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Shikonin inhibited mitogen-activated IL-4 and IL-5 production on EL-4 cells through
downregulation of GATA-3 and c-Maf induction
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Aim: To investigate the effects of shikonin on phorbol myristate acetate (PMA) plus cyclic adenosine
monophosphate (cAMP)-induced T helper (TH) 2 cell cytokine production, and the underlying mechanism.
Main methods: We used activated EL-4 murine T-lymphoma cells, which produce interleukin (IL)-4 and IL-5,
but not interferon (IFN)-γ, as TH2 cell-like cells and treated them with PMA+cAMP to investigate the effects
of shikonin on TH2 cytokines, transcriptional factors, and the related mitogen-activated protein kinase
(MAPK)/nuclear factor (NF)-κB signaling pathway.
Key findings: The data show that shikonin inhibited the PMA+cAMP-induced mRNA and protein expression
of IL-4 and IL-5 via the downregulation of GATA-binding protein-3 (GATA-3) and c-musculoaponeurotic
fibrosarcoma (Maf) but not T-box expressed in T cells (T-bet). Moreover, shikonin suppressed the
phosphorylation of p38, inhibitor of κB (IκB) kinase (IKK)-β and IκB-α, and the subsequent IκB-α
34
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E
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Tdegradation induced by PMA+cAMP; however, the PMA+cAMP-induced phosphorylation of extracellular

signal-related kinase (ERK), which resulted in minor inhibition and phosphorylation of c-Jun N-terminal
kinase (JNK), seemed to be unaffected by shikonin treatment.
Significance: This study suggests that downregulation of GATA-3 and c-Maf via the suppression of p38, IKK-β
and IκB-α phosphorylation might contribute to the inhibitory effect of shikonin on mitogen-induced IL-4 and
IL-5 production in EL-4T cells. Furthermore, shikonin is a potential drug for treating allergic diseases.

© 2011 Published by Elsevier Inc.
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Asthma is a chronic inflammatory disease affecting about
300 million people worldwide, with 255,000 people dying of the
disease in 2005 (World Health Organization). Studies on patients and
animal models of asthma suggest that in allergic asthma, CD4+ T
helper (TH) 2 lymphocytes induce an inflammatory cascade via
cytokine production comprising eosinophil action, IgE production,
and mast cell activation — all of which in turn produce the necessary
mediators causing airway hyperresponsiveness (Chung and Barnes,
1999; Wills-Karp, 1999; Umetsu and DeKruyff, 2006). The pathologic
role of TH2 cells is mediated through the release of TH2 cytokines such
as interleukin (IL)-4, IL-5, and IL-13. IL-4 induces IgE isotype
switching and is implicated in stimulating VCAM-1 expression
(Schnyder et al., 1996) and enhancing eosinophil recruitment to the
lungs (Venkayya et al., 2002). IL-5 is the key cytokine involved in
76

77

78

79

80

gy and Immunology, School of
ity, No. 91 Hsueh-Shih Road,
; fax: +886 4 22053764.
. Lee).

lsevier Inc.

onin inhibited mitogen-activ
011), doi:10.1016/j.lfs.2011.0
eosinophil growth and differentiation in bone marrow (Sanderson,
1988, 1992; Yamaguchi et al., 1988) and the subsequent release of
eosinophils into peripheral circulation (Wiktor-Jedrzejczak, 1993;
Collins et al., 1995).

Shikonin and its derivatives are analogs of naphthoquinone
pigments, the major components of root extracts of a Chinese
medicinal herb, Lithospermum erythrorhizon (Chen et al., 2002).
Treatment indications claimed for L. erythrorhizon roots include
burns, anal ulcers, hemorrhoids, infected crusts, bedsores, external
wounds, and oozing dermatitis (Papageorgiou et al., 1999). Multiple
pharmacological actions of these compounds have been documented,
including (1) the inhibition of vascular permeability and acute edema
induced by histamine upon topical application of shikonin (Hayashi,
1977) and (2) the inhibition of cyclooxygenase-2 transcription
through the downregulation of extracellular signal-regulated kinase-
1/2 (ERK1 and ERK2) and activation protein-1 (AP-1) activities
(Subbaramaiah et al., 2001). Other pharmacological actions include
the suppression of mast cell degranulation (Wang et al., 1995),
protection of vasculature, inhibition of the neutrophil respiratory burst
(Kawakami et al., 1996), and blocking CCL5 (RANTES) and CCL4 (MIP-
1α) binding to human monocytes (Das et al., 2001). In addition,
ated IL-4 and IL-5 production on EL-4 cells through downregulation
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shikonin exhibits anti-cancer effects (Guoet al., 1991;Hisa et al., 1998).
Although shikonin exhibits a broad range of biological and pharma-
cological activities, there is little information regarding its effects on
allergic diseases. In the present study, we explored the possible effects
of shikonin on T cells. T-cell activation in vitro can be mimicked by
phorbol myristate acetate (PMA) and calcium ionophores, or by anti-
CD3 antibodies and lectins (Boonyaratanakornkit et al., 2005; Hughes-
Fulford et al., 2005); however, this mimicking effect induces T cells
to produce more IFN-γ than IL-4 or IL-5, which drives the T cells to
develop into TH1 cells rather than TH2 cells. Therefore, we used PMA
combined with dibutyryl-cyclic adenosine monophosphate (cAMP)-
activated EL-4 murine T-lymphoma cells, which produce IL-4 and IL-5
(Lee et al., 1993) but not IFN-γ, as TH2-like cells, to investigate the
effects of shikonin on TH2 cytokines, transcriptional factors, and the
related mitogen-activated protein kinase (MAPK)/nuclear factor
(NF)-κB signaling pathway.

Materials and methods

Drugs and chemicals

Shikonin was purchased from EMD Chemical Inc. (Darmstadt,
Germany); its chemical structure is shown in Fig. 1A. PMA and cAMP
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Fig. 1. Shikonin inhibited PMA+cAMP-induced IL-4 and IL-5 expression in EL-4 T cells. (A) C
expression detected by real-time PCR. Data are expressed as mean±SEM (n=6). #pb0.001
*** pb0.001, compared to the control group with PMA+cAMP treatment.
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were purchased from Sigma-Aldrich (St. Louis, MO, USA). DMEM,
Hank's balanced salt solution (HBSS), penicillin, streptomycin, L-
glutamine, and fetal bovine serum (FBS) were purchased from
Invitrogen (Carlsbad, CA, USA).

Cell culture

EL-4 murine T-lymphoma cells were purchased from the ATCC
(Manassas, VA, USA). EL-4 cells were cultured in DMEM supplemen-
tedwith 10% heat-inactivated FBS. Confluent cells were subcultured at
a ratio of 1:3, and media were changed twice a week.

Cytotoxicity assay

EL-4 T cells were pretreated with various concentrations of
shikonin for 10 min and cultured with or without PMA (5 ng mL−1)
plus cAMP (250 μM) for 24 h. At this point, the number of viable cells
was determined using trypan blue staining (Sugiura et al. 2007).

Quantitative real-time PCR

Cells were collected 24 h after different drug treatments, and RNA
was isolated using RNA TRIzol reagent was purchased from Invitrogen
E
D
 P

R

hemical structure of shikonin. (B) IL-4 and IL-5 production detected by ELISA, andmRNA
, compared to the control group without PMA+cAMP treatment. * pb0.05; ** pb0.01;

ated IL-4 and IL-5 production on EL-4 cells through downregulation
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(Carlsbad, CA, USA), according to the manufacturer's instructions. RNA
was converted into cDNA and subsequently quantified by quantitative
real-time PCR using an ABI PRISM 7900 Sequence Detector (Applied
Biosystems, Foster City, CA, USA). The partial cycles that resulted in
statistically significant increases in IL-4, IL-5, GATA-3, c-Maf, and T-bet
expression were determined (threshold cycle, Ct) and normalized to the
Ct forβ-actin. IL-4, IL-5, GATA-3, c-Maf, T-bet, andβ-actinwere amplified
using an SYBR Green kit (Applied Biosystems). The primer sequences
used were as follows: IL-4, sense 5′-CTCATGGAGCTGCAGAGACTCTT-3′,
antisense 5′-CATTCATGGTGCAGCTTATC-GA-3′; IL-5, sense 5′-TGACCGC-
CAAAAAGAGAAGTG-3′, antisense 5′-GAACTCTTGC-AGGTAATCCAGGAA-
3′; GATA-3, sense 5′-CAGAACCGGCCCCTTATCA-3′, antisense 5′-
ACAGTTCGCGCAGGATGTC-3′; c-Maf, sense 5′-AGAGGCGGACCCT-
GAAAAA-3′, antisense 5′-GTGTCTCTGCTGCACCCTCTT-3′; T-bet, sense
5′-CTGGATGCGCCAGG-AAGT-3′, antisense 5′-TGTTGGAAGCCCCCTTGTT-
3′; and β-actin, sense 5′-ACTGCCGCATCCTCTTCCT-3′, antisense 5′-
ACCGCTCGTTGCCAATAGTG-3′.

Cytokine assays

Cell culture supernatants were collected 24 h after different drug
treatments and stored at −20 °C before analysis by ELISA, according
to the manufacturer's instructions. Standard samples were prepared
from recombinant mouse IFN-γ, IL-4, and IL-5 (R&D Systems,
Minneapolis, MN, USA).

Western blotting

Cells were collected after incubation with different drugs in 6-well
plates for the indicated durations. Total cell lysates were separated
using 10% SDS-PAGE gels, and electrophoresed proteins were
transferred onto a polyvinylidene difluoride (PVDF) membrane.
Membranes were blocked with 5% milk in Tris-buffered saline
containing 0.1% Tween and incubated with a primary antibody.
Horseradish peroxidase-labeled secondary antibody was used; bands
were detected with chemiluminescence reagents, according to the
manufacturer's instructions (PerkinElmer Life Science, Boston, MA,
USA), and subsequently exposed to an X-ray film. The bands were
scanned and analyzed using Image J software. Monoclonal antibodies
against β-actin and polyclonal antibodies against phosphorylated
IκB-α, ERK, JNK, and p38 MAPK were purchased from Cell Signaling
Technology (Beverly, MA, USA). Polyclonal antibody against phos-
phorylated IKK-β was purchased from Abcam plc. (Cambridge, UK).
Monoclonal antibodies against GATA-3, c-MAf, and T-bet and
polyclonal antibodies against ERK, JNK, and p38 MAPK were
purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA).

Statistical analysis

All experimental data are expressed as mean±SEM using one-
way ANOVA followed by the Newman–Keuls post-hoc test. Statistical
significance was set at pb0.05.

Results

Shikonin inhibited the mitogen-induced expression of IL-4 and IL-5 in
EL-4 T cells

First, we evaluated the possible cytotoxic effects of shikonin on
EL-4 cells. After treatments with 0.003, 0.01, 0.03, 0.1, or 0.3 μM
shikonin for 24 h, EL-4 cells did not exhibit any cytotoxicity, as
shown by the trypan blue exclusion assay (data not shown). The 50%
of lethal concentration (LC50) of shikonin in EL-4 cells was 1.33±
0.13 μM. Next, we investigated the production of IL-4 and IL-5. EL-4
cells treated with different concentrations of shikonin did not exhibit
any apparent changes with respect to IL-4 or IL-5 production
Please cite this article as: Lee C-C, et al, Shikonin inhibited mitogen-activ
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(Fig. 1B). Because PMA activates protein kinase C (PKC) and cAMP
activates protein kinase A (PKA) – all of which are involved in EL-4 T-
cell activation and the release of IL-4 and IL-5 (Lee et al., 1993) – we
used a mixture of 5 ng mL−1 PMA and 250 μM cAMP to drive EL-4 T
cells to behave like TH2 cells. Shikonin inhibited the PMA+cAMP-
induced IL-4 and IL-5 production and mRNA expression in a dose-
dependent manner. Compared to treatment with PMA+cAMP alone
in the control group, treatment with 0.03, 0.1, and 0.3 μM shikonin
reduced IL-4 production by 32.1%, 29.7%, and 39.6%, respectively.
Treatment with 0.003, 0.01, 0.03, 0.1, and 0.3 μM shikonin reduced
IL-5 production by 23.8%, 31.3%, 40.2%, 52%, and 75.5%, respectively.
The 50% of inhibitory concentration (IC50) of shikonin in IL-5
production was 0.13±0.04 μM. The IC50 values of shikonin in IL-4
and IL-5 mRNA expression were 0.08±0.04 and 0.15±0.07 μM,
respectively.

Shikonin suppressed the mitogen-induced expression of GATA-3 and
c-Maf in EL-4 T cells

Next, we analyzed the TH2- and TH1-related transcription factors
and found that shikonin inhibited PMA+cAMP-induced GATA-3 and
c-Maf mRNA (Fig. 2A) and protein (Fig. 2B) expression in a dose-
dependent manner. However, T-box expressed in T cells (T-bet) was
not induced by PMA+cAMP treatment, and shikonin treatment did
not result in any obvious changes in T-bet mRNA expression.

Shikonin decreased mitogen-induced MAPK activation

To further investigate the mechanism underlying the shikonin-
mediated inhibition of IL-4 and IL-5 production, we focused on MAPK
pathways, which are known to play critical roles in the activation of
T cells (Boulton et al., 1991; Kyriakis et al., 1994; Lee et al., 1994; Su
et al., 1994). We found that PMA+cAMP induced ERK, JNK, and p38
activation from 5 to 60 min, peaking 30 min after treatment (Fig. 3A).
Thus, we investigated the effects of shikonin on MAPK after 30 min of
treatment with PMA+cAMP (Fig. 3B). We found that 0.03 and 0.3 μM
shikonin inhibited the PMA+cAMP-induced ERK and p38 activation
but had no obvious effect on JNK activation.

Shikonin inhibited mitogen-induced IKK-β and IκB-α activation

NF-κB activation is involved in the initiation and amplification of
the inflammatory response (Handel and Girgis, 2001; Andujar et al.,
2010) and is also involved downstream of MAPK signaling (Dhawan
and Richmond, 2002). The nuclear translocation and DNA binding of
NF-κB are preceded by the phosphorylation of IKK-β, IκB-α and
subsequent degradation of IκB. We found that the PMA+cAMP-
induced phosphorylation of IKK-β and activation and degradation of
IκB-α were inhibited by treatment with 0.03 and 0.3 μM shikonin
(Fig. 4). Expression of phosphorylated IKK-β and IκB-α proteins and
the level of IκB-α degradation induced by PMA+cAMP were blocked
after 0.3 μM shikonin treatment.

Discussion

In a previous study, we found that shikonin impaired IL-4 and IL-5
production in lung cells and mediastinal lymph nodes in a murine
model of asthma with antigen-induced airway inflammation (Lee
et al., 2010); however, the mechanism underlying this impairment
remains unclear. In the present study, we aimed to determine
whether shikonin directly inhibits TH2 cell function; therefore, we
used PMA+cAMP-activated EL-4 T cells as TH2-like cells, which
induce IL-4 and IL-5 production. We found that shikonin inhibited the
PMA+cAMP-induced IL-4 and IL-5 expression in a dose-dependent
manner. Because PMA+cAMP drastically increased IL-5 mRNA and
protein expression, the inhibition level of IL-5 expression was higher
ated IL-4 and IL-5 production on EL-4 cells through downregulation
7.002
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Fig. 2. Shikonin inhibited the PMA+cAMP-induced GATA-3 and c-Maf expression in EL-4 T cells. (A) GATA-3 and c-Maf mRNA expression were detected by real-time PCR. Data are
expressed as mean±SEM (n=6). (B) The protein expression of GATA-3, c-Maf, and T-bet was detected by western blotting. Histograms represent quantifications of protein
expression by western blotting. Data are expressed as mean±SEM (n=3). #pb0.001, compared to the control group without PMA+cAMP treatment. * pb0.05; ** pb0.01;
*** pb0.001, compared to the control group with PMA+cAMP treatment.
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than that of IL-4 expression with shikonin treatment. Since the
expression of T-cell-specific transcription factors and components of
MAPK pathways, which are known to play critical roles in T-cell
activation (Boulton et al., 1991; Kyriakis et al., 1994; Lee et al., 1994;
Su et al., 1994), affects IL-4 and IL-5 gene expression, we further
investigated the possible role of shikonin on related signaling
pathways.

The gene expressions of all 3 TH2 cytokines are regulated by the
transcriptional factor GATA-3 (Lee et al., 2008). The GATA site located
upstream of the IL-4 and IL-5 promoters is important in regulating IL-
4 and IL-5 expression, respectively (Ray and Cohn, 1999; Zhu et al.,
2006). Shikonin inhibited PMA+cAMP-induced GATA-3 expression
at both the mRNA and protein level. During TH2 cell differentiation,
GATA-3 can be activated through the activation of the IL-4 receptor,
Please cite this article as: Lee C-C, et al, Shikonin inhibited mitogen-activ
of GATA-3 and c-Maf induction, Life Sci (2011), doi:10.1016/j.lfs.2011.0
notch receptor, TCR, or IL-2 receptor (Ho et al., 2009). In our study,
PMA+cAMP-induced GATA-3 activation mimicked the TCR activa-
tion pathway. Furthermore, NF-κB is reported to play a role in the
antigen TCR-activated GATA-3 signaling pathway. Two separate
research groups report the requirement of NF-κB1/p50 for optimal
GATA-3 induction in T cells, based on the fact that GATA-3 expression
and Th2 differentiation are specifically abrogated in p50−/− T cells
and in SAP−/− cells in which the nuclear translocation of NF-κB is
inhibited (Das et al., 2001; Cannons et al., 2004). The GATA-3
promoter region contains several consensus-potential NF-κB binding
sites (Das et al., 2001; Cannons et al., 2004). Direct binding of NF-κB
subunits may control the transcriptional activation of GATA-3 as well
as the subsequent development of the TH2 lineage. We found that
shikonin inhibited IκB-α phosphorylation and degradation, which
ated IL-4 and IL-5 production on EL-4 cells through downregulation
7.002
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Fig. 3. Effects of shikonin on the PMA+cAMP-induced phosphorylation of MAPKs in EL-4 T cells. (A) Time dependence of MAPK activation by 5 ng mL−1 PMA+250 μM cAMP
treatment. Phosphorylated (p)-ERK, p-JNK, p-38, ERK, JNK, and p38 proteins were detected by western blotting. Histograms represent quantifications of protein expression by
western blotting. Data are expressed as mean±SEM (n=3). * pb0.05; ** pb0.01; *** pb0.001, compared to the control without the PMA+cAMP group. (B) Cells were treated with
0.03 or 0.3 μM shikonin for 10 min followed by 5 ng mL−1 PMA+250 μM cAMP for 30 min. Cell lysates were analyzed by western blotting using antibodies specific for p-ERK, p-JNK,
p-38, ERK, JNK, and p38. Histograms represent quantifications of protein expression by western blotting. Data are expressed as mean±SEM (n=3). #pb0.001, compared to the
control group without PMA+cAMP treatment. *** pb0.001, compared to the control group with PMA+cAMP treatment.
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might in turn downregulate NF-κB activation; therefore, shikonin
might suppress GATA-3 mRNA expression by inhibiting NF-κB
activation. In addition, Andujar et al. (2010) also found that shikonin
reduces phorbol ester-induced IκB degradation, thus inhibiting the
translocation of NF-κB.
Please cite this article as: Lee C-C, et al, Shikonin inhibited mitogen-activ
of GATA-3 and c-Maf induction, Life Sci (2011), doi:10.1016/j.lfs.2011.0
In addition to GATA-3, the proto-oncogene c-Maf is a potent and
specific transactivator of the Il4 gene (Ho et al., 1996; Tanaka et al.,
2005). c-Maf binds to a half Maf recognition element (MARE) site and
transactivates the IL-4 promoter. The forced expression of c-Maf is
sufficient to drive endogenous IL-4 production in M12 B cells or
ated IL-4 and IL-5 production on EL-4 cells through downregulation
7.002
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Fig. 4. Shikonin suppressed the PMA+cAMP-induced activation of IKK-β and IκB-α in EL-4 T cells. Cells were treated with 0.03 or 0.3 μM shikonin for 10 min followed by 5 ng mL−1

PMA+250 μM cAMP for 30 min. Cell lysates were analyzed by western blotting using antibodies specific to p-IKK-β, IκB-α, p-IκB-α, and β-actin. Histograms represent
quantifications of protein expression by western blotting. Data are expressed as mean±SEM (n=3). #pb0.05, compared to the control group without PMA+cAMP treatment.
* pb0.05, ** pb0.01, *** pb0.001, compared to the control group with PMA+cAMP treatment.
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induced c-Maf expression was inhibited as a result of shikonin
treatment, suggesting that shikonin inhibits IL-4 production via the
downregulation of c-Maf.

Since T-bet is expressed predominantly in TH1 cells and exhibits
reciprocal inhibitory effects with GATA-3 in T-cell differentiation
(Szabo et al., 2000), shikonin might affect T-bet activation to inhibit
GATA-3 expression. However, we found that treatment with shikonin
alone did not have any obvious effect on T-bet expression in EL-4 T
cells. Furthermore, T-bet was not activated after PMA+cAMP
treatment. Thus, the effect of T-bet activation after shikonin treatment
requires further investigation.

Previous studies report that p38 MAPK is involved in T-cell
activation and development, and that the inhibition of p38 activity
reduces IL-2, IL-4, and IFN-γ production (Rincon et al., 1998; Zhang et
al., 1999). Chen et al. (2000) found that GATA-3 phosphorylation by
p38 may be important for the activation of IL-5 and IL-13 gene
expression. In the present study, we found that shikonin inhibited
mitogen-induced p38 phosphorylation and that p38 was barely
activated with 0.3 μM shikonin treatment. This might indicate that
p38 is involved in shikonin-inhibited GATA-3 expression. In addition
to the regulation of IL-4 transcription, the activation of p38 also
induced IL-4 mRNA stability (Dean et al., 2004; Guo et al., 2008).
Please cite this article as: Lee C-C, et al, Shikonin inhibited mitogen-activ
of GATA-3 and c-Maf induction, Life Sci (2011), doi:10.1016/j.lfs.2011.0
However, whether shikonin regulates IL-4 mRNA stability via p38
activation requires further investigation.

We also found that PMA+cAMP induced phosphorylation of ERK
and JNK in EL-4 T cells. According to previous studies, both ERK and
JNK are involved in T-cell activation. TCR engagement activates the
ERK pathway, and co-stimulation through CD28 causes JNK activation,
which is required for the complete activation of T cells (Su et al., 1994;
Ho et al., 1996). The ERK pathway has been found to cause IκB
phosphorylation and degradation, which lead to NF-κB activation. In
contrast, other studies found that ERK and JNK do not have positive
roles in TH2 cytokine production. Dumont et al. (1998) found that the
ERK inhibitor PD98059 enhances TH2 cytokine production. Further-
more, using JNK-1-deficient mice, Dong et al. (1998) found enhanced
TH2 responses. However, another previous study shows that pulsed
human myelin-reactive T cells with different myosin basic protein
peptides induce TH1 and TH2 deviation via the activation of JNK and
ERK, respectively (Singh and Zhang, 2004). Therefore, the roles of the
ERK and JNK pathways in TH2 cytokine production remain unclear. In
our study, we found that shikonin slightly inhibited PMA+cAMP-
induced ERK activation and had no inhibitory effects on JNK activation
as a result of PMA+cAMP treatment. This suggests that ERK plays a
minor role and that JNK has no obvious effect in shikonin-suppressed
IL-4 and IL-5 production induced by PMA+cAMP treatment.
ated IL-4 and IL-5 production on EL-4 cells through downregulation
7.002
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Conclusion

Our data show that shikonin directly inhibits TH2 responses in T
cells by reducing the expression of the cytokines IL-4 and IL-5 and the
transcription factors GATA-3 and c-Maf. Suppression of the phos-
phorylation of IKK-β and activation of IκB-α and p38 might play an
important role in the shikonin-induced inhibition of GATA-3
expression in EL-4 cells. Our findings provide useful and novel
mechanistic explanations for the anti-allergic inflammatory effect of
shikonin, and highlight its pharmaceutical value.
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