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ABSTRACT 

Voice pitch carries important cues for speech perception in humans. Recent studies have shown the 

feasibility of recording the frequency-following response (FFR) to voice pitch in normal-hearing listeners. 

The presence of such a response, however, was dependent on subjective interpretation of experimenters. 

The purpose of this study was to develop and test an objective method, including a control-experimental 

protocol and response-threshold criteria suitable for detecting the presence of an FFR to voice pitch. 

Eleven normal-hearing adults were recruited. A set of four Mandarin tones (Tone 1 flat; Tone 2 rising; 

Tone 3 dipping; and Tone 4 falling) was prepared to reflect the four contrastive pitch contours. The 

stimulus tokens were presented monaurally at 55 dB nHL. Electrical activities of the brain were recorded 

using three surface electrodes placed on the mid forehead and mastoids. Two distinctive algorithms, 

short-term autocorrelation in the time domain and narrow-band spectrogram in the frequency domain, 

were used to estimate the Frequency Error, Slope Error, Tracking Accuracy and Pitch Strength of the 

recordings taken from individual listeners as well as the power, false-positive rate, probability of errors  

and efficiency of each algorithm. The results demonstrated that both algorithms were suitable for 

detecting the presence of an FFR to voice pitch.  

 

 

 

  



Jeng, FFR Algorithms 

 3 

INTRODUCTION 

Developing neural indices of the brain’s ability to process differences in the pitch of an incoming signal 

are important for measuring the experience-dependent brain plasticity and understanding the sensory-

level processing of voice pitch at the brainstem level. Objective measures of a listener’s responses to the 

changes in voice pitch, however, were not achieved until the past few years (Galbraith et al., 2004; 

Krishnan et al., 2004; Kraus & Nicol, 2005; Musacchia et al., 2007; Wong et al., 2007). These results 

supported the idea that when neurons in the human brainstem were passively activated by speech signals, 

the synchronized neural activities that reflected changes in voice pitch were preserved in the scalp-

recorded frequency-following response (FFR) to voice pitch. Recent studies expanded the scope of the 

use of the FFR by showing the characteristics of such a response using speech (Aiken & Picton, 2006; 

Dajani et al., 2005; Krishnan et al., 2004) and non-speech (Krishnan et al., 2009a, 2009b; Swaminathan et 

al., 2008a, 2008b) stimuli in normal-hearing adults. Jeng and Schnabel (2009) also reported that the FFR 

recorded in young infants accurately reflected the pitch contours of acoustic stimuli. The presence of such 

a response, however, is dependent on subjective interpretation of the experimenters. If the FFR to voice 

pitch is meant to be an objective method to examine the pitch processing mechanisms in the human 

brainstem, development of objective methods and evaluation of automatic algorithms suitable for 

detecting the presence of such a response is needed. The primary aim of the present study was to develop 

an objective method using a control-experimental protocol and response-threshold criteria for objectively 

judging the existence of an FFR. 

 

Pitch encoding in the auditory brainstem 

Voice pitch is a psychological perception of the fundamental frequency (f0) of a speech signal and is 

determined by the vibration pattern of the human vocal folds. Although pitch perception ultimately 

resides in the neocortex, neurons in the brainstem play an important role in decoding features of the 

incoming signal, including the voice pitch. Recent advancements in electrophysiological techniques 

demonstrated that neurons in the human brainstem decode voice pitch with high temporal and spectral 
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resolutions such that the f0 and its harmonics of the incoming signal are preserved in the scalp-recorded 

FFRs (Galgraith et al., 2004; Krishnan et al., 2004; Kraus & Nicol, 2005).  

 

Accurate encoding of voice pitch and its change over time is critical for listeners to perceive different 

lexical meanings and prosodic cues embedded in a speech signal. The human brainstem’s ability to 

accurately follow the changes of voice pitch, as reflected by the scalp-recorded FFRs, has been reported 

in normal-hearing adults who spoke tonal (Krishnan et al., 2005, 2010; Swaminathan et al., 2008b) and 

non-tonal languages (Galbraith et al., 2004). The brainstem’s ability to decode voice pitch accurately and 

deliver such information to the neocortex is also important for listeners to process and appreciate music. 

Recent studies (Musacchia et al., 2007; Wong et al., 2007) have shown that musical training enhanced the 

acuity of pitch tracking in the human brainstem, as reflected by the scalp-recorded FFRs to voice pitch in 

musicians versus non-musicians.  

 

Development and evaluation of an objective method is particularly important when clinicians and 

researchers are trying to apply such a technique on populations who cannot provide reliable feedback 

such as infants, children, and difficult-to-test patients. For example, children with autism spectrum 

disorders showed deficient pitch-tracking accuracy compared to typically developed children (Russo et al., 

2008). It is also reported that with short-term training on specific linguistic pitch contours, listeners not 

only were able to improve their behavioral response correctness, but also were able to express enhanced 

pitch-tracking accuracy reflected through scalp-recorded FFRs (Song et al., 2008). These findings support 

the notion that FFR to voice pitch can be a viable, objective, and non-invasive neurophysiological index 

of the brain’s ability to process voice pitch. Most importantly, these findings also demonstrated potential 

clinical applications for diagnostic and remediation strategies for normal and pathological populations. 

 

Pitch detecting algorithms 
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The secondary aim of the present study was to apply and evaluate the adequacy of this objective method 

by using two distinctive pitch detecting algorithms. One is the short-term autocorrelation algorithm that 

takes advantage of signal processing in the time domain; the other is the narrow-band spectrogram 

algorithm that analyzes the spectral components of the incoming signal.  

 

Boersma (1993) adopted the short-term autocorrelation algorithm and described several techniques for 

improving the accuracy of pitch extraction. Briefly, this method employed an autocorrelation function on 

multiple time frames of a sampled signal. Fundamental frequency of each time frame was identified at the 

time shift that yielded the maximum value in the autocorrelation function. The f0 contour of the sampled 

signal was then constructed by concatenating the fundamental frequencies estimated from each of the 

time frames. Studies (Krishnan et al., 2004, 2005; Swaminathan et al., 2008a, 2008b; Wong et al., 2007) 

have shown the feasibility of using this short-term autocorrelation algorithm to extract the f0 contour of a 

response. Recordings taken from each individual, however, have less favorable signal-to-noise ratios than 

that of a grand-averaged recording from a group of participants. The outcome of the autocorrelation-based 

algorithm might consequently be compromised.  

 

A second algorithm that can be used to detect the presence of an FFR is derived from a narrow-band 

spectrogram on the recordings. Briefly, this algorithm searches for the frequency that contains the largest 

spectral density in a pre-defined frequency range for each time frame in a recording. This technique is 

similar to the short-term autocorrelation algorithm, but the f0 of a sampled signal is determined by 

examining the distribution of the spectral energy of a recorded signal. When an FFR is present, spectral 

components of a recording that are in close proximity to the f0 contour of the stimulus would have 

relatively larger and distinguishable spectral energy than the frequency components that are further from 

the f0 contour of the stimulus. Thus, small spectral energies at the frequency range around the f0 contour 

of the stimulus token would indicate the presence of a response. Recent studies (Russo et al., 2008; Song 
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et al., 2008) have shown the feasibility of using the narrow-band spectrogram algorithm to extract the f0 

contours of the FFR to voice pitch.  

 

Development of an objective method  

Development of an objective method for detecting the presence of an FFR to voice pitch requires the use 

of a control-experimental protocol. That is, one can assure the presence of such a response in the 

experimental condition and no response in the control condition. For scalp-recorded FFRs from human 

listeners, it cannot be assumed that all participants will produce measureable responses with the same 

characteristics. Thus, pre-defining a set of recordings with ‘known’ responses becomes a challenge. In 

ideal situations, one could simulate the existence of an FFR by using a set of known mathematical 

equations to ‘generate’ a known response and inject the known responses in a controlled condition to 

create a set of recordings with known responses. This approach, however, is not applicable until 

mechanisms of pitch encoding in the human brainstem is thoroughly understood and the FFR to voice 

pitch can be readily derived using a set of mathematical equations. Thus, an alternative solution that has 

been commonly adopted in clinical settings is to recruit experienced human observers to determine the 

existence of a response and use that set of recordings as the ‘gold’ standard. This alternative approach 

provides a realistic solution for the development of an objective for detecting the existence of an FFR. 

Moreover, such an alternative approach has been used in clinical applications such as the automated 

ALGO algorithm (Natus Medical Inc., San Carlos, California USA) that has been commonly used for 

newborn hearing screenings to detect the presence of an auditory brainstem response (ABR) to clicks 

stimuli. During the development of objective method for detecting the presence of an ABR, a set of ABR 

waveforms was judged by experienced human observers and rated with known responses. These ABR 

waveforms were then used as a ‘gold standard’ template in the experimental protocol. Recordings 

obtained from individual neonates were then compared to the ABR template in order to determine the 

existence of a response.  
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To accommodate the requirements for developing an objective method for detecting the presence of an 

FFR, a control-experimental protocol was adopted. Specifically, the experimental condition was 

conducted with acoustic stimuli delivered monaurally to each listener’s ear; whereas the control condition 

was performed when the sound tube was occluded and moved away from the participant’s ear at the end 

of each testing session. All recordings were judged by three experienced observers to subjectively 

determine the presence of a response. All recordings were also analyzed using two objective pitch-

detecting algorithms. Results obtained using the objective algorithms were then compared with subjective 

human judgments to derive the power, false-positive rate and probability of errors of this objective 

method.  

 

MATERIALS AND METHODS 

Experimental protocols and procedures used in this study were approved by the China Medical University 

Hospital (Taichung, Taiwan) Institutional Review Board. All recordings were obtained in an acoustically-

treated chamber in the Auditory Electrophysiology Laboratory at China Medical University Hospital.  

 

Participants  

Eleven adult participants (5 males; mean ± S.D. = 31.4 ± 4.7 years) with hearing sensitivity ≤ 25 dB HL at 

octave frequencies from 125 to 8000 Hz were recruited. All participants were native speakers of 

Mandarin Chinese.  

 

Preparation of acoustic tokens 

A set of four monosyllabic Mandarin Chinese syllables was recorded by an adult Chinese male to create 

four contrastive pitch contours (Tone 1 flat /yi1/ clothes, Tone 2 rising /yi2/ aunt, Tone 3 dipping /yi3/ 

chair, Tone 4 falling /yi4/ meaning). These stimulus tokens were recorded in a sound-treated booth with 

an Audio-technica AT825 field recording microphone, connected through a preamplifier and an analog-
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to-digital converter (USBPre microphone interface) to an IBM-compatible computer. The recording of the 

stimulus tokens was digitally sampled using the Brown Lab Interactive Speech System v7 (BLISS, 

Providence, RI) at 40 kHz with 14-bit quantization. Each stimulus token was normalized to a duration of 

250 ms with a rising/falling time of 10 ms using Praat v5.1 (Boersma and Weenink, 2009). Frequency 

ranges of the f0 contours for the four stimulus tokens (Tones 1, 2, 3 and 4) were 163-180, 116-157, 98-

125 and 105-156 Hz, respectively. 

 

Stimulus presentation 

Presentation of the stimulus tokens and trigger synchronization were controlled by custom-made software 

written in LabView 8.0 (National Instruments, Austin, TA). All stimulus tokens were presented through a 

12-bit digital-to-analog converter (National Instruments, DAQ 6062E) and a GSI 61 audiometer. All 

stimulus tokens were presented monaurally to the right ear through an electromagnetically-shielded insert 

earphone (Bio-logic Systems Corp., Mundelein, Illinois USA) at a stimulus level of 55 dB nHL. Two 

trials of 1200 sweeps were recorded using each stimulus token. The inter-stimulus interval was set at 50 

ms. The four Mandarin tones were presented in a random order across participants. A control condition 

(sound tube occluded and moved away from the participant’s ear) was conducted at the end of each 

testing session to provide waveforms with no physiological responses to the stimuli. The control 

condition was needed not only to establish the experimental-control protocol, but also to ensure that 

stimulus artifact was appropriately eliminated from recordings.  

 

Recording parameters 

Three gold-plated recording electrodes were applied to all participants at the midline of the forehead at 

the hairline (non-inverting), right mastoid (inverting), and left mastoid (ground). All electrode 

impedances were under 3 kOhm at 10 Hz. Recordings were amplified (Neuroscan SynAmps2, 24-bit 

resolution, least significant bit: 0.15 nV), bandpass filtered (0.05–3500 Hz, 6 dB/octave), and digitized at 
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a rate of 20000 samples/s. Continuous data were recorded using Neuroscan Acquire 4.4 software 

(Compumedics, Charlotte, NC) and stored on a computer for offline analysis.  

 

Data analysis 

All data were analyzed using MatLab 2008a (MathWorks, Natick, MA) and EEGLab 6.01b (Swartz 

Center for Computational Neuroscience, San Diego, CA). To better isolate spectral energies at the f0 

contours, continuous recordings were digitally bandpass filtered using a brick-wall, linear-phase finite-

impulse-response (FIR) filter (85-1500 Hz, 3000 dB/octave). Filtered recordings were segmented into 

sweeps of 300 ms in length. A total of 1200 sweeps were collected for each condition. An individual 

sweep was rejected if it contained voltages greater than ±25 µV. During each recording condition, the 

typical rejection rate was less than 100 sweeps per trial. The remaining sweeps were averaged. To identify 

the onset of the response, the stimulus tokens were down-sampled to 2000 samples/s so that all stimuli 

and recordings had the same sampling rate. The down-sampled stimulus tokens were used throughout 

data analyses. Cross-correlation of the stimulus and recorded waveforms was performed to identify the 

time shift that produced the maximum cross-correlation value between the 3-10 ms response window. A 

250 ms segment of the recorded waveform was extracted from the originally recorded waveform starting 

from the maximum cross-correlation value. The same analytical procedures were applied to all recordings 

obtained in the experimental and control conditions. Data obtained from each trial were analyzed 

separately. Test-retest reliability was determined from results of the two trials obtained from each 

participant.  

 

Extraction of fundamental frequency (f0) contours 

Two distinctive methods were used to estimate the f0 contours of the stimulus tokens and recordings. All 

the stimulus tokens and recordings were first segmented using a 50-ms Hanning window with a step size 
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of 1 ms. This resulted in a total of 201 windowed segments to be analyzed. In the spectrograms and pitch-

tracking plots, the time shown on the abscissa indicates the midpoint of each 50-ms time window.  

 

The first method used the short-term autocorrelation algorithm (Krishnan et al., 2004, 2005; Swaminathan 

et al., 2008a, 2008b; Wong et al., 2007) which extracted the pitch based on a time-domain analysis of the 

signal. Specifically, autocorrelation was conducted on each of the windowed segments. The time shift 

(τmax) which yielded the maximum autocorrelation value between 5 and 13 ms was identified. This time 

range corresponded to 75–200 Hz that covered the frequency range of the f0 contours. The fundamental 

frequency of each windowed segment was calculated as f0 = 1 / τmax.  

 

The second method used a “narrow-band spectrogram” algorithm (Krishnan et al., 2005; Krishnan et al., 

2009b; Russo et al., 2008; Song et al., 2008; Wong et al., 2007) which extracted the pitch based on a 

spectral-domain analysis. The spectrogram was calculated with a frequency resolution of 4.88 Hz. For 

each windowed segment, this algorithm searched for the frequency corresponding to the maximal peak of 

the spectral density within a pre-defined frequency range. To ensure proper inclusion of f0 estimates, an 

additional measure, Pitch-Noise Ratio, was conducted. Pitch-Noise Ratio provides an estimate of the 

response amplitude to voice pitch relative to the amplitude of the ongoing neural responses that are not 

synchronized to the stimulus. Pitch was calculated by finding the spectral amplitude corresponding to the 

f0 of each time bin and averaging the spectral amplitudes across the 201 time bins. To obtain an estimate 

of the background physiological noise, waveforms were extracted from the 45-ms prestimulus interval to 

determine the amount of brain activities not synchronized to the stimuli. Spectral amplitudes 

corresponding to the response f0 frequencies were extracted from the prestimulus waveforms for each 

stimulus presentation. Pitch-Noise Ratio was then calculated as the dB ratio of the Pitch spectral 

amplitude relative to that of the Noise. Spectral peaks that contained Pitch-Noise Ratio ≤ 0 dB were 

excluded from possible candidates of f0 estimates. The frequency that corresponded to the narrow-band 

spectrogram was determined as the f0 estimate for that windowed segment. This procedure was repeated 
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for all windowed segments. All f0 estimates were concatenated to constitute the f0 contour of a recording. 

Different pre-defined frequency ranges (120-200 Hz for Tone 1, 90-180 Hz for Tone 2, 75-170 Hz for 

Tone 3, and 100-165 Hz for Tone 4) were used for each stimulus token and its associated recordings. The 

same techniques were applied to the stimulus waveforms. 

 

Objective measures 

f0 contours were extracted from each recording and were analyzed with respect to f0 contours of the 

stimulus waveforms. Pitch-tracking accuracy and phase-locking magnitude were described by measures 

of Frequency Error, Slope Error, Tracking Accuracy, and Pitch Strength. Frequency Error represented the 

accuracy of pitch-encoding over the duration of stimulus presentation. Slope Error indicated the degree to 

which the shapes of the pitch contours were preserved in the human brainstem. Tracking Accuracy (i.e., 

the regression r values) denoted the overall faithfulness of pitch tracking between the stimulus and 

response f0 contours. Pitch Strength measured the magnitude of neural phase-locking to the f0 contours of 

the stimulus waveforms.  

 

To obtain estimates of the four objective measures, Frequency Error was computed by finding the 

absolute Euclidian distance between the f0 contours of the stimuli and recordings and averaging the errors 

across the 201 windowed segments. Slope Error was derived by subtracting the slopes of the regression 

lines of the stimulus f0 contours from the regression slopes of the recording f0 contours. Slope estimates 

of the four stimulus tokens Tones 1-4 were 61, 268, 99, -265 Hz/s using the short-term autocorrelation 

algorithm and were 62, 272, 114, -372 Hz/s when using the narrow-band spectrogram algorithm. To 

obtain an estimate of Tracking Accuracy, linear regression was first conducted on a recording-versus-

stimulus f0 contours plot. Regression r value was then denoted as the Tracking Accuracy between the 

stimulus and recording f0 contours.  
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The fourth measure, Pitch Strength, was derived from an autocorrelation function. Autocorrelation 

allowed the measurement of overall periodicity of a sampled signal. Specifically, each recording was 

multiplied by a copy of itself with increasing time shifts. For each time shift, an autocorrelation value was 

calculated and expressed between -1 and 1. Fundamental frequency was calculated from the output of the 

autocorrelation function by finding the time shift that yielded the maximum autocorrelation value and 

took the inverse of the time shift (i.e., frequency = 1/periodicity; e.g., 200 Hz = 1/5 ms). Pitch Strength 

was calculated from the autocorrelation function by finding the peak-to-trough amplitude starting from 

the maximum positive peak (within the 5-13 ms time shifts) to the following negative trough in the 

normalized autocorrelation output. Because the f0 contours of the four stimulus tokens used in this study 

fell within the frequency range of 75-200 Hz, the time shifts were limited to 5-13 ms when searching for 

the location of the maximum peak in the autocorrelation output.  

 

Subjective judgment 

To evaluate the power and false-positive rate of each algorithm, the presence of an FFR to voice pitch 

was also determined by visual inspection of experienced human observers. Three human observers who 

had at least 2 years experience in electrophysiological recordings and their morphologies were recruited 

to determine whether a recording contained an FFR to voice pitch. These observers were familiar with 

spectrograms of speech tokens, but were blind to the experimental setup and data collection protocol. All 

recordings obtained in the 8 experimental conditions (4 pitch contours + 4 control conditions) were used. 

These recordings were counterbalanced across stimulus tokens and were presented in a random order to 

each observer. The spectrogram of each recording was presented alongside in pairs with the spectrogram 

of the stimulus token. Each observer was instructed to determine the presence of an FFR by using the 

following criteria: 

(1) f0 contour of the recording was clearly identifiable within the pre-defined frequency range; 

(2) f0 contour energy of the recording exceeded the energy of the background noise located at 

other frequencies; 
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(3) f0 contour of the recording followed the general trend (i.e., flat, rising, dipping, or falling) of 

the f0 contour of the stimulus token; and  

(4) f0 contour of the recording had no more than 2 disruptions along the f0 contour. 

If all the criteria were met, the human observer would press on a “Yes” button on the computer monitor to 

indicate the presence of a response. If any criterion was not met, the human observer would press on a 

“No” button to indicate the absence of such a response. In this study, we used a 2-alternative-forced-

choice paradigm. The presence of an FFR to voice pitch was determined if a recording received a “Yes” 

from two observers or more. The absence of an FFR was determined if a recording received a “No” from 

two observers or more.  

 

The FFR elicited by voice pitch was visualized by plotting the distribution of spectral energies of the 

recordings as a function of time. Figure 1 shows a typical example of the spectrograms of the stimuli, 

responses and controls for the four different pitch contours used in this study. Spectrograms of the 

stimulus (top row) showed clear spectral energy located at the fundamental frequency and its harmonics. 

Spectrograms of typical recordings (middle row) taken from an adult participant showed FFRs that 

followed the f0 contours of the stimuli. For recordings taken from individual participants, disruptions of 

the FFR along the f0 contour were often observed. Spectrograms of the recordings obtained in the control 

condition (bottom row) showed energy randomly distributed within the pre-defined frequency range and 

no FFR was observed for any of the all four tones used in this study. Due to the relatively strict criteria 

used in human judgment, recordings with weak FFRs would likely be determined as “no response” 

waveforms. During the process of developing an objective method, this imperfection was inevitable until 

the existence of a weak response could be objectively identified precisely without involvement of human 

judgments. 

 

Development of an objective method 
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By comparing the distribution curves for the experimental and control conditions, a response threshold 

value was calculated for each of the four Tones and the four objective measures. Due to the distinctive 

nature of the four objective measures, each measure was applied differently than the others. For 

Frequency Error, waveforms with Frequency Error values at or below the response thresholds were 

classified as responses. The threshold corresponded to the intersection between the experimental and 

control curves, the point at which the experimental condition had a higher probability of occurrence than 

the control conditions, was used to determine the presence of an FFR. Due to the nature of the bell-shaped 

distribution of Slope Error (i.e., Slope Error can be positive or negative numbers), two response 

thresholds were used to determine the presence of a response. Waveforms with Slope Error values within 

the two response thresholds were classified as responses. Similarly, waveforms with Slope Error values 

that fell outside of the two response thresholds were considered as no responses. For Tracking Accuracy, 

waveforms with Tracking Accuracy values at or above response thresholds were classified as responses. 

Pitch Strength used the same logistics as that used in Tracking Accuracy. 

 

There were four possible outcomes based on the human judgments and test results. Two of them were 

correct interpretations and two were incorrect (Figure 2). To estimate the power and false-positive rate of 

the objective method for each algorithm used in this study, procedures published by Altman and Bland 

(1994) were followed. Specifically, the presence of an FFR was first determined by experienced human 

observers and treated as the “gold” standard; whereas the presence of an FFR determined by each 

algorithm was treated as the “test” result. Procedures used in this study were consistent with those 

employed in automatic ABR detection algorithms used for newborn hearing screenings. For example, the 

ALGO algorithm used a set of recordings where the presence of an ABR waveform was pre-determined 

by experienced human observers. These waveforms were then treated as the “gold” standard in deriving 

power and false-positive rate, for the use of developing an automatic ABR detecting algorithm 
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The bottom portion of Figure 2 shows the calculation of the commonly used operating characteristics of a 

test, including power, false-positive rate, efficiency and likelihood of types I and II errors. Power (i.e., 

sensitivity, true-positive rate) was calculated as the proportion percentage of actual positives (i.e., 

presence of an FFR determined by human observers) which were correctly identified as having a response. 

False-positive rate (i.e., 1-specificity, alpha error) was classified as the proportion percentage of true-

negatives that were incorrectly identified as having a response. 

 

RESULTS 

 

Extraction of pitch contours 

Short-term autocorrelation algorithm 

Figure 3 shows a typical example of the f0 contours of the stimuli and responses recorded from a 

participant (Subject_010). The f0 contours, extracted using the short-term autocorrelation algorithm, are 

shown in Figure 3a. Tone 1 had a relatively flat pitch contour at around 174 Hz. Tone 2 had a rising pitch 

starting from 116 Hz to 158 Hz. Tone 3 had a dipping pitch contour with the highest frequency at 125 Hz 

and the lowest frequency at 98 Hz. Tone 4 had a falling voice pitch ranging from 185 Hz to 133 Hz. 

Using the short-term autocorrelation algorithm, the f0 contour estimates of responses generally followed 

the f0 contours of the stimuli. In some instances, the f0 contour estimates of the responses deviated from 

the f0 contours of the stimuli (e.g., Tone 3 around 140-160 ms and Tone 4 around 110-160 ms after 

stimulus onset). This was likely due to less favorable signal-to-noise ratios for recordings taken from 

individual listeners.  

 

Narrow-band spectrogram algorithm 

The f0 contours of the stimuli and responses extracted using the narrow-band spectrogram algorithm 

(Figure 3b) showed comparable results. The f0 contour estimates of the responses generally followed the 

f0 contours of the stimuli. In some instances, the f0 contour estimates of the responses showed deviations 
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from the f0 contours of the stimuli (e.g., Tone 1 around 20-50 ms and Tone 2 around 0-5 ms after 

stimulus onset). This was likely due to either disruptions of the FFR along the f0 contour or background 

noise in the pre-defined frequency range which exceeded the response energy.  

 

Objective measures of pitch-encoding 

Figure 4 presents the distribution (i.e., histograms) of Frequency Error, Slope Error, Tracking Accuracy 

and Pitch Strength that were derived by using the short-term autocorrelation (left four columns) and 

narrow-band spectrogram (right four columns) algorithms. 

 

Frequency Error 

Distributions of the Frequency Error (Figure 4a) obtained in the experimental condition were skewed to 

the left, whereas the distributions of the Frequency Error obtained in the control condition were skewed to 

the right. Most importantly, distributions of the Frequency Error obtained in the experimental condition 

were distinctive from those obtained in the control condition. The differences between the peak locations 

of the Frequency Error distributions between the experimental (i.e., solid lines) and control (i.e., shaded 

areas) conditions were 21, 18, 18 and 15 Hz for Tones 1-4, respectively. When the short-term 

autocorrelation algorithm was used, distributions of the Frequency Error obtained in the experimental 

condition showed a maximum occurrence at 0, 0, 3 and 6 Hz for Tones 1-4, respectively. Distributions of 

the Frequency Error obtained in the control condition showed maximum occurrences at 21, 18, 21 and 21 

Hz for Tones 1-4, respectively.  

 

The narrow-band spectrogram algorithm showed comparable results. Distribution histograms of the 

Frequency Error obtained in the experimental condition showed a peak separation of 12, 12, 12 and 15 Hz 

for Tones 1-4, respectively, when compared with those obtained in the control condition. Tone 4 showed 

a bimodal distribution and, therefore, decreased the power (or sensitivity) of this algorithm. 
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Slope Error 

Despite the use of four contrastive pitch contours with different slopes, distributions of the Slope Error 

(Figure 4b) showed prominent peaks for recordings in response to the four stimulus tokens. When the 

short-term autocorrelation algorithm was used, Slope Errors obtained in the experimental condition were 

clustered at around 0 Hz for the four pitch contours. In contrast, Slope Errors obtained in the control 

condition were scattered. Due to the bell-shaped distribution of Slope Error, two threshold lines were used 

for each tone. Waveforms with Slope Errors that fell outside of the two threshold lines were classified as 

having no response, whereas waveforms with Slope Errors that fell within the two threshold lines were 

considered responses.  

 

When the narrow-band spectrogram algorithm was used, Slope Errors obtained in the experimental 

condition showed concentrated peaks at around -60 Hz for all pitch contours, whereas the Slope Errors 

obtained in the control condition were relatively scattered with rounded peaks at 0, -360, -180 and 360 Hz 

for Tones 1-4, respectively. This was likely due to the randomness of f0 estimates, and thus flatness of the 

slope estimates, derived from waveforms recorded in the control condition. 

 

Tracking Accuracy 

Figure 4c shows the distributions of the Correlation Coefficient between the stimulus and response f0 

contours. When the short-term autocorrelation algorithm was used, distributions of the Tracking Accuracy 

in response to the four tones were skewed to the right, whereas the distributions of the Tracking Accuracy 

obtained in the control condition were relatively dispersed and skewed to the left. Distributions of the 

Tracking Accuracy demonstrated a maximum occurrence at 0.8, 0.9, 0.3 and 0.9 for Tones 1-4, 

respectively. The narrow-band spectrogram algorithm demonstrated comparable results. Distributions of 

the Tracking Accuracy revealed a maximum occurrence at 0.7, 0.9, 0.6 and 0.9 for Tones 1-4, 

respectively. Tone 4 showed a bimodal distribution and therefore decreased the power (or sensitivity) of 

this algorithm.  
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Pitch Strength 

Distributions of the Pitch Strength (Figure 4d) obtained in the control condition showed separable trends 

than those obtained in the control condition. Although the Pitch Strength obtained in the experimental 

condition ranged from 0.1-0.9, the Pitch Strength obtained in the control condition were all smaller than 

0.4. This finding indicated the potential usefulness of Pitch Strength in developing an objective method to 

evaluate the brain’s ability to follow the changes in pitch over time for individual listeners. 

 

Integration of objective measures and subjective judgment 

To better illustrate the process of developing an objective method for detecting the presence of an FFR, 

data from Figure 4 were replotted in Figure 5 as plots according to the results of human judgment. To 

estimate the power and false-positive rate of each algorithm, waveforms recorded in the experimental and 

control conditions were pooled together and plotted according to human judgment results. Subjective 

response thresholds are plotted as horizontal dotted lines in each panel. Due to the bell-shaped distribution 

of Slope Error, two threshold lines were used for each tone. Consistent with the procedures used in Figure 

4, waveforms with Slope Errors that fell outside the two threshold lines were classified as having absent 

response, whereas waveforms with Slope Errors within the two threshold lines were considered responses. 

Percentage proportions of each of the integration results (i.e., objective measures versus subjective 

judgment) are denoted numerically across the horizontal dotted lines in each panel.  

 

Response thresholds for subjective measures 

When the short-term autocorrelation algorithm was used, response thresholds for Frequency Error were 

9.0, 7.2, 9.8 and 12.0 Hz for Tones 1-4, respectively. The two response thresholds for Slope Error were -

145/50, -75/60, -180/90 and -60/100 Hz/s for Tones 1-4, respectively. Tracking Accuracy response 

thresholds for the four tones were 0.68, 0.74, 0.65 and 0.66, respectively. Pitch Strength response 

thresholds for the four tones were 0.36, 0.28, 0.27 and 0.29, respectively. When the narrow-band 
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spectrogram algorithm was used, response thresholds for Frequency Error were 8.1, 8.0, 10.8 and 9.0 Hz 

for Tones 1-4, respectively. The two response thresholds for Slope Error were -110/35, -150/50, -150/0 

and -180/190 Hz/s for Tones 1-4, respectively. Tracking Accuracy response thresholds for the four tones 

were 0.54, 0.70, 0.50 and 0.74, respectively.  

 

Power and false-positive rate 

The presence of an FFR as determined by the subjective interpretation of human observers was compared 

to the outcomes of the objective algorithms in order to construct the power, false-positive rate and 

receiver-operating-characteristics curves in Figure 6.  

 

For Frequency Error (Figure 6a), when the short-term autocorrelation algorithm was used, the power 

values (i.e., sensitivity of this algorithm in agreement with visual inspection of experienced human 

observers) for the four different pitch contours were 68%, 62%, 70% and 74%, respectively; while the 

false-positive rates (i.e., 100-specificity) were 0%, 0%, 4% and 5%, respectively. Tone 4 had the best 

sensitivity, but its false-alarm rate was also the largest. When the narrow-band spectrogram algorithm was 

used, the power values were 91%, 76%, 65% and 44% for the four different pitch contours, respectively; 

while the false-positive rates (i.e., 100-specificity) were 0%, 4%, 4% and 5%, respectively. Tone 1 had 

the best sensitivity and the smallest false-positive rate. It was noted that the narrow-band spectrogram 

algorithm improved the power for detecting the presence of a response (i.e., agreement with visual 

subjective judgments) for Tones 1 and 2 by 23% and 14%, respectively. Such improvement, however, 

was not observed for Tones 3 and 4.   

 

For Slope Error (Figure 6b), when the short-term autocorrelation algorithm was used, the power values 

for the four different pitch contours were 73%, 62%, 85% and 43%, respectively; while the false-positive 

rates were 27%, 17%, 46% and 29%, respectively. When the narrow-band spectrogram algorithm was 

used, the power values were 91%, 86%, 70% and 87% for the Tones 1-4, respectively; while the false-
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positive rates were 50%, 17%, 58% and 14%, respectively. In both algorithms, Slope Error had larger 

false-positive rates than those for Frequency Error, Tracking Accuracy and Pitch Strength. This was likely 

due to the effect of occasional disruptions of the slope estimates along the response f0 contours. It was 

also noted that the narrow-band spectrogram algorithm improved the power for detecting the presence of 

a response for Tones 1, 2 and 4 by 18%, 24% and 44%, respectively. Such improvement, however, was 

not observed for Tone 3.   

 

For Tracking Accuracy (Figure 6c), when the short-term autocorrelation algorithm was used, the power 

values for the four different pitch contours were 50%, 67%, 35% and 74%, respectively; while the false-

positive rates were 5%, 9%, 4% and 19%, respectively. Tone 4 had the best sensitivity, but its false-alarm 

rate was also the largest. When the narrow-band spectrogram algorithm was used, the power values were 

64%, 76%, 60% and 48% for the four different pitch contours, respectively; while the false-positive rates 

were 14%, 9%, 8% and 14%, respectively. Tone 2 had the best sensitivity and the smallest false-positive 

rate. It was noted that the narrow-band spectrogram algorithm improved the power for detecting the 

presence of an FFR for Tones 1, 2 and 3 by 14%, 9%, and 25%, respectively. Such improvement, 

however, was not observed for Tone 4.   

 

For Pitch Strength (Figure 6d), when the short-term autocorrelation algorithm was used, the power values 

for the four different pitch contours were 100%, 91%, 85% and 74%, respectively; while the false-

positive rates were 5%, 13%, 13% and 10%, respectively. Tone 1 had the best sensitivity and the smallest 

false-alarm rate.  

 

Predictive values and efficiency 

To better illustrate the performance of each objective index, operating characteristics of the four objective 

indices were tabulated for short-term autocorrelation algorithm (Table 1) and narrow-band spectrogram 

algorithm (Table 2). The use of the narrow-band spectrogram algorithm improves the predictive values 
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and efficiency for Frequency Error, Slope Error and Tracking Accuracy for the four tones used in this 

study.  

 

Test-retest reliability  

As one ultimate goal of developing objective methods is to apply measurements in difficult-to-test 

populations, it is of interest to examine the stability of the test results across the two trials of recordings. 

Paired t-test revealed no significant changes in the measurements of Frequency Error (t = -0.28, p = 0.61), 

Slope Error (t = 1.05, p = 0.29), Tracking Accuracy (t = 0.12, p = 0.45) and Pitch Strength (t = -0.35, p = 

0.64), across the four pitch contours and the two subjective algorithms used in the present study. That is, 

for a given participant, both trials had similar pitch-tracking accuracy values and were rated very similarly 

by human observers, evidenced by the high power and low false-positive rate of the two algorithms. This 

finding, in addition to the test-retest reliability, confirms the clinical applicability of the FFR to human 

voice pitch and supports the use of the response detection algorithms described in the present study.  

 

DISCUSSION 

This study evaluates an objective method for detecting the presence of an FFR to voice pitch. Previously, 

this judgment was made subjectively by an experienced human observer, which limited the clinical utility 

of the FFR in the assessment of pitch processing. This objective method is applied to two pitch-extracting 

algorithms (short-term autocorrelation and narrow-band spectrogram) to determine which method as well 

as which stimulus pitch contour produces greater sensitivity and fewer false-positives. It is observed that 

the narrow-band spectrogram algorithm provides greater sensitivity and efficiency, thereby promoting its 

clinical use. 

 

Pitch-detecting algorithms 

The overall periodicity (i.e., fundamental frequency) of a sampled signal can be extracted either in the 

time or frequency domain. The short-term autocorrelation algorithm estimates the overall periodicity by 
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correlating a sampled signal to itself with shifted data points in the time domain. This approach is sound 

when the signal contains a robust and continuous pitch contour over time, such as a stimulus token 

produced by a human subject or a grand-averaged waveform recorded from a group of participants. 

Recordings taken from individual listeners tend to have a less favorable signal-to-noise ratio which 

greatly reduces the accuracy of utilizing the short-term autocorrelation algorithm in estimating the f0 

contour of a recording taken from an individual listener. One possible solution to minimize the effect of 

background noise on the extraction of the FFR f0 contour is to examine the spectral energy of a response 

in a pre-defined frequency range that contains most of the FFR f0 contour and excludes the frequency 

components of the background noise. The fact that the narrow-band spectrogram algorithm improved the 

power (i.e., sensitivity) of detecting the presence of an FFR to Tones 1, 2, and 3 proved the potential of 

utilizing this algorithm to detect the presence of an FFR in individual listeners.  

 

Although both algorithms produce useful results, there are advantages and disadvantages of each 

algorithm. The short-term autocorrelation algorithm estimates f0 candidates in the time domain and it 

takes the advantage of measuring the overall periodicity of a sampled signal, including the energies 

located at the f0 and its harmonics. Thus, this algorithm is likely to provide robust f0 estimates when the 

response energies at the harmonics are substantial. In addition, pitch is calculated as 1 / τmax in this 

algorithm; therefore, it gives better f0 estimates at lower frequencies than higher frequencies. In contrast, 

the narrow-band spectrogram algorithm derives f0 estimates in the spectral domain and its frequency 

resolution is stable across the spectrum. Another advantage of the narrow-band spectrogram algorithm is 

that this algorithm is less compromised by the poor signal-to-noise ratios that are commonly observed in 

waveforms recorded from individual listeners. Other advantages and disadvantages of using one 

algorithm over the other include things such as octave jumps in short-term autocorrelations and incorrect 

f0 estimates in narrow-band spectrograms. This weakness can be improved by using octave jumps in the 

autocorrelation algorithm as well as finding the spectral peaks in the spectrogram that are closest to the 

expected stimulus frequency. These advantages and refinements produced improvements in detecting the 
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presence of an FFR in this study, as evidenced by the increased sensitivity and decreased false-positive 

rates for some of the pitch contours.  

 

Frequency Error is a measure of the acuity of pitch encoding in the brainstem and it demonstrates the 

fewest false-positive rates than the other three objective measures. When the narrow-band spectrogram 

algorithm was used, Frequency Error showed improved high hit rates of 90% for Tone 1 and 76% for 

Tone 2. These high hit rates, accompanied with the fewest false-positives, indicate the potential 

usefulness of Frequency Error (together with the narrow-band spectrogram) in detecting the presence of 

FFR from individual listeners. This improvement is also indicative of the advantages and refinements 

used in the spectrogram algorithm, likely due to the fact that the narrow-band spectrogram algorithm is 

stable across the spectrum and less compromised by the less favorable signal-to-noise ratios that are 

commonly observed in waveforms recorded from individual listeners. These high sensitivities and low 

false-positive rates support the idea that the Frequency Error can be used as a viable index to detect the 

existence of an FFR.  

 

Slope Error indicates the extent to which the shape of a pitch contour is preserved in the human brainstem. 

Although Slope Error shows concentrated peaks at around 0 Hz/s, its distribution overlaps with wide-

spread distribution of the Slope Errors obtained from the control condition. Substantial overlaps between 

the distributions of the experimental and control conditions compromise the power and false-positive rate 

of this measurement and its potential usefulness in detecting the presence of an FFR. For Slope Error, the 

use of the spectrogram algorithm does not appear to increase the power or decrease the false-positive rate 

of this measurement. This is likely due to the fact that incorrect f0 estimates, even just a few data points, 

embedded in individual recordings could adversely affect the Slope Error estimate much more than the 

other objective measures.  
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Tracking Accuracy, an index of the overall faithfulness of how the response f0 contours follow the 

stimulus contours, showed moderate hit rates and relatively low false-positive rates. It is worth noting that 

the use of the narrow-band spectrogram algorithm increases the power of Tracking Accuracy to 76% for 

Tone 2. In addition to a false-positive rate of 9%, Tracking Accuracy (with the spectrogram algorithm) 

may be a useful index to include when developing a set of objective measures for detecting the existence 

of an FFR. This finding, however, does not conclude that the human brainstem is better at tracking 

dramatic pitch changes than flat tones. On the other hand, it is possible that the human brainstem’s ability 

to follow extreme changes in voice pitch (or unnaturally exaggerated changes in voice pitch) would 

decline when the slope of the pitch change approaches the human brainstem’s limits. This, however, 

would require a separate study to purposely manipulate the slope of pitch changes and to examine the 

brainstem’s limitations in following them.  

 

The human brain is better at tracking the pitch contours that are specific to the listener’s native language. 

Krishnan et al. (2009a) recently reported that the human brainstem is more sensitive only to a naturally 

rising pitch contour that is specific to the listener’s native language, and is less sensitive to unnatural pitch 

contours that were manipulated and deviated from the natural pitch contours. The human brainstem also 

has a differential preference to specific pitch contours over others. Krishnan et al. (2009b) recorded FFRs 

in response to Tone 2 with a naturally rising, linear-ramping and inverted-curvilinear pitch contours and 

found that the Tracking Accuracy in a Chinese group of participants was larger than the English group in 

response to the naturally rising pitch contour only, but not in the linear-ramping and inverted-curvilinear 

pitch contours. Data obtained in the present study showed highest Tracking Accuracy for Tone 2 with a 

naturally rising pitch (Figure 3). This finding is consistent with the data reported in the above-mentioned 

literature. 

 

Pitch-tracking accuracy (i.e., Tracking Accuracy used in the present study) has been used as a viable 

index to represent the degree to which a response followed the pitch contour of the stimulus token. 
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Krishnan et al. (2005) examined pitch-tracking accuracy by measuring the ranked cross-correlation 

coefficients between the recorded waveforms and stimulus signals; they found that the f0 contours of the 

FFRs recorded in native Chinese speakers were less variable and followed the f0 contours of the stimuli 

with greater precision than those recorded in native English speakers. Dajani et al. (2005) recorded human 

evoked potentials to voice pitch of a natural vowel /a/ and reported a great accuracy of the response pitch 

contours relative to the pitch contour of the stimulus token. Jeng and Schnabel (2009) measured the FFR 

from infants and reported similar pitch-tracking accuracy to that in adults. All of these results indicated 

the adequacy of using pitch-tracking accuracy to indicate the presence of such a response. Results 

obtained from the current study took advantage of this phenomenon and reported the power and false-

positive rates of the short-term autocorrelation and narrow-band spectrogram algorithms. It is important to 

point out that the use of the narrow-band spectrogram algorithm improves the power for Tones 1, 2 and 3.  

 

Pitch Strength is a measure of the response periodicity and it demonstrates the largest hit rate (100% for 

Tone 1 and 91% for Tone 2) and relatively low false-positive rates (5% for Tone 1 and 13 % for Tone 2). 

This finding, in our view, is a reflection of the clear separation between the distributions of Pitch Strength 

that are derived from waveforms recorded in experimental and control conditions. This finding illustrates 

the potential usefulness of Pitch Strength in developing objective methods to detect the existence of an 

FFR to voice pitch. Krishnan et al. (2004; 2005) reported that Tone 2 with a rising pitch contour was able 

to elicit a response with the largest pitch strength than the other three pitch contours (Tone 1, Tone 3 and 

Tone 4). Swaminathan et al. (2008b; 2009) divided the FFR recordings into six non-overlapping sections 

and found that the pitch strength of the response was highly correlated with the slope (i.e., acceleration or 

deceleration) of the pitch changes within each section. 

 

Results obtained from this study indicated that Frequency Error is the most sensitive index over the others 

in detecting the existence of an FFR. It is possible that a combination of two or more indices may produce 

better sensitivity and specificity and, therefore, improve the accuracy of the proposed algorithms. In 
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addition, one would use one index (e.g., Pitch Strength ≥ 0.3) as an initial criterion, followed by another 

index (e.g., Frequency Error ≤ 10 Hz) as decision criterion, or a combination of several indices as a time 

or in sequence.  

 

Statistical considerations and disease epidemiology 

From the viewpoint of statistics, it is readily apparent that there is a tradeoff between the power and false-

positive rate of a test. A sensitive test takes preference whenever the probability of false-positive rates is 

high or whenever it is needed to reduce the likelihood of errors. That is, sensitivity is primarily used to 

“rule-out” the existence of a disease. On the other hand, specificity is often used to confirm an existing 

diagnostic impression; highly specific tests indicate low false-positive rates. For any specific objective 

method, we need to weigh and balance between the advantages and disadvantages of each method and 

choose one that best suits clinical practice. For example, when screening for diseases that carry serious 

consequences if misdiagnosed or not treated early such as tumors and severe-profound hearing loss at 

birth, it would be wise to use stringent criteria and follow-up with patients on a regular basis. Similarly, 

when treating diseases that do not carry serious consequences, it would be appropriate to use a test that 

yields the largest power and an acceptable false-positive rate.  

 

From the practical point of disease epidemiology, it should be clear that detecting the existence of a 

disease is an imperfect process that results in the estimates of likelihood of errors (i.e., type I or II errors) 

rather than absolute certainty. In ideal situations, we like to have a perfect power with zero likelihood of 

errors. However, there is always a likelihood of error. Another important factor in evaluating the power 

and false-positive rate of a test is the predictive values, i.e., the probability of a disease (e.g., inability to 

process voice pitch) being present (positive predictive value) versus not being present (negative predictive 

value). Predictive values are directly associated with prevalence of the disease and decrease systemically 

with increasing prevalence (Schwartz, 1987). It is important to note that the power, false-positive rate and 

likelihood of errors represent mathematical properties of a test that clinicians must account for when 
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making a decision of whether to administer a test or not. This consideration is particularly relevant to the 

discussion of developing a test for identifying the existence of an FFR – indicating the listener’s ability to 

process changes in voice pitch. Although the prevalence of pitch-processing disorders has not been 

reported, it is likely to climb when considering patients with central auditory processing disorders, autism 

spectrum disorders, sensorineural hearing loss as well as and patients fit with hearing aids or cochlear 

implants.  

 

Ultimately, we would need to make recordings with ‘known’ responses and use them as the gold standard. 

However, the achievement of a ‘known’ response in the case of FFR is not as straightforward as surgical 

confirmation of the existence of a tumor on the eighth nerve. To date, the existence of an FFR still relies 

on the subjective interpretation of human judgment, as well as it is for determining the presence of an 

ABR wave V. It is possible that in the near future, when characteristics of FFR are fully understood and 

the techniques of recording FFR have been improved that the existence of an FFR can be modeled 

through its ‘known’ characteristics. Rejection versus acceptance of the results from objective methods can 

then be considered based on that ‘known’ model and characteristics of an FFR. Until then, the best we can 

do is to associate the results of objective measures and presence of an FFR determined by experienced 

human observers. It is anticipated that the objective method proposed in the present study could be 

implemented in the clinic if a ‘normative’ data set of FFR waveforms were obtained the normal-hearing 

population and recognized by a group of experienced human observers.  

 

Clinical implications 

This study evaluated two algorithms suitable for detecting the presence of an FFR and compared the 

power and false-positive rates of each algorithm. While previous work had described the use of the short-

term autocorrelation (Krishnan et al., 2004, 2005) and the narrow-band spectrogram (Russo et al., 2008; 

Song et al., 2008; Wong et al., 2007) algorithms to measure the pitch-tracking accuracy of a response, 

none of them compared the results of the two objective algorithms used in this study. The objective 
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method used in the current study, including the use of the control-experimental protocol and response 

thresholds used for each of the four objective measures, can be used for difficult-to-test patients and may 

prove to be useful as an assessment and diagnostic method in both clinical and basic research efforts. 

Specifically, these techniques open a door to help assess the pitch processing mechanisms at the 

brainstem level and diagnose abnormal signal processing of voice pitch in patients who cannot provide 

reliable behavioral feedback. Data reported in the present study provide results about the FFR to voice 

pitch in normal-hearing adults. These results can serve as the basic knowledge to help patients with 

communication disorders, such as patients with autism spectrum disorders (Russo et al., 2008), central 

auditory processing disorders and hearing loss. It is also important that, although Mandarin tones are used 

to elicit FFRs in this study, the objective method could realistically be applied to any complex sound with 

a variable pitch contour; thus it has utility beyond a Mandarin speaking population and can be useful to 

any clinician interested in obtaining an objective method of pitch processing. It is worthwhile noting that 

different populations (e.g., Mandarin versus non-Mandarin speaking populations, adults versus infants) 

may have differential response characteristics on each of the four indices and, therefore, may require 

different response-threshold criteria to be used. It is anticipated that this improvement can be made by 

including specific populations (e.g., non-Mandarin speakers or infants) in future studies. 

 

Additionally, because the current study investigates a response that is evoked by the pitch contour of a 

speech token, results may advance the knowledge base regarding pitch encoding mechanisms in normal 

and pathological populations. For example, further knowledge gained from this and similar studies could 

help us better understand how cochlear implant designs can be changed to help those who communicate 

using tonal and non-tonal languages. Cochlear implants have provided benefits to more than 188,000 

people worldwide (National Institutes of Health, 2009) who are deaf or hard-of-hearing. One of the major 

challenges in the most recent cochlear implant research is to find a way to improve pitch-contour 

perception and music appreciation. Both the perception of voice pitch and the appreciation of music 

require the human brainstem’s ability to process the changes in pitch of a speech signal or a musical 
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melody (Deutsch et al., 2004; Gandour et al., 1998; Lee & Lee, 2010; Wong, et al., 2007). A technique 

that allows an objective measurement of the brainstem’s response to changes in pitch may provide a 

greater understanding of the neural underpinnings of pitch perception which may ultimately enhance 

communication and music appreciation for thousands of cochlear implant users who speak tonal and non-

tonal languages around the world. 
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FIGURE LEGENDS 
Figure 1   A typical example of spectrograms of the stimuli and recordings in response to a set of four 
monosyllabic Mandarin tokens that reflect the four different contours of voice pitch (Tone 1 flat, Tone 2 
rising, Tone 3 dipping, and Tone 4 falling). The control condition was conducted when the sound tube 
was occluded and removed from the listener’s ear.  
 
Figure 2   A typical example of fundamental frequency contours of the stimuli and recordings extracted 
using the short-term autocorrelation algorithm (a) and narrow-band spectrogram algorithm (b).  
 
Figure 3   Distribution histograms of Frequency Error (a), Slope Error (b), Tracking Accuracy (c), and 
Pitch Strength (d) extracted using the short-term autocorrelation (left four columns) and narrow-band 
spectrogram (right four columns) algorithms. Histograms of the recordings taken during the experimental 
conditions (solid lines) and control conditions (shaded areas) for each of the four tones are plotted in the 
same panel for comparison. Response thresholds for determining the presence of a frequency-following 
response are plotted as vertical dotted lines in each panel. Numeric symbols on the two sides of the 
vertical dotted lines indicate the percentages of the waveforms occurring to the left and right of the 
response thresholds. Percentage numbers of the waveforms obtained from the control condition are noted 
in parentheses. Due to the bell-shaped distribution of Slope Error, two threshold lines were used for each 
tone. Pitch Strength is available only in the short-term autocorrelation algorithm. 
 
Figure 4   Distributions of Frequency Error (a), Slope Error (b), Tracking Accuracy (c), and Pitch 
Strength (d) are plotted according to the results of human judgment. Response thresholds for determining 
the power and false-positive rates of each algorithm are plotted as horizontal dotted lines in each panel. 
Numeric symbols above and below the horizontal dotted lines indicate the percentages of waveforms 
occurring in the upper and lower portions of the response thresholds, respectively. Due to the bell-shaped 
distribution of Slope Error, two threshold lines were used for each tone. Pitch Strength is available only in 
the short-term autocorrelation algorithm. 
 
Figure 5   Power and false-positive rates of the two algorithms used to determine the presence of a 
frequency-following response to each of the four different pitch contours (Tone 1 flat, Tone 2 rising, Tone 
3 dipping and Tone 4 falling). Numbers inside the panel indicate the four pitch contours used in this study. 
Data obtained using short-term autocorrelation (plain numbers) and narrow-band spectrogram (underlined 
numbers) algorithms are plotted in the same panel for comparison. The oblique dotted line indicates the 
equal power and false-positive-rate boundary. 
 
Figure 6   Averaged pitch-tracking accuracies derived from two sequential recording trials is shown for 
each of the four different pitch contours. The upper panel displays data obtained using the short-term 
autocorrelation algorithm; the lower panel displays data obtained using the narrow-band spectrogram 
algorithm. In each panel, the group mean is shown along with one standard error above the mean value. 
Note the mean difference in two pitch-tracking accuracies between the two sequential trials is less than 
0.12 at the four different pitch contours. 
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Figure 2   A schematic 2x2 contingency table describing the calculation of the operating 
characteristics of a test. 

 
 
 
  Human Judgment  

  Present Absent  

Test Result 
Positive True Positive 

(a) 
False Positive 

(b)  

Negative False Negative 
(c) 

True Negative 
(d)  

 
Operating Characteristics:  

Sensitivity (Power) = %   
ca

a
+

  Specificity = %   
db

d
+

 

False-Negative Rate = %   
ca

c
+

  False-Positive Rate = %   
db

b
+

 

Positive-Predictive Value = %   
ba

a
+

  Negative-Predictive Value = %   
dc

d
+

 

Efficiency = %   
dcba

da
+++

+  

 
Type I (alpha) error   =   False-Positive Rate     =   (100 – specificity) % 
 
Type II (beta) error    =   False-Negative Rate   =   (100 – sensitivity) % 
 
 



 1 
Table 1   Operating characteristics of four objective measures for detecting the existence of an FFR to voice pitch using the 2 

short-term autocorrelation algorithm 3 
 4 
           Predictive Value       

 Power  False-Positive Rate  Positive result  Negative result  Efficiency  

Objective Measure T1 T2 T3 T4  T1 T2 T3 T4  T1 T2 T3 T4  T1 T2 T3 T4  T1 T2 T3 T4  

Frequency Error 68 68 74 63  0 0 4 5  100 100 93 93  76 81 83 72  84 86 86 80  

Slope Error 73 68 89 68  27 16 44 23  73 76 61 75  73 78 88 71  73 77 70 73  

Tracking Accuracy 50 74 37 59  5 8 4 5  92 88 88 93  66 82 67 70  73 84 70 77  

Pitch Strength 100 95 89 82  5 16 12 9  96 82 85 90  100 95 92 83  98 89 89 86  

 5 
 6 
 7 
 8 
  9 
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Table 2   Operating characteristics of three objective measures for detecting the existence of an FFR to voice pitch using the 1 
narrow-band spectrogram algorithm 2 

 3 
           Predictive Value       

 Power  False-Positive Rate  Positive result  Negative result  Efficiency  

Objective Measure T1 T2 T3 T4  T1 T2 T3 T4  T1 T2 T3 T4  T1 T2 T3 T4  T1 T2 T3 T4  

Frequency Error 91 84 68 86  0 4 4 0  100 94 93 100  92 89 80 88  95 91 84 93  

Slope Error 91 95 74 68  50 16 56 5  65 82 50 94  85 95 69 75  70 89 57 82  

Tracking Accuracy 64 84 63 82  14 8 8 5  82 89 86 95  70 88 77 84  75 89 80 89  

 4 
 5 


