-Leppälä et al., 2000). Therefore, we used pepsin to
295	hydrolyze Trx h2. Figure 6 shows the ACE inhibitory activity (ΔA 345 nm) of peptic
296	Trx h^2 hydrolysates. Figure 6A shows the ACE inhibition (percent) of peptic Trx h^2
297	hydrolysates collected at different pepsin hydrolysis times. From the results (Figure
298	6A), it was found that the ACE inhibitory activity increased from 52% (0 h) to about
299	72% (16 h). Figure 6B shows the chromatograms of unhydrolyzed Trx h^2 and peptic
300	Trx h^2 hydrolysates (16 h) on Sephadex G-50 chromatography. It was found that
301	smaller peptides increased with increasing pepsin hydrolytic time. The ACE inhibitor
302	activities of peptic Trx h^2 hydrolysates decreased after 16 h hydrolysis (Fig. 6A)
303	suggesting that some proper conformational requirements got lost after 16 h
304	hydrolysis.

305 We used synthetic peptides to measure ACE inhibitor activity by Trx h2 genes 306 sequence. Kohmura et al (1989) synthesized some peptide fragments of human 307 β -casein and found that the length of those peptides had an influence on the ACE

308	inhibitory activity. Namely, peptides composed of 3-10 amino acids with proline on
309	the C-terminal were necessary for ACE inhibitors (Kohmura et al., 1990). Thus the
310	peptide Leu-Arg-Pro from food protein hydrolysates has been reported to be the most
311	potent natural ACE inhibitor, with an IC ₅₀ value of 0.27 or 1.0 μ M. Byun et al. (1980)
312	studied the ACE inhibitory activity of a series of dipeptides, and indicated that
313	tryptophan, tyrosine, proline, or phenylalanine at the C-terminal and branched-chain
314	aliphatic amino acid at the N-terminal was suitable for a peptide binding to ACE
315	(Byun & Kim, 2002).

316 Synthetic peptides were designed by simulated pepsin cutting sites of *Trx h2* gene 317 (accession number: AY344228) products from sweet potato (pH >2, http://expasy.nhri.org.tw/tools/peptidecutter/). Four new inhibitory peptides (Table I) 318 319 for ACE, that is, EVPK, VVGAK, FTDVDFIK and MMEPMVK, were synthesized 320 according to simulation. IC₅₀ values of individual peptides were 1.73 \pm 0.24, 1.136 \pm 321 0.13, 0.416 \pm 0.02 and 1.028 \pm 0.58 mM, respectively. These results demonstrated that 322 simulated synthetic peptides from peptic Trx h^2 hydrolysates exhibited ACE 323 inhibitory activities. Our work suggests that (1) FTDVDFIK might represent the main 324 active site for the ACE inhibition; (2) there are marked structural similarities for peptides with antihypertensive, immunomodulatory and antioxidant activities and may 325

be used as criteria for selecting or designing multifunctional ingredients of functionalfoods to control cardiovascular diseases.

In summary, Trx h2 exhibited dose-dependent ACE inhibitory activity. Trx h2acted as a mixed type inhibitor toward ACE with IC₅₀ of 151.75 µg/mL. Its peptic hydrolysates also showed ACE inhibitory activities. Some peptides derived from food proteins were demonstrated to have antihypertensive activities against spontaneously hypertensive rats (Fujita et al., 2000; Yoshii et al., 2001). The potential for hypertension control when people consume sweet potato deserves further investigations.

335

336 Acknowledgements:

The authors want to thank the financial support (CMU95-211) from China Medical University (CMU). And this investigation also was supported by the "Academic Frontier (2007-2009)" and "High Tech Research Center (2007-2011)" projects for private universities, with a matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Sciences and Technology of Japan.

342

345 LITERATURE CITED

346	Anzenbacherova,	E., P.	Anzenbacher,	K.	Macek,	and J.	Kvetina.	2001.	Determination
-----	-----------------	--------	--------------	----	--------	--------	----------	-------	---------------

- of enzyme (angiotensin convertase) inhibitors based on enzymatic reaction
 followed by HPLC. J. Pharm. Biomed. Anal. 24: 1151-1156.
- Balmer, Y. B. B. Buchanan. 2002. Yet another plant thioredoxin. Trends Plant Sci. 7:
 191-193.
- 351 Bellamy, W., R. H. Wakabayashi, M. Takase, K. Kawase, S. Shimamura, and M.
- 352 Tomita. 1993. Role of cell-binding in the antibacterial mechanism of
- 353 Lactoferricin B. J. Appl. Bacteriol. **75:** 478-484.
- Buchanan, B.B. 1991. Regulation of CO₂ assimilation in oxygenic photosynthesis:
- 355 The ferredoxin/thioredoxin system. Perspective on its discovery, present status and
- 356 future development. Arch. Biochem. Biophys. **288:** 1-9.
- Byun, H. G. and S. K. Kim. 2002. Structure and activity of angiotensin I converting
 enzyme inhibitory peptides derived from alaskan pollack skin. J. Biochem. Mol.
- Biol. **35:** 239-243.
- 360 Chen, T. L., Y. C. Lo, W. T., Hu, M. C., Wu, S. T. Chen, and H. M. Chang. 2003.
- 361 Microencapsulation and modification of synthetic peptides of food proteins

- reduces the blood pressure of spontaneously hypertensive rats. J Agric Food
 Chem. **51:** 1671-1675.
- 364 Ehlers, M. R. and J. F. Riordan. 1989. Angiotensin-converting enzyme new concepts
 365 converting its biological role. Biochemistry. 28: 5311-5317
- 366 Fiat, A. M., M. S. Daniele, and J. Pierre 1993. Biological active peptides from milk
- proteins with emphasis on two examples concerning antithrombotic and
 immunomodulating activities. J. Dairy Sci. 76: 301-310.
- 369 Florencio, F.J. B.C. Yee, T.C. Johnson, B.B. Buchanan. 1988. An NADP/thioredoxin
- 370 system in leaves: purification and characterization of NADP-thioredoxin
- 371 reductase and thioredoxin h from spinach. Arch. Biochem. Biophys. **26**: 372 496-507.
- 373 Fujita, H., K. Yokoyama, and M.Yoshikawa. 2000. Classification and
- 374 antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides
- derived from food proteins. J. Food Sci. **65**: 564-569.
- 376 Gautier, M.F. V. Lullien-Pellerin, F. Lamotte-Guery, A. de Guirao, P. Joudrier. 1998.
- 377 Characterization of wheat thioredoxin *h* cDNA and production of an active
- 378 *Triticum aestivum* protein in *Escherichia coli*. Eur. J. Biochem. **252**: 314-324.
- 379 Holmquist, B., P. Bunning, and J. F. Riordan. 1979. A continuous spectrophotometric
- assay for angiotensin converting enzyme. Anal. Biochem. **95:** 540-548.

381	Holmgren, A.	1985.	Thioredoxin.	Annu.	Rev.	Biocher	n. 54:	237	-271	•
	U ,									

382	Hou, W. C., H. J. Chen, and Y. H. Lin. 2003. Antioxidant peptides with angiotensin
383	converting enzyme inhibitory activities and applications for angiotensin
384	converting enzyme purification. J Agric Food Chem. 51: 1706-1709.
385	Hsu, F. L., Y. H. Lin, M. H. Lee, C. L. Lin, and W. C. Hou. 2002. Both dioscorin, the
386	tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), and its peptic
387	hydrolysates exhibited angiotensin converting enzyme inhibitory activities. J
388	Agric Food Chem. 50: 6109-6013.
389	Huang, D. J. C. D. Lin, H. J. Chen, and Y. H. Lin. 2004. Antioxidant and
390	antiproliferative activities of sweet potato (Ipomoea batatas [L.] Lam 'Tainong
391	57') constituents. Bot. Bull. Acad. Sin. 45: 179-186.
392	Huang, D. J., H. J. Chen, W. C. Hou, T. E. Chen, and Y. H. Lin. 2004. In vitro
393	reduction of trypsin inhibitor by purified NADPH/ Thioredoxin system from
394	sprouts of sweet potato (Ipomoea batatas (L) Lam.) storage roots. Plant Sci. 166:
395	435-441.
396	Huang, D. J., W. C. Hou, H. J. Chen, and Y. H. Lin. 2006. Sweet potato (Ipomoea
397	batatas [L.] Lam 'Tainong 57') storage roots mucilage exhibited angiotensin

398 converting enzyme inhibitory activities in vitro. Botanical Studies. **45:** 397-402.

399	Huang G. J., H. J. Chen, Y-S Chang, M-J Sheu and Y. H. Lin. 2007. Recombinant
400	Sporamin and its synthesized peptides with Antioxidant Activities in vitro.
401	Botanical Studies. 48: 133-140.
402	Huang, G. J., M. J. Sheu, H. J. Chen, Y. S. Chang and Y. H. Lin. 2007. Inhibition of
403	Reactive Nitrogen Species in Vitro and ex Vivo by Trypsin Inhibitor from sweet
404	potato 'Tainong 57' storage roots. J Agric Food Chem. 55: 6000-6006.
405	Johnson, T.C. K. Wada, B.B. Buchanan. 1987 A. Holmgren, Reduction of purothionin
406	by the wheat seed thioredoxin system. Plant Physiol. 85: 446-451.
407	Kenji, M. C. Finnie, O. Ø stergarrrd, B. Svensson. 2003. Identification, cloning and
408	characterization of two thioredoxin h isoforms, HvTrxh1 and HvTrxh2, from the
409	barley seed proteome. Eur. J. Biochem. 270: 2633-2643.
410	Kohmura, M., N. Nio, K. Kubo, Y. Minoshima, E. Munekata, and Y. Ariyoshi. 1989.
411	Inhibition of angiotensin-converting enzyme by synthetic peptide fragments of
412	human β -casein. Agric. Biol. Chem. 53: 2107-2114.
413	Kohmura, M. N. Nio, and Y. Ariyoshi. 1990. Inhibition of angiotensinconverting

- 414 enzyme by synthetic peptide fragments of human β -casein. Agric. Biol. Chem.
- 415 **54:** 835-836.
- 416 Laloi, C. N. Rayapuram, Y. Chartier, J.M. Grienenberger, G. Bonnard and Y. Meyer.
- 417 2001. Identification and characterization of mitochondrial thioredoxin system in

- 418 plants. Proc. Natl. Acad. Sci. U.S.A. 98: 14144–14149.
- 419 Marty, I. Y. Meyer. 1991. Nucleotide sequence of a cDNA encoding a tobacco
 420 thioredoxin. Plant Mol. Biol. 17: 143-147.
- 421 Maruyama, S., H. Mitachi, J. Awaya, M. Kurono, N. Tomizuka, and H. Suzuki. 1987.
- 422 Angiotensin I-converting enzyme inhibitory activity of the C-terminal
 423 hexapeptide of as1- casein. Agric. Biol. Chem. 51: 2557-2561.
- 424 Maubois, J. L., and J. Leonil. 1989. Peptides du lait a activite biologique. Lait. 69:
 425 245-269.
- 426 Meyer, Y. F. Vignols, J. P. Reichheld. 2002. Classification of plant thioredoxins by

427 sequence similarity and intron position. Methods Enzymol. **347:** 394-402.

- 428 Mestres-Ortega, D. Y. Meyer. 1999. The Arabidopsis thaliana genome encodes at least
- four thioredoxins m and a new prokaryotic-like thioredoxin. Gene **240**: 307-316.
- 430 .Mullally, M. M., H. Meisel, and R. J. Fitzgerald. 1996. Synthetic peptides
- 431 corresponding to α -lactalbumin and β -lactoglobulin sequences with
- 432 angiotensin-I-converting enzyme inhibitory activity. J. Biol. Chem. **377:** 259-260.
- 433 Parker, F., O. Migliore-Samour, F. Floch, A. Zerial, G. H. Werner, J. Jolles, M.
- 434 Casaretto, H. Zahn, and P. Jolles. 1984. Immunostimulating hexapeptide from
- 435 human case in amino acid sequence, synthesis and biological properties. Eur. J.
- 436 Biochem.**145**: 677-682.

437	Pihlanto-Leppälä, A., T. Rokka, and H. Korhonen. 1998. Angiotensin I converting
438	enzyme inhibitory peptides derived from bovine milk proteins. Int. Dairy J. 8:
439	325-331.
440	Pihlanto-Leppälä A. P. Koskinen, K. Piilola, T. Tupasela, and H. Korhonen. 2000.
441	Angiotensin I-converting enzyme inhibitory properties of whey protein digest:
442	concentration and characterization of active peptides. J. Dairy Sci. 67: 53-64.
443	Rivera-Madrid, R. D. Mestres, P. Marinho, J.P. Jacquot, P. Decottignies, M.
444	Miginiac-Maslow, Y. Meyer. 1995. Evidence for five divergent thioredoxin h
445	sequences in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 92:
446	5620-5624.
447	Serrato, A.J. J.L. Crespo, F.J. Florencio, J.C. Francisco. 2001. Characterization of
448	two thioredoxins h with predominant localization in the nucleus of aleurone and
449	scutellum cells of germinating wheat seeds. Plant Mol. Biol. 46: 361-371.
450	Scarborough, R. H., J. W. Rose, M. H. Hsu, D. R. Phillips, V. A. Fried, A. M.
451	Campbell, L. Manniaai, and I. F.Charo. 1991. Barbourin A GpIIb-IIIa specific
452	integrin antagonist from the venom of sistrurus M. Barbouri. J. Biol. Chem. 266:
453	9359- 9360.

454 Shin, Z. I., R. Yu, S. A Park, D. K Chung, C. W. Ahn, H. S. Nam, K. S. Kim, and H.

- 455 J. Lee. 2001. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide
- derived from Korean soybean paste, exerts antihypertensive activity in vivo. J.
- 457 Agric. Food Chem. **49:** 3004-3009.
- 458 Yamamoto, N., M. Maeno, and T. Takano. 1999. Purification and characterization of
- 459 an antihypertensive peptide from a yogurt-like product fermented by
 460 *Lactobacillus helveticus* CPN4. J. Dairy Sci. 82: 1388-1393.
- 461 Yano, S., K. Suzuki, and G. Funatsu. 1996. Isolation from azein of thermolysin
- 462 peptides with angiotensin I-converting enzyme inhibitory activity. Biosci.
 463 Biotechnol. Biochem. 60: 661-663.
- 464 Yoshii, H., N. Tachi, R. Ohba, O. Sakamura, H. Takeyama, and T. Itani, 2001.
- 465 Antihypertensive effect of ACE inhibitory oligopeptides from checken egg yolks.
- 466 Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. **128**: 27-33.