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Purpose: Quantitative breast density is known as a strong risk factor associated with the develop-
ment of breast cancer. Measurement of breast density based on three-dimensional breast MRI may
provide very useful information. One important step for quantitative analysis of breast density on
MRI is the correction of field inhomogeneity to allow an accurate segmentation of the fibroglan-
dular tissue �dense tissue�. A new bias field correction method by combining the nonparametric
nonuniformity normalization �N3� algorithm and fuzzy-C-means �FCM�-based inhomogeneity cor-
rection algorithm is developed in this work.
Methods: The analysis is performed on non-fat-sat T1-weighted images acquired using a 1.5 T
MRI scanner. A total of 60 breasts from 30 healthy volunteers was analyzed. N3 is known as a
robust correction method, but it cannot correct a strong bias field on a large area. FCM-based
algorithm can correct the bias field on a large area, but it may change the tissue contrast and affect
the segmentation quality. The proposed algorithm applies N3 first, followed by FCM, and then the
generated bias field is smoothed using Gaussian kernal and B-spline surface fitting to minimize the
problem of mistakenly changed tissue contrast. The segmentation results based on the N3+FCM
corrected images were compared to the N3 and FCM alone corrected images and another method,
coherent local intensity clustering �CLIC�, corrected images. The segmentation quality based on
different correction methods were evaluated by a radiologist and ranked.
Results: The authors demonstrated that the iterative N3+FCM correction method brightens the
signal intensity of fatty tissues and that separates the histogram peaks between the fibroglandular
and fatty tissues to allow an accurate segmentation between them. In the first reading session, the
radiologist found �N3+FCM�N3�FCM� ranking in 17 breasts, �N3+FCM�N3=FCM� ranking
in 7 breasts, �N3+FCM=N3�FCM� in 32 breasts, �N3+FCM=N3=FCM� in 2 breasts, and
�N3�N3+FCM�FCM� in 2 breasts. The results of the second reading session were similar. The
performance in each pairwise Wilcoxon signed-rank test is significant, showing N3+FCM superior
to both N3 and FCM, and N3 superior to FCM. The performance of the new N3+FCM algorithm
was comparable to that of CLIC, showing equivalent quality in 57/60 breasts.

Conclusions: Choosing an appropriate bias field correction method is a very important preprocess-
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ing step to allow an accurate segmentation of fibroglandular tissues based on breast MRI for
quantitative measurement of breast density. The proposed algorithm combining N3+FCM and
CLIC both yield satisfactory results. © 2011 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3519869�
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I. INTRODUCTION

Breast density has been proven as an independent risk factor
associated with the development of breast cancer.1–4 With the
strong evidence, the Breast Cancer Prevention Collaborative
Group �BCPCG� recommended that breast density should be
incorporated into the risk prediction model to improve the
accuracy of predicting each individual woman’s cancer risk.5

However, all supporting evidence to date was established
based on the density analyzed on mammography. The per-
cent density �i.e., percentage of the dense tissue area over the
breast area on mammogram� has been shown to be signifi-
cantly higher in patients who developed breast cancer com-
pared to women who were cancer-free.1–5 Since the measure-
ment of mammographic density is based on a 2D projection
image, it may vary with the different body positions, the
level and angle of compressions, and the setting of x-ray
source and detector. The variations in the measured mammo-
graphic density may lead to different estimates of cancer
risk.

Breast MRI acquires three-dimensional �3D� images and
provides a strong contrast between fibroglandular tissue �i.e.,
dense tissue� and fatty tissue for measurement of density.
The MRI-based analysis methods have been published by
several groups,6–13 and the results from large series compar-
ing MRI density with mammographic density have started to
come out in literature.14–16 We have published a complete
processing method for quantitative measurement of breast
density, which includes breast segmentation, intensity inho-
mogeneity �bias field� correction, and tissue classification us-
ing the fuzzy-C-means �FCM� algorithm.6 Although this
method has been successfully applied to analyze the density
on non-fat-sat T1-weighted images that were acquired using
a 1.5 T MRI scanner with a closed bra-shaped coil,6–9 the
segmentation performance based on images that were ac-
quired using a newer scanner with a flat-bed breast coil is not
satisfactory. Due to the strong intensity inhomogeneity near
the posterior breast, the fatty tissues near the pectoral muscle
have low signal intensities and often are misclassified as
dense tissues. That is, the FCM algorithm is not sufficient to
perform the bias field correction, and other inhomogeneity
correction method is needed.

Intensity inhomogeneity �or bias field herein� often pre-
sents as a smooth intensity variation across the image and
mainly comes from poor radio frequency �RF� coil unifor-
mity, gradient-driven eddy currents, and patient’s anatomy
both inside and outside the field of view.17 In general, inho-
mogeneity correction can be done prospectively based on
adjustments of hardware and acquisition methods, or retro-

spectively based on postscan image processing. Prospective
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correction methods include using phantom-based calibration
of bias field,18 multicoil scan,19 and special imaging
sequences.20 However, prospective methods can only remove
the inhomogeneity associated with the scanner, not the
scanned subject, and retrospective correction methods are
needed to remove the subject dependent inhomogeneity.

Four retrospective correction methods are commonly
used.17 The first method uses filtering, which assumes bias
field as a low-frequency artifact;21,22 but this assumption is
only applicable for relatively small structures. The second
method is based on surface fitting of intensity23 or gradient24

field, and it mainly works for images that have relatively
large and distinctive homogeneous areas. The third method is
based on histogram, which does not require priori knowl-
edge and can be applied to large areas with different ana-
tomical structures.25,26 The fourth method is based on the
combination of bias field estimation and tissue classification
as priori knowledge of different structures for segmentation
�e.g., gray matter and white matter in the brain�, so they can
simultaneously benefit from each other during the iterative
process.27–30

In our previous breast density segmentation method based
on MRI, the FCM algorithm was used for both homogeneity
correction and segmentation.29 This algorithm enhances the
signal intensity of fatty tissues within the low sensitivity re-
gion of the coil, but the intensity of some fibroglandular
tissues is also further enhanced, and that may change the
overall contrast of images leading to wrong segmentation
results. The nonparametric nonuniformity normalization
�N3� algorithm25 is a fully automatic histogram-based
method and is a popular correction method widely used in
literature. The N3 algorithm is able to reduce the bias field
while avoiding the problem of generating erroneous contrast.
However, the N3 algorithm was originally developed for
brain images that have a smaller field of view and generally
present much less inhomogeneity than the breast images, and
it may not be sufficient for bias field correction of breast
images.

The purpose of this work is to develop a correction
scheme utilizing the combination of N3 and FCM-based al-
gorithms �denoted as N3+FCM�. The field inhomogeneity
was first removed by using the N3 algorithm,25 followed by
iterative FCM-based algorithm and B-spline surface fitting
until the correction is completed. The corrected images were
then segmented to differentiate between fibroglandular and
fatty tissues. Furthermore, we also implemented a method
recently reported by Li et al.30 based on a coherent local
intensity clustering �CLIC� criterion function. This method is
based on FCM but ensures the smoothness of the estimated

bias field. It has shown promising results in removing strong
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intensity inhomogeneity on brain MR images but has not
been tested in breast images. The quality of the segmentation
results obtained using the proposed N3+FCM correction
method and that obtained using the FCM alone and the N3
algorithm alone, as well as CLIC, were compared.

II. MATERIALS AND METHODS

II.A. Subjects

This study recruited 30 healthy subjects �age: 23–61;
mean: 35�, including 25 premenopausal �mean: 30 yr old�
and 5 postmenopausal women �mean: 58 yr old�. Since both
breasts in each subject were analyzed separately, a total of 60
breasts was studied. All subjects did not have any symptom
of breast discomfort or palpable breast mass. None of the
subjects received hormonal replacement therapy, took oral
contraceptives, or had prior history of breast disease or treat-
ment. This study was approved by the Institutional Review
Board and all participants gave written informed consent.

Breast MRI was performed using a 1.5 T scanner �Si-
emens, Erlangen, Germany�. One set of 3D T1-weighted im-
ages without fat saturation was acquired using the FLASH
sequence. The imaging parameters were TR /TE
=11 /4.7 ms, flip angle=20°, FOV=35 cm, slice thickness
=2 mm, and matrix=256�256. The total imaging time for
this sequence is 2.5 min.

II.B. Breast segmentation and inhomogeneity
correction

The first analysis step is to segment the breast region from
the body. An initial cut was performed by manually drawing
a horizontal line through the posterior boundary of the ster-
num, and all tissues below this line were removed. Then, the
procedures described in a previous publication,6 including
using the semiautomatic FCM-based method to extract the
breast region and using the B-spline fitting to exclude the
chest wall muscle, were applied to segment out the breast.
For exclusion of skin and nipples, we have developed an
improved method, which will be done after the inhomogene-
ity correction.

We adopted a widely used concept to model the image
with intensity inhomogeneity as a smooth multiplicative
field.17,25 The image formation can be written as

V�x� = U�x�b�x� + n�x� , �1�

where V is the measured intensity at location x, U is the true
intensity emitted by the tissue, b is an unknown smoothly
varying bias field, and n is the white Gaussian noise assumed
to be independent of U. To avoid the difficulty of additive
and multiplicative interference, we simplify the image model
as a noise-free case, while transforming it into log space to

make the bias field additive. Using the notation Î�x�
=log�I�x��, the image model is rewritten as

V̂�x� = Û�x� + b̂�x� . �2�

The purpose of the inhomogeneity correction is to estimate

the bias field b. The flowchart of the proposed correction
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method is shown in Fig. 1. The first step is to apply the N3
algorithm to the original image I to correct the inhomogene-
ity. However, it can be seen that after the N3 correction, the
fatty tissues close to chest wall still appear dark. Then, the
FCM algorithm is applied to the N3 corrected image N to
further reduce the inhomogeneity, denoted as F. Using the
simplified model in Eq. �2�, the additional bias field B after
the FCM correction F compared to after the N3 correction N
is calculated by

B�x� = exp�N̂�x� − �F̂�x�� , �3�

where � is an adjustable constant factor that is used to in-
crease the contrast of the bias field, and was defined empiri-
cally. For the 1.5 T breast MR images analyzed in this study,
we found �=0.8 generated the best result. Initially when �
was not introduced �or, set as one�, the correction effect
could not be visually appreciated. After this parameter was
added, the value from 0.5 to 0.9 was tested in selected cases.
Generally, when the intensity inhomogeneity is stronger, a
smaller � may increase the contrast of the estimated bias
field. However, it was found that �=0.8 gave a satisfactory

FIG. 1. The iterative process of the N3+FCM bias field correction algo-
rithm. The original image is denoted as I. The N3 corrected image is de-
noted as N, which still shows inhomogeneous intensity in the posterior
breast. Then, the FCM is applied to N to generate the corrected image,
denoted as F. Although the bias field shown in N is removed in F, but the
intensity of some anterior fibroglandular tissues is brightened too much and
appears as the fatty tissue. The bias field B is estimated by calculating the
difference between N and F in log space �illustrated in Fig. 2�. Then, the
Gaussian kernel and the B-spline surface fitting is used to smooth the bias
field, so the problem of erroneously changing contrast in the anterior breast
can be minimized. By the deconvolution of new smoothed bias field B from
N, the bias field corrected image is generated, denoted as NF. In order to
keep the dynamic range in the entire intensity spectrum increasing, the in-
tensity of each pixel on the NF is compared to the corrected image in the
previous iteration �i.e., the original image I for the first iteration�, and the
higher intensity is used to form the corrected image C1 after the first itera-
tion. This process is repeated until the stopping criteria are met. For this
example, ten iterations are needed. The corrected image after the first, sixth,
and tenth iterations, C1, C6, and C10 are shown.
result for most cases analyzed in this study. In future studies,
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this parameter may need to be adjusted based on the quality
of the original images.

The intensity ranges of both N and F after the N3 and
FCM correction are normalized to the range of the original
image I slice by slice for further processing. In order to en-
sure that the bias field varies smoothly, smoothing is neces-
sary. Figure 2 shows the process of generating the estimated
bias field and how this bias field is used to obtain a new
corrected image. The obtained bias field B �Fig. 2�c�� from
Eq. �3� was first smoothed by a 3�3 Gaussian kernel �Fig.
2�d�� and then further smoothed by B-spline parametric sur-
face fitting �Fig. 2�e��. The smoothed bias field was then
applied back to N to calculate the inhomogeneity corrected
image NF using

NFn�x� = exp�NF̂n−1�x� − B�x��, 1 � n � max _ iter

with

NF̂

0�x� = N̂�x� . �4�

After correcting the bias field using B to obtain the image NF
�Fig. 2�f��, an additional step was applied to make sure that
the intensity of any pixel within the image field is brighter
than their intensity in the previous iteration as

Cn�x� = max�NFn�x�,Cn−1�x��, 1 � n � max _ iter

with

C0�x� = max�I�x�,N�x�� . �5�

This step is necessary because some fatty tissue pixels close
to the fibroglandular tissue may be smoothed out and has a
lowered signal intensity after the bias field correction. For
these fatty tissue pixels, the lowered intensity will decrease
their contrast from the nearby dense tissue pixels and lead to
segmentation error. Therefore, for these pixels, their brighter

FIG. 2. The calculation of the bias field for the example shown in Fig. 1
during the first iteration. �a� The N3 corrected image N. �b� The FCM cor-
rected image F using the N3 corrected image N as the input. �c� The calcu-

lated bias field by taking exponential of �N̂−�F̂� using Eq. �3�, with �
=0.8. The dark area in the anterior breast indicates the erroneous change in
contrast that makes fibroglandular tissues appear as fatty tissues. �d�
Smoothing of �c� using a Gaussian kernel. �e� Smoothing of �d� using
B-spline surface fitting to obtain the estimated bias field B. The dark area in
the anterior breast shown in �c� and �d� is removed after the B-spline surface
fitting, and the homogeneity correction is mainly seen in the posterior breast.
�f� The corrected image NF1 calculated by the deconvolution of B from N.
Note that all displayed images are in a relative scale.
intensities in the previous iteration will be kept. As will be
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shown later, one main purpose of the bias field correction is
to increase the dynamic range, particularly to brighten the
signal of the fatty tissues so they can be separated from the
fibroglandular tissues, so this step is needed to ensure that
the intensity of fatty tissues will increase after each iteration.

This process combining N3 and FCM will be repeated
until the bias field does no longer change. Since the main
purpose of the bias field correction is to brighten the inten-
sity of fatty tissue pixels, the stopping criteria are defined
based on the number of pixels that show an intensity change
�ithd. When less than 5% of the total number of pixels in the
whole breast shows changes, the iteration will stop. Define
SCn as the absolute value of the difference between Cn and
Cn−1, then the number of pixels with intensity change greater
than ithd can be counted by the pixels that show SCn�x�
� ithd. In this study, the threshold was set as ithd

=max�SC0� /256. Using this threshold, the correction in most
cases was completed between 10 and 20 iterations. The it-
eration process stops when one of the following conditions is
met: �1� The number of pixels showing intensity change
greater than ithd is less than 5% of the total number of pixels
in the whole breast area and �2� the number of iteration ex-
ceeds the maximum, which was set as 20 in this work. The
example shown in Fig. 1 takes ten iterations to reach the
stopping criteria, and the corrected images after the first,
sixth, and tenth iterations are shown in Fig. 1. Figure 3
shows the subtraction image SCn after each iteration. It
clearly demonstrates that during the iteration process, the
areas showing changes �coded by color� are shrinking from
the nipple to the chest wall, indicating that more severe in-
homogeneity occurs in the region close to the chest wall, and
as such, more iterations are needed to correct pixels in that
region.

II.C. Fibroglandular tissue segmentation

The skin and nipple show similar intensities compared to
that of the fibroglandular tissue and need to be removed. In
our previous study,6,8 skin was identified using dynamic
search based on the gradient of the signal intensities perpen-
dicular to the skin layer. However, nipple often connects to
the fibroglandular tissue and cannot be defined based on gra-

FIG. 3. The subtraction image between the pair of images before and after
each iteration. Ten images from iterations 1 to 10 are shown using a nor-
malized scale indicated by the color bar. They demonstrate that the area
showing intensity difference between two iterations is shrinking. The lateral
posterior breast presents the strongest field inhomogeneity, and the correc-
tion effect is clearly seen after each iteration. The iteration will stop when
the number of pixels showing changes is smaller than 5% of the total num-
ber of pixels in the whole breast.
dient search, and a fixed layer of 3 pixels �approximately 5
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mm� was excluded. Generally, the breast boundary follows a
smoothly varying curve and the nipple at a prone position is
protruding from the breast curve. The control points of the
breast boundary can be set automatically as the boundary
pixels of the breast. After setting up the control points, the
breast boundary was fit into a smooth curve using Bezier
splines31

�x�u� = �
k=0

p−1

xkBEZk,p−1�u�

y�u� = �
k=0

p−1

ykBEZk,p−1�u�

BEZk,p�u� =
�p − 1�!uk�1 − u�p−k−1

k!�p − k − 1�!
, 0 � u � 1,

� �6�

where p is the number of control points. The fitted breast
boundary removed the major area of the nipple, and then
within the remaining breast area, the dynamic search algo-
rithm was applied to find and extract the skin. On the non-
fat-sat T1-weighted images, the background signal is dark,
the skin signal is intermediate, and the fatty tissue signal is
bright, and the skin is defined as the layer in between the two
gradients.

In the skin and nipple excluded breast region, the FCM
clustering algorithm was applied to segment the fibroglandu-
lar tissue. Typically, a total of six FCM clusters was used,
brighter three as the fatty tissues and the darker three as the
fibroglandular tissue. If the segmented dense tissues using
the default setting is consistently overestimated or underes-
timated, the operator may change the setting of cluster
numbers.6 In this study, fixing the total cluster number as 6,
3 as fibroglandular and 3 as fatty was used for the segmen-
tation in all 60 breasts. Therefore, the process of nipple/skin
exclusion and segmentation is fully automatic without any
operator interventions.

The source C�� codes of N3 algorithm and B-spline fit-
ting algorithm was taken from this website:
packages.bic.mni.mcgill.ca/tgz. Since the iterative process
of inhomogeneity correction and the segmentation process
were written in MATLAB, the C�� codes were modified
to be compiled in MATLAB using GNUMEX �http://
gnumex.sourceforge.net/� and MINGW �http://
www.mingw.org/�. The computational time of the entire seg-
mentation process including inhomogeneity correction
mainly depends on the iterations of correction. For a desktop
computer �Intel Quad 2.8 GHZ, 8 G RAM�, the typical com-
putational time including inhomogeneity correction and fib-
roglandular tissue segmentation ranges from 20 to 90 s.
Since the segmentation is fully automatic, the variation in the
processing time is mainly dependent on the number of itera-
tions for bias field correction.

II.D. Evaluation of segmentation quality by four
methods

For each breast, the fibroglandular tissue segmentation

was performed on four sets of images processed using four
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different inhomogeneity correction methods �FCM-based,
N3, CLIC, and the new method using N3+FCM�. First, the
performance using N3+FCM correction method was com-
pared to that using the N3 alone or the FCM alone method.
Since there is no ground truth, the segmentation accuracy
cannot be reliably evaluated using a quantitative criterion;
therefore, we chose to compare the segmentation quality
based on visual inspection of an experienced radiologist. In
order to ensure a fair review, the three sets of segmented
fibroglandular tissue images were presented blindly in a ran-
dom order noted by �A, B, and C�, and the segmentation
accuracy among these three sets was ranked. Using the origi-
nal nonsegmented images as references, the radiologist
evaluated the segmentation quality slice-to-slice. The evalu-
ation criteria include the number of slices in which a notice-
able portion of breast tissues were wrongly assigned �fatty
tissues as fibroglandular tissues or vice versa�, as well as the
area of wrongly segmented tissues on each slice. After com-
pleting the evaluation of all three sets of images for each
breast, the radiologist determined the best, the second best,
and the worst �e.g., A�B�C�, or equal quality �e.g., A
�B=C, A=B�C, or A=B=C�. To assess the consistency
of radiologist’s evaluation, the rating was done twice with 1
month interval in between.

Next, the performance of N3+FCM was compared to that
using the CLIC correction method. The segmentation quality
was evaluated using the same criteria, and the performance
between the N3+FCM and the CLIC methods were com-
pared.

II.E. Statistical analysis

The pairwise Wilcoxon signed-rank test was applied to
assess whether or not the superiority exists between the seg-
mentation accuracy based on images generated using differ-
ent correction methods. The test assigns a sign to the rank-
ings. When comparing a pair between X and Y, a binary
outcome categorization was applied: If X was ranked better
than Y, then X=1 and Y =0; if Y was ranked better than X,
then Y =1 and X=0; and if X and Y were ranked equivalent,
then X=1 and Y =1. The performance between each pair of
N3, FCM, and N3+FCM was tested using this scoring sys-
tem and compared. A p-value less than 0.05 was considered
significant.

III. RESULTS

III.A. Comparison of inhomogeneity correction

Since the purpose of inhomogeneity correction is to im-
prove the accuracy of fibroglandular tissue segmentation, the
comparison is made using the segmentation quality as the
evaluation metrics. Figure 4 shows an example of the com-
parison on one image slice. The original image with heavy
bias field, and the corrected images using FCM-based, N3,
CLIC, and the proposed N3+FCM are presented in the top
row. In the middle row, the gold standard fibroglandular tis-
sue manually delineated by the radiologist, and the corre-

sponding fibroglandular tissue segmentation results based on
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FCM, N3, CLIC, and the new N3+FCM corrected images
are shown. On this particular imaging slice where the fibro-
glandular tissues are clustered inside surrounded by fatty tis-
sue outside, manual drawing to obtain the ground truth is
feasible. The segmentation done based on both CLIC and
N3+FCM corrected images is close to the gold standard and
would be considered as correct. Both FCM-based and N3
corrected images lead to misclassification of posterior fatty
tissues as fibroglandular tissues. For FCM-based correction,
some fibroglandular tissues in the anterior region of the
breast close to the nipple are brightened so much, resulting in
misclassification as fatty tissues. Therefore, the FCM-based
correction is the worst among all four methods. The corre-
sponding histograms of the pixels in the truth fibroglandular
tissue and fatty tissue regions �based on radiologist’s manual
segmentation� analyzed from the original image, FCM-
based, N3, CLIC, and the N3+FCM correction are shown in
the bottom row. For FCM-based correction, the histograms
of the fibroglandular tissue and fatty tissue still have a sub-
stantial overlap, only slightly better compared to the overlap
in the original histograms without correction. The peaks of
FCM corrected histograms shift to the right �toward higher
intensity range�, indicating that both fibroglandular and fatty
tissues are brightened. This result clearly shows that the
FCM-based correction is not sufficient to allow an accurate
segmentation. The N3 algorithm widens the separation be-
tween the two histogram peaks. The proposed N3+FCM and
CLIC both show a clean separation between these two his-

FIG. 4. Comparison of the fibroglandular tissue segmentation quality based
original image, FCM corrected image, N3 corrected image, CLIC corrected
the truth fibroglandular tissue delineated by a radiologist and the segmentati
seen that both CLIC and N3+FCM produce the most accurate results clos
quality. The bottom row shows the corresponding histograms from pixels in
curves denote the histograms of fibroglandular tissue and fatty tissue, respe
increase the dynamic range and widen the separation between the histogram
togram peaks, thus allow a clean differentiation between fi-
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broglandular tissues and fatty tissues to achieve an accurate
segmentation result. For this imaging slice, since the ground
truth, algorithm-based segmentation results, and histograms
are available, it is possible to define quantitative evaluation
metrics �e.g., percentage of accurately segmented pixels or
the variation within the fibroglandular and fatty tissue peaks
with respect to their separation on the histogram�; however,
this comparison is only done on one imaging slice, and it is
not feasible to obtain ground truth by manually delineating
the fibroglandular tissues on each of 20–30 imaging slices
contained in one breast.

III.B. Segmentation quality based on N3+FCM
compared to using N3 and FCM alone

The visual evaluation results of the segmentation quality
made by the radiologist in two separate reading sessions are
summarized in Table I. All together, there are a total of 60
breasts. In the first reading session, the �N3+FCM�N3
�FCM� ranking is found in 17 breasts, i.e., the performance
of N3+FCM is better than using N3 alone, and also the
performance using N3 is better than using FCM. The �N3
+FCM�N3=FCM� ranking is found in seven breasts, i.e.,
the performance of N3+FCM is better than using N3 alone,
and the performance of N3 and FCM is equivalent. The
�N3+FCM=N3�FCM� ranking is found in 32 breasts, i.e.,
the performance using N3+FCM and using N3 alone is
equivalent, and they are better than using the FCM. The

mages corrected using four methods. The top row from left to right shows
e, and N3+FCM corrected image. The middle row from left to right shows
sults based on FCM, N3, CLIC, and N3+FCM corrected images. It can be
he truth outlined by the radiologist, and FCM has the worst segmentation
radiologist outline fibroglandular and fatty tissues on each image. The two
y. It clearly shows that both CLIC and the proposed N3+FCM algorithms
ks of fatty tissue and fibroglandular tissue.
on i
imag
on re
e to t

the
ctivel

pea
�N3+FCM=N3=FCM� ranking is found in two breasts, i.e.,
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the performance using all three methods is equivalent. The
�N3�N3+FCM�FCM� ranking is found in two breasts,
i.e., the performance using the N3 alone is better than using
N3+FCM. The results of the second reading session are
slightly different, but overall it also shows that in most cases
the proposed N3+FCM is better or equal to using N3 alone,
and that the FCM method is the worst. Figures 5–7 show
examples of three different comparison results. For the case
shown in Fig. 7, all three correction methods can lead to an
accurate segmentation. Compared to the other cases shown
in Figs. 5 and 6, the breast shown in Fig. 7 is much smaller
�especially in terms of the protruding depth of the breast into
the coil�, and the signal intensity is homogeneous on the
entire image. For this case without a strong bias field, the
correction is probably not needed, and all three methods
yield satisfactory results.

The significance level between each pair of methods was
evaluated using the Wilcoxon signed-rank test based on the
assigned outcome categorization score of 1 or 0. In the first
reading session, the N3+FCM is better than N3 in 24 cases,
with equal performance in 34 cases, and worse than N3 in 2
cases. The Wilcoxon test shows that N3+FCM is signifi-
cantly better than N3, with z=4.315 and p�0.001. The N3
+FCM is better than FCM in 58 cases and with equal per-
formance in 2 cases with z=7.616 and p�0.001. The N3 is
better than FCM in 51 cases and with equal performance in 9
cases with z=7.141 and p�0.001. The results of the second
reading session were more in favor of N3+FCM. The N3
+FCM is better than N3 in 27 cases, with equal performance
in 32 cases, and worse than N3 in only 1 case. Therefore,
overall, the proposed N3+FCM method is superior com-
pared to the FCM or the N3 method, and that the N3 is
significantly better than the FCM method.

III.C. Comparison of segmentation quality based on
N3+FCM and CLIC

The radiologist compared the segmentation quality made
based on N3+FCM and CLIC corrected images and found
that N3+FCM and CLIC have comparable performance in
the majority, 57 out of 60, cases. In the remaining three
cases, N3+FCM is better than CLIC in two cases and worse
than CLIC in one case, but the differences were very subtle.
Overall, N3+FCM and CLIC did not show a significant dif-
ference, and they could allow a satisfactory segmentation

TABLE I. Radiologist’s visual ranking of the fibroglandular tissue segmenta-
tion quality based on images corrected by these three methods. “�” means
superior quality and “=” means equal quality. The two reading sessions are
1 month apart, performed independently.

Reading 1 Reading 2

N3+FCM�N3�FCM 17 19
N3+FCM�N3=FCM 7 8
N3+FCM=N3�FCM 32 30
N3+FCM=N3=FCM 2 2

N3�N3+FCM�FCM 2 1
quality for all cases. The segmentation performance based on
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the CLIC corrected images is also demonstrated in the three
case examples shown in Figs. 5–7. Although the segmented
areas based on N3+FCM and CLIC show slightly different
results, they were considered satisfactory without apparent
errors.

IV. DISCUSSION

We propose a new bias field correction method combining
N3 and FCM-based algorithm and have demonstrated that
this new correction method can be used to improve the ac-
curacy in segmentation of the fibroglandular tissue. The bias
field correction and segmentation are fully automatic and
require no manual operations. The most noticeable benefit of
the N3+FCM correction method is in its ability to correct
the strong bias field near the posterior breast. Tissues in this
area fall in the low sensitivity region of the coil, which
makes the fatty tissues appear dark and misclassified as the

FIG. 5. A case example of “N3+FCM=CLIC�N3�FCM.” It can be seen
that both the CLIC and N3+FCM correction brighten the signal of fatty
tissues in the medial posterior breast and allow the correct classification of
pixels in that area as fatty tissues. N3 did not completely correct the bias
field, and some tissues in that area are misclassified as dense tissues. The
FCM gives the worst performance. Not only that some fatty tissues in the
medial posterior breast are misclassified as dense tissues, but also some
dense tissues in the anterior breast close to the nipple are misclassified as
fatty tissues.
fibroglandular tissue. The proposed N3+FCM algorithm can
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be used to brighten the fatty tissue in this area without af-
fecting the intensity of the fibroglandular tissue elsewhere.

The motivation of this work came from the poor perfor-
mance of the FCM-based correction method in the presence
of a strong bias field. Although the FCM method worked
well in our previous datasets acquired using a closed-form
bra-shaped breast coil,6–9 this method could not correct the
strong bias field on images acquired using the flat-bed breast
coil and often led to wrong segmentation results. Because the
optimization function of FCM is designed to detect local
valleys instead of global minimum, the FCM-based correc-
tion is very sensitive to noise. Therefore, in our previous
approach, an iterative low-pass filter was added to smooth
the neighborhood in the standard objective function of the
FCM algorithm.6 However, this smoothing filter may cause
problem in a large breast, where fatty tissues along the
boundary of the chest wall may be smoothed out to be close
to the outside background. In addition, this correction
method assumes that the bias field is of low spatial frequency
and other components in the residual image have higher fre-
quencies, which is usually not true for cases with dense
breasts, and the correction would lead to erroneous contrast

FIG. 6. A case example of “N3+FCM=CLIC=N3�FCM.” Although the
N3, CLIC, and N3+FCM show slightly different results, all are acceptable,
and their performances are rated equal. The same problems indicated in Fig.
5 for FCM corrected images �fatty tissues misclassified as dense tissues and
dense tissues misclassified as fatty tissues� are seen, and that makes the
performance of FCM inferior to the other three methods.
between fibroglandular tissue and fat, as shown in Fig. 4.
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Since the N3 algorithm was the most well-established in-
homogeneity correction method, it was implemented to test
its correction effect on breast images. N3 can detect the
smooth, slowly varying, multiplicative field that maximizes
the high frequency content of the distribution of the tissue
intensities. Although it is originally designed for brain MRI,
since the priori knowledge regarding segmentation is not
required, this algorithm is applicable to breast MRI as well.
In a recent review paper about inhomogeneity correction, N3
is still considered as an optimal and widely applicable
method.17 However, the test results using the N3 algorithm
for inhomogeneity correction still showed problems �shown
in Fig. 4� and could not allow an accurate segmentation. This
was probably due to the much larger size of the breast com-
pared to the brain, as well as the design of the breast coil as
a surface coil not a volume coil.

Inspired by the advantages and drawbacks of the two cor-
rection methods, we proposed to combine them. How these
two methods are combined to improve the correction is illus-
trated in Fig. 2. Unlike the FCM-based correction, the opti-
mization of the N3 algorithm does not depend on the local
minima,25 so it will not change the overall contrast between
fibroglandular tissue and fatty tissue on the image. Therefore,
the N3 algorithm was applied first to make the initial correc-

FIG. 7. A case example of “N3+FCM=CLIC=N3=FCM.” The segmenta-
tion based on all four methods yields similar results, and their performances
are rated equal. Note that this breast is fatter �with a smaller protruding
depth into the coil�, and there is no visually discernable strong bias field. For
this case, the correction is probably not needed, and all four methods per-
form equally well.
tion �Fig. 2�a��, and then the FCM-based correction is ap-
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plied to further correct the inhomogeneity �Fig. 2�b��. How-
ever, as shown in Fig. 2�b�, although the fatty tissues in the
posterior breast are brightened, some fibroglandular tissues
in the anterior breast are also brightened. In order to suppress
this erroneous change in contrast due to the local minima,
B-spline surface fitting is applied to smooth the estimated
bias field. This is an important process to fully utilize the
advantage of FCM and minimize the impact of erroneous
contrast. As shown in Fig. 3, this process can be repeated
iteratively, and the area that needs bias field correction is
shrinking after each iteration.

The new algorithm combing N3+FCM yields a signifi-
cant improvement in the segmentation quality. As shown in
the radiologist’s blind evaluation results, during the first
reading session, the combined approach is superior to N3 in
24 of the 60 breasts, with equality quality in 34 cases, and
inferior in only 2 cases. A more favorable result was found in
the second reading session. The combined approach is supe-
rior to N3 in 27 cases, with equality quality in 32 cases, and
inferior in only 1 case. Figures 5–7 show three examples. It
can be seen that for cases with a very strong bias field �e.g.,
Fig. 5�, N3+FCM is better than N3, and both are better than
FCM. For cases without a discernable bias field �e.g., Fig. 7�,
correction is probably not needed, and all three methods pro-
duce good segmentation quality and are rated equally. There-
fore, the choice of the correction method should be depen-
dent on the quality of the image. The results based on these
three case examples suggest that for a large breast that pro-
trudes deep into the flat-bed breast coil, the coil cannot pro-
duce a large homogeneous field to cover the whole breast
and, consequently, the acquired images show a strong field
inhomogeneity. On the other hand, for a small breast that
does not protrude deep, the coil can produce a homogeneous
field to cover the whole breast, and the acquired images do
not show a strong field inhomogeneity. For cases with small
breasts, the FCM-based method works just as well as the
other two. The images reported in our previous publication
were acquired using a closed-form breast coil,6–9 with the
breast tissue fitted into a confined bra-shaped space. The pro-
duced images are more homogeneous, and FCM-based cor-
rection method is sufficient.

We also compared the segmentation results based on the
N3+FCM correction method to a recent method of bias field
estimation reported by Li et al.30 based on a CLIC criterion
function. This segmentation-based bias field correction
method modifies the standard FCM clustering energy func-
tion by assuming that the variation in the neighbor intensity
can be modeled by a truncated Gaussian kernel. Based on
this assumption, the inhomogeneity of a pixel is affected by
its neighborhood, which follows the spatially coherent nature
of bias field. Therefore, CLIC ensures the smoothness of the
estimated bias field naturally during iteration, while the stan-
dard FCM requires an additional low-pass filtering, which
may suffer from noise and local minima. Our results clearly
show that CLIC is more robust and accurate compared to the
standard FCM. Unlike CLIC, which is segmentation-based,
the proposed N3+FCM uses the combination of segmenta-

tion, surface fitting and histogram-based approaches. The al-
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gorithm uses N3 to maximize the high frequency content of
intensity distribution and remove the major bias field based
on the global maxima, and then uses FCM to detect and
remove the residual bias field. As shown in Sec. III, both
N3+FCM and CLIC algorithms can remove strong bias field
and provide satisfactory segmentation results for all cases
analyzed in this study. Since they use different approaches,
they may provide alternative options for other segmentation
studies involving a strong bias field that needs to be cor-
rected.

Generally, bias field correction is a preprocessing step in
order to improve the quality of the segmentation results. If
the gold standard �ground truth segmentation, e.g., Brain-
Web: http://www.bic.mni.mcgill.ca/brainweb/� is available,
the quality of the resulted segmentation based on different
correction methods can be evaluated using quantitative met-
rics, e.g., Jaccard similarity.30 Unfortunately, there is no gold
standard method for segmentation of fibroglandular tissue in
the breast. Although manual segmentation may work well for
some images �e.g., Fig. 4�, for majority of cases showing
scattered fibroglandular tissue distributions �e.g., Fig. 6�,
manual segmentation will not yield a consistent ground truth.
Some studies25,26 used a manually trained minimum distance
classifier32 together with manual edition for evaluation, and
the variation in intensity within a tissue class is assessed by
the coefficients of joint variation �CJV� based on the assump-
tion that a lower CJV corresponds to a better inhomogeneity
correction. While this assumption is true for brain images
that are normally acquired using a volumetric coil, it is not
applicable for breast images that are acquired using a surface
coil, which is known to have strong location-dependent in-
trinsic inhomogeneities. Within each class of fibroglandular
or fatty tissues, the intensities would vary between different
image slices, as well as between anterior and posterior region
on the same image. Therefore, in this study the evaluation of
the segmentation quality was made based on the visual read-
ing of an experienced radiologist. Although it is not based on
a quantitative criterion, it is a feasible way to yield reliable
evaluation results from many imaging slices contained
within a 3D volume of a breast.

In summary, in this work, we described a new bias field
correction method by combining the N3 and FCM-based in-
homogeneity correction algorithm. This algorithm first uti-
lizes the advantage of N3 for a global correction and then by
iteration of FCM and B-spline fitting to gradually correct the
bias field presented on the original images without errone-
ously changing the tissue contrast. It is shown that the N3
+FCM method can lead to an improved segmentation quality
compared to using either the N3 or the FCM method alone,
and that the performance was equivalent to a new method,
CLIC, proposed by Li et al.30 The N3+FCM and CLIC
methods are both useful for correcting the MR images with a
severe regional bias field, which is commonly presented in
the MR images of large breasts acquired using a flat-bed
breast coil. Choosing an appropriate bias field correction
method is a very important preprocessing step to allow an
accurate segmentation of the fibroglandular tissues based on

breast MRI for measurement of breast density.
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