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Purpose: Breast ultrasound �US� is recently becoming more and more popular for detecting breast
lesions. However, screening results in hundreds of US images for each subject. This magnitude of
images can lead to fatigue in radiologist, causing failure in the detection of lesions of a subtle
nature. In this study, an image stitching technique is proposed for combining multipass images of
the whole breast into a series of full-view images, and a fully automatic screening system that
works off these images is also presented.
Methods: Using the registration technique based on the simple sum of absolute block-mean dif-
ference �SBMD� measure, three-pass images were merged into full-view US images. An automatic
screening system was then developed for detecting tumors from these full-view images. The pre-
processing step was used to reduce the tumor detection time of the system and to improve image
quality. The gray-level slicing method was then used to divide images into numerous regions.
Finally, seven computerized features—darkness, uniformity, width-height ratio, area size, nonper-
sistence, coronal area size, and region continuity—were defined and used to determine whether or
not each region was a part of a tumor.
Results: In the experiment, there was a total of 25 experimental cases with 26 lesions, and each
case was composed of 252 images �three passes, 84 images/pass�. The processing time of the
proposed stitching procedure for each case was within 30 s with a Pentium IV 2.0 processor, and
the detection sensitivity of the proposed CAD system was 92.3% with 1.76 false positives per case.
Conclusions: The proposed automatic screening system can be applied to the whole breast images
stitched together via SBMD-based registration in order to detect tumors. © 2010 American Asso-
ciation of Physicists in Medicine. �DOI: 10.1118/1.3377775�
Key words: whole breast, ultrasound, computer-aided diagnosis �CAD� system, registration
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I. INTRODUCTION

Breast cancer is globally one of the most common cancers
among women. Early detection of breast cancer leads to a
better chance of proper treatment.1 Increased practice of
mammographic screening has resulted in significant reduc-

2,3
tion in breast cancer mortality. Mammography, however, is

1 Med. Phys. 37 „5…, May 2010 0094-2405/2010/37„5
not sensitive for women with dense breast tissue, for whom
ultrasound can really play a role in increasing the detection
of occult cancers.4–9 Sonography has recently been undergo-
ing investigation as an alternative screening technique.7–14

When combined with mammography, it has more sensitivity
for screening women than using routine mammography

9–11 15
alone. Recently, a report published by the American 59

1…/1/0/$30.00 © 2010 Am. Assoc. Phys. Med.
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College of Radiology Imaging Network �ACRIN� demon-
strated the potential of ultrasound �US� in the screening of
women at high risk of breast cancer. A multicenter trial was
performed using a standardized technique and descriptive
and interpretive criteria. The result of the trial provided guid-
ance to participants and practitioners alike on the role of
breast US.

Computer-aided diagnosis �CAD� offers a convenient and
helpful reference opinion in the initial detection stage or a
second reader once the physician has made an
assessment.16–18 With the CAD system, human oversights
would be reduced, leading to more efficient and accurate
diagnosis.19 In previous studies,20–23 several approaches with
manual and automatic identification were proposed to effi-
ciently detect breast lesions on US images. Madabhushi and
Metaxas20 proposed a method based on intensity and texture
with empirical domain specific knowledge, along with direc-
tional gradient and a deformable shape-based model. Druk-
ker and Giger21 developed a computerized method based on
the skewness of gray-level distribution to decrease limitation
of posterior acoustic shadowing in tumor detection. Mogat-
adakala et al.22 extracted order statistic features from multi-
resolution decompositions of energy-normalized subregions
and thus automated detection and segmentation of suspicious
regions in ultrasound B scans. Also, Chen et al.23 exploited
normalized cut and constrained grouping algorithms for
breast tumor boundary detection in ultrasound images. How-
ever, these approaches were applied on two-dimensional
�2D� US images with known tumor presence and therefore
were not suitable for screening purpose. Recently, Ikedo et
al.24 proposed a CAD system to detect masses in the whole
breast US images. The system employed two features includ-
ing the edge direction and the density difference to detect
masses in a US image. In this paper, we present a novel CAD
system that automatically detects the suspicious slices from a
series of 2D US images in a scan. Based on our preliminary
result,25 further comparison and analysis should be com-
pleted by additional experiments with tumor criteria. The
aim of this study is to detect suspicious slices with tumors
and further to locate the tumors.

Given the width of the standard US probe, several scan-
ning passes are typically required to image an entire breast.
Being able to convert adjacent passes into a single full-view
breast image would be greatly beneficial for further US
screening. There are a number of studies26–29 that have ex-
amined image registration on US images, but the algorithms
used in these studies have only focused on small three-
dimensional �3D� volume images, not on full-view images,
which would offer more information. Gee et al.26 generated
an alternative registration technique based on the sum of ab-
solute difference �SAD� to integrate multiple freehand
sweeps into larger images. In this paper, we present an image
stitching technique based on the sum of absolute block-mean
difference �SBMD� measure, which was modified from the
SAD, to merge three-pass images into a full-view US image.
The success of this technique enables the automatic detection

of breast lesions based on a large set of imaging data.

Medical Physics, Vol. 37, No. 5, May 2010
II. MATERIALS AND METHODS

II.A. Data acquisition

In this paper, 25 female subjects with 26 breast lesions
were studied. Of the 26 lesions, 9 were malignant in the
biopsy result. The remaining 17 lesions were diagnosed as
benign lesions through biopsy or with at least 2 yr of
follow-up without evidence of change in echogenecity and
lesion size. All the cases were acquired between May 2002
and April 2003 in the Center of Medical Ultrasonics, Dokkyo
Medical University, Mibu, Japan. The recruited subjects
were patients referred for breast sonography examination
without special “selection criteria,” with ages ranging from
25 to 73 yr old. The whole breast US images were scanned
by using an SSD-5500 US machine with a 6 cm linear trans-
ducer ASU-1004 �Aloka, Japan�. The frequency range was
5–10 MHz, and the center frequency was set at 7.5 MHz by
the radiologist for all the cases. Also, the time gain compen-
sation �TGC� settings and the dynamic range were set in
advance and were fixed. Figure 1�a� shows a whole breast
US scanning device. A transducer immersed into a water
tank, and a special US membrane separated water into two
parts, the breast side and the transducer side, for hygienic
reasons. The material used for the 0.15 mm membrane is
latex rubber, and the membrane does not cause echoes or
artifacts. For scanning, a female subject had to bend down to
position her breast in the subtank, and then the transducer
would move and scan mechanically. Three passes were
needed to project an entire breast within an area of
16�16 cm2, where the overlap �OML and OMR� between
two passes was 1 cm, as shown in Fig. 1�b�. Each pass in-
cluded 84 images, and a total of 252 images was obtained
with an interval of 2 mm between each image. Two focal
zones were set at 1.5–2.5 and 4.5–5.5 cm, depending on the

FIG. 1. The scanning procedure of the US machine. �a� An SSD-5500 US
machine with a 6 cm linear transducer ASU-1004 �top�. A US membrane
separated water in a tank into the breast side �subtank� and the tank side
�main tank�. A breast was in the subtank, and a transducer immersed and
moved mechanically in the main tank. �b� An entire breast was projected
within an area of 16�16 cm2, including three overlapping passes. Note that
a subject bent down to position her breast in prone orientation �nipple
down�, but the images in Fig. 4 were presented in a supine orientation
�nipple up�.
breast size, and the pixel resolution was 44 pixels/cm. 150
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II.B. Image stitching procedure

These US image slices Ss, 1�s�252, were separated
into left frames Lk �pass 3�, middle frames Mk �pass 2�, and
right frames Rk �pass 1�, 1�k�84. The scanning direction
of pass 2 was different from other passes, as shown in Fig.
1�b�. Therefore, the relation of Lk, Mk, and Rk to Ss is defined
as

Rk = Sk, Mk = S169−k, Lk = Sk+168, 1 � k � 84. �1�

When the patient movement was not considered, a significant
issue during scanning, the ideal frame triplets, �Lk ,Mk ,Rk�,
were easily obtained according to the relative position of
each pass. The two overlapping regions �OML and OMR� were
then recorded by spatial registration and temporal alignment
to obtain the final stitching result.

II.B.1. Spatial registration algorithm

In this step, the SBMD, a novel metric measure, was pro-
posed to estimate the matching degree between two images.
The main idea of SBMD is modified from the SAD,26 which
is calculated by

SAD = �
i

Np

�Ai − Bi� , �2�

where Np is number of pixels in the overlap region of images
A and B, Ai is the ith pixel of image A, and Bi is the ith pixel
of image B. In the SBMD measure, a mean calculated with
pixels in a 2�2 block of the overlapping region is used
instead of a single pixel value. The mean column block
�MCB� is defined as a set of means, which are calculated
with 2�2 blocks in the overlap region within the same im-
age. Hence, the SBMD equation is defined as

SBMD = �
i

Nb

�A�i� − B�i�� , �3�

where Nb is the number of 2�2 blocks, A�i� is defined as the
mean of the ith 2�2 block in the overlapping region within
image A, and B�i� is defined the same as A�i�. The concept of
the SBMD measure is illustrated in Fig. 2. In the SBMD

FIG. 2. The concept of sum of absolute block-mean difference �SBMD�.
A�i� is the mean pixel of 2�2 block in image A and B�i� is the mean pixel
of 2�2 block in image B.
measure, the matching degree of the estimation is similar to

Medical Physics, Vol. 37, No. 5, May 2010
that of the SAD measure; that is, if the metric value is closer
to zero, a superior registration result would be obtained.
When the block means of two corresponding points in the
overlap region are equal, the SBMD value is equal to 0.

Spatial registration was used to find the optimal match
between the overlapping regions of two images that had the
same frame number. If Mk was the fixed image and Lk was
the moving image, then the SBMD measure is to evaluate the
degree of matching between the overlap region of image Mk

and image Lk. Let Mk
ML be the MCB in the middle-left over-

lap region OML of the fixed image Mk and Lkj
ML be one of the

MCBs in the middle-left overlap region OML of the moving
image Lk, 1� j�NMCB, where NMCB was the total number of
the MCBs in the middle-left overlap region OML of the mov-
ing image Lk. According to Eq. �3�, the SBMD stitching
equation can be revised as

SBMD�Mk
ML,Lkj

ML� = �
i

Nb

�Mk
ML�i� − Lkj

ML�i�� for 1 � j

� NMCB, �4�

where Mk
ML�i� is the ith block mean in Mk

ML, Lkj
ML�i� is the ith

block mean in Lkj
ML, and Nb is the number of the block means.

Then, image stitching was needed to find the minimum met-
ric criterion SBMD�Mk

ML,Lkj
ML� with respect to the various

possible translation parameters. In this image stitching pro-
cedure, the possible parameters were translated by wLx pixels
in the x coordinate and wLy pixels in the y coordinate. The
translation parameters in the x and y coordinates for the
�Mk ,Lk� pair were illustrated in Fig. 3. A similar definition
was applied to the �Mk ,Rk� pair. So, the modified equation
for the �Mk ,Rk� pair is

SBMD�Mk
MR,Rkj

MR� = �
i

Nb

�Mkr
MR�i� − Rkj

MR�i�� for 1 � j

� NMCB, �5�

where Mk
MR and Rkj

MR are similarly defined as Eq. �4� and are
the middle-right overlap regions of image Mk and image Rk,
respectively. The corresponding translation parameters
�wRx ,wRy� are also obtained. Figure 4�a� shows a stitching

FIG. 3. The translation parameters in x �wLx�, y �wLy�, and z �wRz� coordi-
nates on a stitching result of Lk, Mk, and Rk.
result produced using the spatial registration algorithm. 220
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II.B.2. Temporal alignment step

In actuality, there are many factors that may cause patient
movement during scanning, such as heartbeat and respira-
tion. In order to exclude such factors, the stitching procedure
first undergoes temporal alignment before implementing the
spatial registration procedure. In the temporal alignment
step, the left ideal frame for the middle frame Mk would be
selected from the frames Lk−7 ,Lk−6 , . . . ,Lk , . . . ,Lk+6 ,Lk+7,
and the right ideal frame would be selected from the frames
Rk−7 ,Rk−6 , . . . ,Rk , . . . ,Rk+6 ,Rk+7. For each frame pair
�Lk+m ,Mk ,Rk+n�, −7�m�7 and −7�n�7, the minima of
the metric SBMD�Mk

ML,L�k+m�j
ML � and SBMD�Mk

MR,R�k+n�j
MR �

from Eqs. �4� and �5� are defined as

SBMD�Mk
ML,Lmj

ML� = min
m=−7

7

�SBMD�Mk
ML,L�k+m�j

ML ��

and

SBMD�Mk
MR,Rnj

MR� = min
n=−7

7

�SBMD�Mk
MR,R�k+n�j

MR �� . �6�

After Eq. �6�, the translation parameters in the z coordinate,
wLz and wRz, were obtained, whose values are mk−k and
nk−k, respectively. The translation parameter wRz in the z
coordinate for the �Mk ,Rk� pair was illustrated in Fig. 3. A
stitching result produced using spatial and temporal align-
ment algorithms is shown in Fig. 4�b� and is more satisfac-
tory for visual inspection than the result in Fig. 4�a�.

II.C. Automatic screening system

After the image stitching procedure, 252 partial images of
a case would be merged into 84 full-view US images. Then,

FIG. 4. �a� A stitching result after applying the spatial registration algorithm
and �b� a stitching result after adding the temporal alignment step. Note that
vertical line segments indicated the slice position in a pass.
a fully automatic screening system would attempt to detect

Medical Physics, Vol. 37, No. 5, May 2010
tumorlike regions in these images. The flowchart of the au-
tomatic screening procedure is shown in Fig. 5.

II.C.1. Image preprocessing step

In order to reduce processing time, in the spatial domain,
a bilinear interpolation30 was used to calculate a sampling
value using the relationship of distance among the given
pixel values. Then, some image preprocessing techniques,
such as the anisotropic diffusion filter and the stick operator,
were applied to reduce speckle noise and to enhance the
contour of a lesion.

US images typically exhibit strong speckle noise because
of the occurrence of wave interference that is inherent to any
coherent imaging process.31 The speckle noise degrades the
image quality and makes it difficult to analyze image fea-
tures. For this reason, we needed to perform relevant prepro-
cessing steps in the automatic screening system. There are
several low-pass filters, such as median filters30 and averag-
ing filters,30 which are adopted for reducing US image noise.
Although these methods may efficiently reduce noise, the
boundary information and texture patterns, which are impor-
tant to segmentation and feature extraction, are blurred in the
process. Hence, in order to reduce noise while preserving
object information, we used the anisotropic diffusion
filter32,33 to eliminate the speckle noise. The local image gra-
dient was used to control anisotropic diffusion and to modify
the classical isotropic diffusion equation into an anisotropic
diffusion equation, represented by the formula

�I�x,y,t�
�t

= div�g�	�I	� · �I� , �7�

where 	�I	 is the gradient magnitude, div is the divergence
operator, 	 	 denotes the magnitude, and g�	�I	� is an edge-
stopping function. This function is chosen to satisfy
g�x�→0 when x→� and should be monotonically decreas-
ing so that the diffusion decreases as the gradient strength
increases and stops across the edges.

After the anisotropic diffusion filtering step, the stick, a
line segment of variable orientation, was used to reduce
speckle and to enhance edge information.34,35 In the concep-
tion of the stick method, let a given square area of size be
NS�NS in an image, then 2NS−2 lines of length NS pixels

FIG. 5. The flowchart for the automatic screening system. The stitched US
images were processed with preprocessing for quality enhancement and then
were segmented by using gray-level slicing. Finally, seven criteria were
used to detect tumorlike regions.
can be drawn through the center of square area. The sum of 287
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the pixel values on the same line is calculated for each line.
Then the maximum of these sums is selected. After each
pixel in an image is replaced by the maximum sum of the
lines passing through that pixel, edge contrast is enhanced
and speckle is reduced. In this paper, we set NS=5.

II.C.2. Image segmentation

In US images, the distribution of gray levels over differ-
ent breast tissues is inconsistent. Generally, regions of cyst
and tumor, desirable areas of detection in this study, were
darker than the fat tissue.36 Therefore, we used a simple
thresholding method, gray-level slicing,30 to divide gray lev-
els into four ranges. The gray-level ranges were selected us-
ing five cases in advance, and better results were obtained
when four ranges were set to 0–26, 27–42, 43–71, and 72–
255, respectively. The first range includes cysts; the second
and third ranges represent the suspicious tissues; and the last
range includes all the other tissues, i.e., fibrous tissues, glan-
dular tissues, and calcifications. The selected ranges were
used only for cases scanned based on the fixed TGC settings
and the dynamic range. In the current method, the cysts and
mass regions would be detected at the same time because
they are darker than fat. This paper is focused on the detec-
tion, and the further differentiation of cysts and mass regions
could be conducted by the other methods.

Finally, pixels associated with gray levels in the same
range were replaced by the average of the pixels. The re-
sulted image from the application of all preprocessing algo-
rithms is shown in Fig. 6.

II.C.3. Definition of tumor criteria

After image preprocessing, an image was divided into
several regions. A region would be determined as a tumorlike
region if it satisfied the predefined criteria of area size,
width-height ratio, darkness, uniformity, nonpersistence,
coronal area size, and region continuity.

II.C.3.a. Area size. Because of the influence of noise on
US, lots of regions with a very small area would be produced
after applying the segmentation method. Hence, the area size
criterion was defined for excluding useless regions such as

FIG. 6. The results of three preprocessing. �a� An original US image. �b� The
result after applying the anisotropic diffusion filter to �a�. �c� The result after
applying the stick operator �5�5 mask� to �b�, and �d� the result after
applying gray-level slicing to �c�.
those due to noise. The area of each region must satisfy

Medical Physics, Vol. 37, No. 5, May 2010
areaR � THarea, �8�

where areaR is the total pixel number in the region and THarea

is a predetermined area threshold.
II.C.3.b. Width-height ratio. The shape of a tumor is

rarely flat and elongated.14 Therefore, the width-height ratio
criterion was used to eliminate the regions with a flat and
elongated shape. Each region was first enclosed by a closest
bounding rectangle, and then the width-height ratio RWH of
the rectangle was calculated by


RWH =
WR

HR
if HR � WR

RWH =
HR

WR
otherwise, � �9�

where WR and HR are the width and height of the suspicious
region. The width-height ratio must satisfy

RWH � THWH, �10�

where THWH is a predetermined width-height threshold. If
RWH is equal or smaller than THWH, this region would be
excluded.

II.C.3.c. Darkness. Tumors are usually darker than normal
tissue in US images. In addition, cysts are darker than
tumors.36 According to this property, nontumor regions can
then be excluded if their gray levels are not dark enough.
Hence, the average gray level GLavg of each suspicious re-
gion can be calculated by the following equation:

GLavg =
� GLR�x,y�

Npixel
, �11�

where GLR�x ,y� is the gray level of pixel �x ,y� and Npixel is
the number of pixels in the suspicious region. Then, the dark-
ness criterion is defined as

GLR � THGL, �12�

where THGL is the predetermined darkness threshold value.
II.C.3.d. Uniformity. In general, a part within a tumor is

often uniform in its gray level; therefore, gray levels of pix-
els in the suspicious region are similar.36 The variance VarR

of a region can be calculated by the intensity difference be-
tween each pixel and the regional mean value in the follow-
ing equation:

VarR =
� �GLR�x,y� − GLavg�2

Npixel − 1
, �13�

where GLavg is defined in Eq. �11� and Npixel is the number of
pixels in the suspicious region. A uniform region must satisfy

VarR � THuniform, �14�

where THuniform is the predetermined uniform threshold.
II.C.3.e. Nonpersistence. The nonpersistence criterion was

defined by removing nontumor tissue with a background im-
age constructed from several consecutive images. The back-
ground image was produced based on the image averaging

30
technique and was used for comparing with the detected 370
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image.
Let ID be a current detected image. First, the previous

�and following� m images nearby ID, which might contain
tumor regions, were denoted as ID�p, for 1� p�a. Totally,
2a+1 images were skipped. Then, the background image IB

was obtained from the average of images which included the
�b−a� previous and �b−a� following images nearby ID�p,
and were denoted as ID�q, for a+1�q�b. The gray level of
each pixel on IB can be calculated as

IB�x,y� =
� ID�q�x,y�

2�b − a�
. �15�

The number of skipped images must be large enough to
exclude the whole tumor. Figure 7�a� shows that the back-
ground image was constructed with the sufficient number of
skipped images ID�p; therefore, there is no tumorlike tissue
in the background IB. Figure 7�b� shows the number of
skipped images was insufficient so that there were several
images with tumor among ID−q and ID+q. The background
image, which is produced by averaging images, ID−q and
ID+q, would be with a tumor region, indicated by an ellipse,
making it difficult to notice the difference between the cur-
rent detected images and the background image. In this pa-
per, the parameters were selected as a=5 and b=10 by dis-
cussing with the radiologist. After the background image IB

is produced, for a coordinate �x ,y� within the detecting re-
gion on ID, the gray-level contrast between two correspond-

FIG. 7. �a� If the number of skipped images is large enough to include all the
tumor frames, the background image IB would be without tumor. �b� If the
number of skipped images is less, the background image IB would include
tumor indicated by a circle.
ing pixels on ID and IB can be calculated by

Medical Physics, Vol. 37, No. 5, May 2010
Cx,y =
ID�x,y� − IB�x,y�

� 1

2�b − a��
q

�ID�q�x,y� − IB�x,y��

. �16�

By this formula, the influence of the noise is reduced. Hence,
the difference between ID and IB can be calculated by

CR =
1

Npixel
� Cx,y , �17�

where Npixel is the total pixel number of the region. Hence,
the region is excluded if

CR � THC, �18�

where THC is a predetermined nonpersistent threshold.
II.C.3.f. Coronal area size. In general, the coronal shape

of a tumor is approximate to a dark ellipse, and the area of
the coronal region is usually larger than other nontumor tis-
sues. This property can be used to exclude nontumor tissues
with small coronal area. Hence, a coronal-view image was
produced from a cross section of consecutive US images at a
designated depth. Figure 8 shows an example for construc-
tion of a coronal-view image produced form consecutive US
images with tumor. Let areaT be the tumor region size in the
coronal view image and areaCr is the coronal view image
size. The ratio RCA between the area of the tumor region and
the area of the coronal image is calculated by

RCA =
areaT

areaCr
. �19�

The area ratio RCA is then compared to a predetermined
threshold. If it is smaller than the threshold THCA, this cor-
responding region is excluded.

II.C.3.g. Region continuity. In Figs. 9�b�–9�g�, we show
the individual results after applying each of the six tumor
criteria. Note the regions that did not satisfy the criteria were
displayed in white pixels. As shown, almost all normal re-
gions could be excluded by using the first six criteria. The
final region satisfying all six tumor criteria is shown in Fig.
9�g� and was labeled as a suspicious region with possible
tumor.

In general, a tumor is an irregular solid mass within the
breast that is typically shown across serial images. Therefore,
the possibility that the region in the current image contains a
tumor increases significantly if its corresponding region in
the succeeding image also satisfies the six tumor criteria.

FIG. 8. An overview of coronal view. A coronal-view image was produced
from a cross section of consecutive US images.
This procedure is called the region continuity criterion. In 434
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Fig. 10, there are three possible suspicious regions, b, c, and
d in the current image, but only region c satisfies the region
continuity criterion because its corresponding region e in the
succeeding image is also labeled as a possible suspicious
region. This is to say that only region c satisfies all pre-
defined criteria, so it would be labeled as a truly suspicious
region.

III. RESULT

Most of the 25 cases in our experiments, the exception
being the ninth case with two lesions, had one lesion. Each
case was scanned and the images were stored as DICOM
files by the aforementioned US machine. After decoding the
DICOM files, cases consisting of 252 images �three passes,
84 images/pass� were processed with the proposed stitching
procedure and screening system. In this study, all the thresh-

FIG. 9. The results respectively show regions satisfied �a� the area size cri-
terion, �b� the width-height ratio criterion, �c� the gray-level criterion, �d� the
uniform criterion, �e� the irregular region criterion, and �f� the coronal area
size criterion. Finally, a region satisfied six tumor criteria is shown in �g�.

FIG. 10. The illustration of the region continuity criterion. In the current
image, region b, c, and d satisfy the first six criteria, but only region c
satisfies the region continuity criterion because its corresponding region e in

the succeeding image is also labeled as a possible suspicious region.

Medical Physics, Vol. 37, No. 5, May 2010
olds for tumor criteria, after discussion with a radiologist,
were selected as follows: THarea=60, THWH=0.5, THGL=55,
THuniform=5, THC=14.7, and THCA=0.6.

III.A. Experimental protocol and results

The image stitching procedure was used to combine the
three-pass US images into full-view images. In Fig. 11, 8 out
of the 84 stitched results from case 1 are shown. The pro-
cessing time of the stitching procedure by a Pentium IV 2.0
processor for each case �252 images� was within 30 s. With a
focus on accuracy of tumor detection, a simple evaluation
protocol, namely, mean square error �MSE�, was used to
evaluate the performance of the proposed stitching method.
The MSE of the overlapping region is calculated by

MSE =
1

NO
�
r=1

NO

�Ar − Br�2, �20�

where A and B are the overlapping regions, N is the total
pixel number of the overlapping region, Ar is one of pixels in
the overlapping region A, and Br is the similar definition of
B. In Fig. 12, four enlarged images obtained from four
frames in case 1 were used to show the stitching parts with
different MSE values; that is, in Figs. 12�a�, 12�b�, and
12�d�, the MSE values of the left stitching result of frames
22, 32, and 82 were 104, 234, and 1520, respectively, and the
MSE value of the right stitching result of frame 52 was 893.
Figure 13 shows all MSE values of the left and right stitch-
ing results in case 1 using two statistical curves. Note that
the red curve is for MSE values of the left stitching results
and the blue line is for the right stitching results.

With stitched full-view images, each experimental case

FIG. 11. Eight stitched results of all stitched results �84 frames� in case 1.
was diagnosed by the proposed CAD system. Diagnoses 478
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made by a physician with 10 yr of experience in breast im-
aging were compared with experimentally derived conclu-
sions. Figure 14�a� shows two diagnosed results of case 2:
The left image is a true positive frame and the right image is
a false positive �FP� frame �the false positive region is indi-
cated by an ellipse�. The true and false positive frames of
cases 5 and 11 are also shown in Figs. 14�b� and 14�c�,
respectively. Out of the 25 cases with 26 lesions, our CAD
system missed 2 lesions, one each from cases 15 and 23.
Figure 15 shows two false negative frames in cases 15 and
23. In Fig. 16, the free-response operating characteristic
�FROC� �Ref. 37� curve shows the performance of the pro-
posed screening system. In order to generate the FROC
curve, the threshold value THWH was changed in the width-
height ratio criterion. The CAD scheme yielded a detection
sensitivity of 92.3% �24/26 lesions� with 1.76 FPs/case.

III.B. Discussion

Breast cancer is the second leading cause of carcinogenic
death in women behind lung cancer.1 In America, one in
eight women will be diagnosed with this deadly disease, and
an estimated 192 370 new cases of invasive breast cancer
will be diagnosed among women this year.1 In an attempt to
reduce mortality rates, breast US has recently become more
and more popular for detecting breast lesion in early
stages.4–9

FIG. 13. Two MSE statistical curves for the left and right stitching results in

FIG. 12. Four enlarged images for the stitching parts of four frames in case
1. �a� In frame 22, the MSE value of the left stitching result was 104, �b� in
frame 32, the MSE value of the left stitching result was 234, �c� in frame 52,
the MSE value of the right stitching result was 893, and �d� in frame 82, the
MSE value of the left stitching result was 1520.
case 1.

Medical Physics, Vol. 37, No. 5, May 2010
The CAD system’s use as a reference opinion for improv-
ing accuracy and reliability of diagnosis has attracted much
interest among researchers over the past decade. Previous
studies focused on two key areas: The detection of the tumor
region22,38–41 and the classification of breast masses.42–46 For
boundary extraction of breast masses, Cary et al.38 used leak
properties to grow a manually drawn seed region close to the
tumor boundary. Yap et al.39 exploited hybrid filtering, mul-
tifractal processing, and thresholding segmentation to ini-
tially detect the tumor region. In classification, Sahiner et
al.42 extracted two morphological and six texture features
from a given segmentation on US for evaluation of tumors.
Huang et al.43 quantified tumor vascularity on 3D power
Doppler. In these studies, although various degrees of suc-
cess have been achieved, all the approaches were applied on
a breast US image associated with known tumor presence.

Ikedo et al.24 proposed a CAD system to automatically
detect masses using the whole breast US images. The detec-
tion sensitivity of the CAD system was 80.6% �29/36 le-
sions�. However, at the edge detection step, several FPs were
generated due to breast anatomy Vertical edges would also
be detected near areas of Cooper’s ligaments and ribs. Their
method also had difficulty detecting flat-shaped masses be-
cause poor near-vertical edges were difficult to determine
using edge detection. In our study, seven criteria were used
to distinguish images with suspicious tumors from US im-
ages without tumors. The detection sensitivity of our system
was improved by basing our determination on evaluation of
the region not affected by Cooper’s ligaments and ribs. The
extracted features included 3D information, such as coronal-
view criterion, which could increase detection sensitivity.

FIG. 14. �a� case 2, �b� case 5, and �c� case 11 show three examples of the
true positive frames �the left side images� and three examples of the false
positive frames �the right side images�.

FIG. 15. �a� A false negative frame in case 15, �b� a false negative frame in
case 23, and �c� the poor segmentation result of �b�. Two tumors were

indicated by circles.
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Generally, a breast screening scan of a patient includes
hundreds of US images. It is inefficient for the radiologist to
interpret this many scans. Fatigue and a subtle nature can
lead to a radiologist’s failure in the detection of a lesion.
After obtaining full-view US images, an automatic screening
system was used to detect the presence of tumors. In order to
reduce processing time, the degree of image resolution was
first reduced by subsampling. Several preprocessing tech-
niques including the anisotropic diffusion filter32,33 and the
stick operator34,35 were applied to reduce speckle noise and
to enhance the edges in each US image. A thresholding al-
gorithm based on gray-level slicing30 was then used to divide
the US image into numerous regions. Each region was de-
fined by the seven predefined criteria of darkness, uniformity,
width-height ratio, area size, nonpersistence, coronal area
size, and region continuity. Each region that satisfied these
criteria was labeled as a suspicious frame with possible tu-
mor presence. In order to increase efficiency and
effectiveness,47 we propose a novel CAD system for sifting
suspicious slices from a series of 2D US images of a breast.
The CAD system would offer a convenient and helpful ref-
erence opinion in the initial detection stage or a second
reader once the physician has made assessment. The focus of
the system is to differentiate suspicious slices from other US
images in a scan.

To have automatic tumor detection, US images in three
passes needed to be merged into a series of full-view images.
In our previous work,25 we utilized an image stitching algo-
rithm to stitch multipass images into a full-view image. This
previous method was based on mutual information48 regis-
tration and the results were evaluated by two metrics for
optimization—the sum of squared differences49 and normal-
ized correlation. In the present paper, we focused on tumor
detection so that we employed a simpler algorithm �SBMD�,
which was modified from a SAD algorithm, for image stitch-
ing. In the SBMD method, we calculated difference between
two 2�2 blocks in two images instead of the difference
between two pixels.

In our study, each criterion used had an individual thresh-
old. There were no prior standards for determining the pre-
determined threshold, and it was difficult to train the pro-
posed criteria with US images. Several thresholds are related

FIG. 16. FROC curves of the CAD scheme based on 25 cases.
to the tumor size and the users could change the thresholds

Medical Physics, Vol. 37, No. 5, May 2010
according to the size of the tumor. Hence, all thresholds were
selected after discussion with the radiologist. With a focus on
differentiation between US images with and without tumors,
thresholds were used to exclude normal regions for finding
parts of tumor.

From our results, we have found that the MSE values
estimated from the right sides of the last stitched frames were
larger than those estimated from the middle stitched frames,
as shown in Fig. 13; the MSE values for frames 81, 82, 83,
and 84, were 1234, 1687, 1667, and 1853 for the �Mk ,Rk�
pairs and 1304, 1520, 1675, and 1725 for the �Mk ,Lk� pairs.
This might be due to undesirable results from the temporal
alignment step; perhaps there may have been alternate left/
right frame pairs �Lm ,Rn� with higher matching degrees with
the middle frame Mk. Fortunately, this problem did not
deeply affect the performance of the proposed system, as
image information in the first or the last frames is usually not
necessary nor important. Almost all important information is
usually contained within the middle stitched frames and thus,
we were able to ignore these estimative errors.

Our results also showed that almost all the tumors or cysts
identified by the physician could also be detected through the
proposed screening system. In Fig. 14, three examples of the
true positive frames of cases 2, 5, and 11 are shown on the
left side; on the right side, three examples of the false posi-
tive frames of the same cases are shown. The determination
errors that we noticed were due to texture of the regions
represented like tumor tissue. This might be caused espe-
cially when an inappropriate operation was made in the scan-
ning procedure such as patient posture. In our study, only
two false negative diagnoses were noted. Infrequency of
false negativity, and thus accuracy, is very important for any
imaging system designed for automatic detection of lesions.
In Fig. 15, the false negative frames of cases 15 and 23 are
shown, and ellipses are used to indicate true locations of the
tumors. The tumor size in case 15 is so small �only 2.5 mm�
that it would not satisfy the area size criterion. In case 23, the
false negative region did not satisfy the width-height ratio
criterion because the pattern joined to the nipple shadow so
that the segmentation result was poor, as shown in Fig. 15�c�.
There were also 44 detected false positives. Upon closer ob-
servation, it was discovered that all the false positive regions
were dark and uniform like the appearance of tumor regions,
as shown in the right side of Fig. 14. All of the suspicious
regions detected by the proposed CAD system were indeed
tumorlike regions. Therefore, the proposed system can in-
deed be used to find the suspicious frames from a series of
2D US images that may or may not contain tumors. Since the
major role of the CAD system is to provide a reference opin-
ion in the initial diagnosis stage, the average 1.76 false posi-
tive marks per case in this study can further be checked and
easily verified for their nature of being malignant, benign, or
normal by the breast radiologist.

IV. CONCLUSION

In this study, we proposed a CAD system to automatically

detect tumors from a serial of 2D US images. By using im- 633
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age stitching based on the proposed SBMD measure, 252 US
images of three passes were merged into 84 full-view images
which offer more information than a stack of 2D US scans
for beast diagnosis. The CAD scheme yielded a detection
sensitivity of 92.3% �24 out of 26 lesions� with a total 44
false positives �1.76/case�. Our study shows that the pro-
posed system could automatically detect suspicious frames
with tumorlike regions and it would be useful in diagnosis
and efficiency improvement.

Although the developed system offered high detection
sensitivity �92.3%�, there were limitations in our study. For
the adopted automated ultrasound system, the limited depth
of penetration �deep lesions might be missed�, shadowing by
Cooper’s ligaments, shadowing distal to lesions, and limited
scan range �large breasts would be out of the scan range�
would cause some breast tissue and potential lesions to be
missed. A better method for standardization of system sensi-
tivity settings would be needed in future studies. Using the
current technique, the processing time for each case is still
too long. In the future work, for time efficiency, processing
times falling within 2 min/case should be decreased. Also, in
this study, the high sensitivity was associated with 1.76 false
positive marks per case due to segmentation results. An in-
accurate segmentation result produced by a simple algo-
rithm, such as gray-level slicing might adversely affect our
conditional analysis. A superior algorithm should be ex-
ploited to precisely detect the contour of a pattern so that the
number of false positive and false negative regions can be
reduced. Moreover, more cases are acquired to find more
reliable threshold values for adapting images with different
settings. If the system can offer a more accurate and reliable
diagnosis, its clinical practicality will be increased.
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