Quantitative analysis of breast parenchymal patterns using
3D fibroglandular tissues segmented based on MRI

I. INTRODUCTION

Ke Nie and Daniel Chang

Tu and Yuen Center for Functional Onco-Imaging, University of California, Irvine, California 92697

Jeon-Hor Chen
Tu and Yuen Center for Functional Onco-Imaging, University of California, Irvine, California 92697
and Department of Radiology, China Medical University Hospital, Taichung 404, Taiwan

Chieh-Chih Hsu
Department of Radiology, China Medical University Hospital, Taichung 404, Taiwan

Orhan Nalcioglu and Min-Ying Su®
Tu and Yuen Center for Functional Onco-Imaging, University of California, Irvine, California 92697

(Received 21 May 2009; revised 24 October 2009; accepted for publication 10 November 2009;
published 9 December 2009)

Purpose: Mammographic density and breast parenchymal patterns (the relative distribution of fatty
and fibroglandular tissue) have been shown to be associated with the risk of developing breast
cancer. Percent breast density as determined by mammography is a well-established risk factor, but
on the other hand, studies on parenchymal pattern have been scarce, possibly due to the lack of
reliable quantitative parameters that can be used to analyze parenchymal tissue distribution. In this
study the morphology of fibroglandular tissue distribution was analyzed using three-dimensional
breast MRI, which is not subject to the tissue overlapping problem.

Methods: Four parameters, circularity, convexity, irregularity, and compactness, which are sensi-
tive to the shape and margin of segmented fibroglandular tissue, were analyzed for 230 patients.
Cases were assigned to one of two distinct parenchymal breast patterns: Intermingled pattern with
intermixed fatty and fibroglandular tissue (Type I, N=141), and central pattern with confined
fibroglandular tissue inside surrounded by fatty tissue outside (Type C, N=89). For each analyzed
parameter, the differentiation between these two patterns was analyzed using a two-tailed z-test
based on transformed parameters to normal distribution, as well as distribution histograms and ROC
analysis.

Results: These two groups of patients were well matched both in age (5011 vs 50+ 11) and in
fibroglandular tissue volume (Type I: 104 + 62 cm® vs Type C: 112+ 73 cm?®). Between Type I and
Type C breasts, all four morphological parameters showed significant differences that could be used
to differentiate between the two breast types. In the ROC analysis, among all four parameters, the
“compactness” could achieve the highest area under the curve of 0.84, and when all four parameters
were combined, the AUC could be further increased to 0.94.

Conclusions: The results suggest that these morphological parameters analyzed from 3D MRI can
be used to distinguish between intermingled and central dense tissue distribution patterns, and
hence may be used to characterize breast parenchymal pattern quantitatively. The availability of
these quantitative morphological parameters may facilitate the investigation of the relationship
between parenchymal pattern and breast cancer risk. © 2010 American Association of Physicists in
Medicine. [DOI: 10.1118/1.3271346]
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ciated with higher cancer incidence.

There is also evi-

Mammary gland architecture may play an important role in
determining the susceptibility of developing breast cancer."
The most well-studied parameter is mammographic density,
evaluated as the percentage of dense tissue area over the total
breast area on mammograms. There are numerous studies
reporting mammographic density as a strong risk factor; the
higher the percentage, the higher the breast cancer risk.™®
Increased density over time has also been shown to be asso-

217 Med. Phys. 37 (1), January 2010

0094-2405/2010/37(1)/217/10/$30.00

dence suggesting that the relative distribution of adipose and
fibroglandular tissue (referred as the breast parenchymal pat-
tern in this work) is involved in cancer development. The
adipose tissue that is abundantly present around the ductal
epithelium of the mammary gland may function as a slow
release depot for lipid-soluble carcinogenic agents, and thus
may affect cancer risk.'>"* However, the relationship be-
tween parenchymal pattern and cancer risk has never been
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reported, possibly due to the lack of both the imaging mo-
dality necessary to reveal the distribution pattern and the
appropriate analysis methods.

Several studies have applied texture analysis to analyze
the distribution pattern of the projected dense tissue on
mammograms,l’m’15 and shown differences between women
with invasive cancer and women without cancer.” There are
also differences between high-risk women carrying the
BRCA1 and BRCA2 gene and low-risk women,l’14 which is
possibly due to lobular branching promoted by these genes.2
Since the mammogram is a two-dimensional (2D) projection
image, texture analysis can be used to characterize the
amount and/or the heterogeneity/homogeneity of dense tis-
sue. However, as these features arise in part from the way
that tissues overlap on the projected image, the analyzed pa-
rameters may be affected by different positioning of the
breast and the degrees of compression. A three-dimensional
(3D) imaging technique is needed to reveal the respective
distribution of the fatty and fibroglandular tissues. The inves-
tigation of the relationship between cancer risk and breast
parenchymal pattern will only be meaningful when the pa-
rameters can be reliably measured.

MRI provides 3D images of the breast, and that allows for
the slice-by-slice segmentation of the fibroglandular and the
fatty tissues for the evaluation of breast parenchymal pattern.
To date, only a few studies have investigated the percent
breast density using MRI, and the relative distribution pat-
tern of the fatty and fibroglandular tissues has not yet been
reported. The wealth of the 3D information that can be pro-
vided by MRI has yet to be fully explored. With the estab-
lishment of the American Cancer Society guidelines for an-
nual MRI screening for high-risk women, many more
clinical breast MRI examinations will be performed. Devel-
opment of reliable methods to measure the extent of density
and to characterize the parenchymal pattern may provide ad-
ditional information contributing to a better management
plan for these women.

We have published an analysis method utilizing computer
algorithms to segment the fibroglandular tissue for quantita-
tive measurement of the percent density in the whole breast
using MRL'® In the present study we hope to address a new
question: In addition to the percent density, can we use quan-
titative parameters to characterize the distribution pattern of
the dense tissues? As an initial approach, we analyzed two
distinct breast parenchymal patterns that can be classified
visually: The intermingled pattern with intermixed fatty and
fibroglandular tissues, and the central pattern with confined
fibroglandular tissue inside surrounded by fatty tissue out-
side. Breasts from these two groups may have comparable
percent densities but differ in the distribution pattern of their
dense tissue. Four different morphological parameters were
calculated based on the 3D distribution pattern of segmented
fibroglandular tissues, and their capacity to differentiate be-
tween the intermingled and the central patterns were evalu-
ated using respective histograms and the receiver operating
characteristic (ROC) analysis.

In medical imaging, the ROC analysis is commonly used
for differentiating between malignant and benign tumors,
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with “sensitivity” as the ability to correctly diagnose malig-
nant lesions and “specificity” as the ability to correctly diag-
nose benign lesions. In this work, the ROC analysis is used
to differentiate between two different breast parenchymal
patterns shown on MRI, the central pattern (Type C) and the
intermingled pattern (Type I), using the radiologist’s reading
as the ground truth; sensitivity referred to the ability to cor-
rectly diagnose Type I, and specificity referred to the ability
to correctly diagnose Type C. In order to better understand
the physical representation of the analyzed morphological
parameters, cases with high and low index parameters were
graphically depicted for visual comparison. The parameter
that can differentiate between these two distinct patterns may
then be used to provide a quantitative measure of parenchy-
mal patterns, to facilitate the investigation of the relationship
between parenchymal pattern and cancer risk.

Il. MATERIALS AND METHODS
Il.LA. Patient database

In a review of our IRB-approved research breast MRI
database from 2004 to 2006, 509 consecutive patients with
either suspicious lesions or confirmed breast cancer were
studied. Of these, 301 patients who had unilateral breast dis-
ease and for whom age and race information was available
were included in this study. The radiology and pathology
reports for each patient were reviewed to confirm that the
disease was present in only one breast, and the breast density
was only analyzed for the normal contralateral breast. Pa-
tients who had fatty breasts with the percent density <7%
(N=71) as measured by MRI were classified as the fatty
breast group. An example is shown in Fig. 1(a). Since this
group could easily be classified based on percent density
alone, they were not included in morphology analysis. The
remaining 230 patients were used for the analysis of breast
parenchymal pattern.

The MRI studies were acquired using a Philips Eclipse
1.5T scanner. The images were acquired using a nonfat sat
T1-weighted 3D SPGR (RF-FAST) pulse sequence, with
TR=8.1 ms, TE=4.0 ms, flip angle=20°, matrix size=256
X256, and field of view varying between 32 and 38 cm. A
fixed number of 32 slices, each 4 mm thick, were used to
cover the whole breasts. All 32 imaging slices were ana-
lyzed.

Il.B. Classification of breast parenchymal pattern to
Type | vs Type C

The parenchymal pattern of each case was classified into
one of two types that are commonly seen on breast MRI:
Type 1, the intermingled pattern with mixed fatty and fibro-
glandular tissues, and Type C, the central pattern with con-
fined fibroglandular tissue inside surrounded by fat outside.
The criteria used to differentiate between the two patterns
were as follows: The central pattern was assigned when (1)
most of the fibroglandular tissue was centrally located and
peripherally surrounded by fatty tissue, (2) the interface be-
tween fatty and dense tissues could either be smooth or ir-
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FIG. 1. Three case examples are demonstrated, including one fatty breast (top row), one Type I case (intermingled pattern, middle row), and one Type C case
(central pattern, bottom row). For each case, five axial view MR images from five imaging slices selected from superior to inferior directions are shown. There
are no breast lesions on these images. The percent density is 5.4% for the fatty breast, 14.1% for the Type I case, and 13.9% for the Type C case.

regular, and (3) a small amount of scattered fatty tissues
could be present within the fibroglandular tissue. If the cri-
teria for the central pattern were not met, the case was as-
signed to the intermingled pattern group. For extreme cases
of the intermingled pattern, the fibroglandular and fatty tis-
sues could be intermixed throughout the entire breast.

The parenchymal patterns of all cases were visually in-
spected twice by an experienced radiologist (J. H. Chen) and
once by an experienced physicist (K. Nie) using the same
criteria. They were blind to each other’s assignments. Be-
tween the first and second reading of the radiologist, there
were eight discrepant cases among 230 cases (3.5%). There
were six discrepant cases (2.6%) between the physicist’s
reading and radiologist’s first reading, and 14 discrepant
cases (6%) between physicist’s reading and radiologist’s sec-
ond reading. All discrepant cases were reviewed by both ob-
servers together to reach a consensus agreement, and this
consensus assignment was used as the ground truth. Finally,
of the 230 cases, N=141 was classified as Type I, and N
=89 was classified as Type C. Figure 1(b) shows a typical
intermingled pattern (Type I), with mixed fibroglandular tis-
sues and fatty tissues throughout the whole breast. Figure
1(c) illustrates a typical example of Type C, showing con-
fined fibroglandular tissue inside surrounded by fatty tissue
outside.

II.C. Quantitative assessment of breast parenchymal
patterns

The whole breast and the fibroglandular tissues were seg-
mented on each slice using a computerized method devel-
oped by our group.16 An initial cut of the breast region based
on each individual woman’s body landmarks was performed,
and then the boundary of the breast was determined using
clustering-based segmentation with the b-spline curve fitting
to exclude chest wall muscle, followed by dynamic searching
to exclude skin. Then, within the segmented breast, the adap-
tive fuzzy c-means clustering algorithm was applied to seg-
ment the fibroglandular tissues.

Based on the segmentation results from all 32 slices, the
total fibroglandular tissue volume and the percent density
normalized to total breast volume were calculated. Figure 2
shows the bar plot of the age, fibroglandular tissue volume,
and the percent density of the three subject groups for com-
parison, which consist of fatty (N=71), Type I (N=141), and
Type C (N=89) breasts. It can be seen that the fatty breast
group is significantly older, and this group can be well sepa-
rated from the other two groups based on the lower dense
tissue volume or the lower percent density. However, breasts
from the Type I and Type C groups have comparable age,
dense tissue volume, and percent density, and thus cannot be
separated.

Age (ylo) Fibroglandular Volume (cm3) 30% Percent Density (%)
80 0 - T
70 - * 160 - 25% 1
20% -
60 - 120 -
" 15%
50 80 -
10% *
40 | 40 - 5% -
30 - 0 0% -
Type-F Type Type-C Type-F Type-l Type-C Type-F Typel Type-C

(a) (b)

(©)

FIG. 2. The bar plot for comparing the (a) age, (b) fibroglandular tissue volume, and (c) the percent density among three subject groups. The fatty breast group
(indicated as Type F) is significantly older, and has the smallest fibroglandular tissue volume and the lowest percent density compared to the intermingled type
(Type I) and the central type (Type C). The Type I and Type C groups have comparable age, fibroglandular tissue volume, and the percent density, thus they

cannot be separated based on these parameters.
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Original image

Circularity Convexity

FiG. 3. Illustration of the calculation of the circularity and the convexity
index. Only one slice is shown here as an example, but the analysis was
performed in 3D. For circularity, a sphere with effective diameter D, is
drawn, and the ratio between the fibroglandular tissue volume within the
sphere and the total fibroglandular tissue volume is calculated as the circu-
larity index. The intermingled pattern (top) has a circularity index of 0.42
and the central pattern (bottom) has a higher index of 0.86. For convexity,
the minimum convex hull is drawn, and the ratio between the total fibro-
glandular tissue volume and the convex hall volume is calculated as the
convexity index. The intermingled pattern (top) has a convexity index of
0.36 and the central pattern (bottom) has a higher index of 0.73.

In order to characterize the different morphological distri-
bution patterns between Type I and Type C, we analyzed four
morphological parameters that are sensitive to shape (“circu-
larity” and “convexity”) and margin (related to the ratio be-
tween the surface area and the total volume, “irregularity”
and “compactness”) for the segmented fibroglandular tissues.

(1) Circularity defined as
Circularity = M,
fibro
where V;nin 1S the volume of fibroglandular tissue
within the sphere of effective diameter D ;=2
X %5'3-Vfibm/ 4, and Vi, is the total volume of fibro-
glandular tissue, as illustrated in Fig. 3. The centroid
of the fibroglandular tissues was first identified, and a
sphere with diameter of D4 was drawn. The volume
of the fibroglandular tissues within the sphere was
measured, and the ratio to the total fibroglandular tis-
sue was defined as the circularity. As shown in Fig. 3,
the case with the central pattern has the V,;,;, close to
the Vi, and hence has a higher circularity compared
to the case with the intermingled pattern. A perfect
sphere will have the highest circularity index of one.
(2) Convexity defined as

. Viin
Convexity = —>—,

convex
where Vi guvex 18 the volume of the minimum convex
hull containing the border voxels identified using the
gift wrapping a]gorithm,17 as illustrated in Fig. 3. The
gift wrapping algorithm is performed as follows:
Starting from the leftmost vertex, at each step the
polygon formed by three consecutive vertices is in-
spected. If the resulting angle is concave, then the
middle point is discarded and the next vertex (along
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the polygon) is added for testing. If the angle is con-
vex, then the process is repeated by moving to the
next vertex. As shown in Fig. 3, the case with the
central pattern has the convex volume closer to the
fibroglandular tissue volume, and hence has a higher
convexity index compared to the case with the inter-
mingled pattern. A perfect sphere will have the high-
est convexity index of 1.
(3) Trregularity defined as

. 7 szf
Irregularity=1- ————

Sfibro '
where S, 18 the surface area of fibroglandular tissue.
The irregularity index compares the total surface area
to the surface area of a sphere with effective diameter
D . A perfect sphere will have the lowest irregularity
index of zero.

(4) Compactness defined as
32

fib
Compactness = — 2.

fibro

The compactness is related to the ratio between the total
surface area and the total volume. A sphere with smooth
boundaries will have the lowest compactness index. A
highly nonconvex pattern with rough boundaries will
have a high compactness index.

Il.D. Statistical analysis

The distributions of each analyzed parameter in all pa-
tients were examined using the Kolmogorov—Smirnov test,
and were transformed to normal distribution for statistical
analysis. The parameters of “age” and circularity were al-
ready normally distributed, and did not need further transfor-
mation. The natural logarithm (In) transformation was ap-
plied to fibroglandular tissue volume, while the square root
(sqrt) transformation was applied to the parameters “percent
density,” convexity, irregularity, and compactness.

Two-way analysis of variance was used to examine mean
differences among the three parenchymal patterns of fatty,
intermingled (Type I), and central (Type C) for age, (In) fi-
broglandular tissue volume, and (sqrt) percent density. The
ability of the four morphological parameters (circularity,
convexity, irregularity, and compactness) to differentiate be-
tween the intermingled (Type I) and the central pattern (Type
C) groups was first evaluated using a two-tailed z-test for the
transformed parameters. For each morphological parameter,
the values from all analyzed cases were ranked in order, and
the distribution between the Type I and Type C patterns was
plotted as histograms for comparison. Two cases with com-
parable densities, one with high index and one with low in-
dex (selected from the neighborhood of #35 and #195 rank-
ing among all 230 cases), were graphically depicted as
examples for visual inspection of their different parenchymal
distribution patterns.

In addition to the individual analysis of each parameter,
the linear regression model (enter method) using all four pa-
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TaBLE 1. Comparison of age, fibroglandular tissue volume, percent density, and morphological parameters
between two groups with intermingled pattern and central pattern.

Typel,intermingledpatterilypeC,centralpattern

(N=141) (N=89) t-test* P value
Age (years old) 50+11 50+11 NS
Fibroglandular volume (cm?) 104 +62 112+73 NS
Percent density (%) 15.3+8.1 16.7+10.1 NS
Circularity index 0.36%+0.13 0.50*0.12 p<0.001
Convexity index 0.27+0.08 0.38%+0.10 p<<0.001
Irregularity index 0.69+0.07 0.61+0.09 p<0.001
Compactness index 142*52 8.6+45 p<<0.001

“t-test was performed based on transformed parameters to normal distribution. Age and Circularity were nor-
mally distributed. The In was applied to transform the fibroglandular tissue volume and the sqrt was applied to

transform the other four parameters.

rameters together was applied to evaluate differences be-
tween the Type I and Type C patterns. The performance was
evaluated using the ROC analysis with fourfold cross-
validation. All cases were first randomly assigned into four
subcohorts, with each subcohort containing approximately
the same proportion of Type C and Type I cases. Three sub-
cohorts were combined as the training set and the remaining
subcohort was used as the validating set. For each training
set, logistic model selection was applied to all four morpho-
logical features. The generated models were then applied to
its corresponding validating set. Then, the determined diag-
nostic classifier could be used to predict a parenchymal pat-
tern being Type I or Type C, based on the threshold level.
The sensitivity was defined as the ability to correctly classify
the intermingled pattern (Type I), while specificity was de-
fined as the ability to correctly classify the central type (Type
C). The sensitivity and specificity in the entire data set were
calculated from a full range of thresholds (from 0.0-1.0 with
an interval of 0.05), and then the ROC curve was constructed
using all data points at different thresholds by plotting sen-
sitivity vs one specificity. The area under the ROC curve
(AUC) of all models were then listed in ascending order, and
the one with the highest AUC was chosen. Finally, this
model was applied to the entire cohort to obtain the final
classification results. All analyses were performed using the
SPSS 15.0 package (SPSS Inc., Chicago, IL).

lll. RESULTS

lll.A. Age, fibroglandular tissue volume, and percent
density

As shown in Fig. 2, the fatty breast group could be easily
separated from the Type I and Type C groups. They were
significantly older in age (5910 yr old), and had signifi-
cantly lower fibroglandular tissue volume (48 =31 cm?) and
lower percent density (5.2 4.4%). The mean age of patients
was 5011 yr old in the intermingled pattern (Type I)
group and 5011 yr old in the central pattern (Type C)
group, so these two groups were well matched in age. The
mean fibroglandular tissue volumes in these two groups were
(Type I: 10462 cm? vs Type C: 112+73 cm?), and the
percent densities were (Type I: 15.3+8.1% vs Type C:
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16.7 £10.1%). The density was slightly higher in the central
pattern group, but the difference was not statistically signifi-
cant.

lll.B. Morphological parameters

The results of all density parameters calculated from the
segmented fibroglandular tissues for Type I (intermingled)
and Type C (central) cases are summarized in Table 1. The
four morphological parameters circularity, convexity, irregu-
larity, and compactness all showed significant differences be-
tween the two patterns when comparing the transformed pa-
rameters (to the normal distribution) using the two-tailed
t-test, suggesting that these features may be used to quanti-
tatively characterize the parenchymal patterns. Figure 4
shows the relative distribution histograms of these four mor-
phological features between Type I (intermingled) and Type
C (central) groups. Different distribution curves in these two
patterns were clearly noted. In order to better understand the
link between these quantitative parameters and the physical
representation of fibroglandular tissue distributions, the indi-
ces from all 230 cases were sorted in ascending order, and
the cases with comparable percent density but with high
ranking (#180-210/230) vs low ranking (#20-50/230) indi-
ces were selected for visual comparison.

1ll.B.1. Morphological feature—circularity

Two examples are demonstrated in Fig. 5 to illustrate the
circularity index, which is defined to analyze the shape of the
distribution relative to a sphere of effective diameter. The
two cases have similar percent densities (9.6% vs 9.8%) but
different parenchymal distribution patterns. Figure 5(a)
shows a linearly structured fibroglandular pattern with a low
circularity index=0.29 (ranking #33/230, Type I), and the
Fig. 5(b) case shows a round fibroglandular region with a
high circularity index=0.58 (ranking #187/230, Type C). In
all 230 cases, the circularity index was significantly lower
for the intermingled pattern than for the central pattern
(0.36 £0.13 vs 0.50+0.12, p<<0.001).
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FIG. 4. Histogram of four morphological parameters differentiating the intermingled pattern (Type I, dashed curve) and the central pattern (Type C, solid
curve), (a) circularity index, (b) convexity index, (c) irregularity index, and (d) compactness index. The intermingled pattern group has lower circularity and
convexity, and higher irregularity and compactness compared to the central pattern group. The cases with high and low indices are illustrated in Figs. 5-8.

1ll.B.2. Morphological feature—convexity

The convexity index is defined to analyze the shape with
respect to the minimum convex hull containing the border
voxels. Two examples are demonstrated in Fig. 6. The top
case, with a low convexity index=0.20 (ranking #30/230,
Type 1), has a lower occupancy within the corresponding
convex hulled area, while the bottom case, with a high con-
vexity index=0.46 (ranking #180/230, Type C), has a higher
occupancy. These two cases have comparable percent densi-
ties (10.9% vs 11.6%). In all 230 cases, the convexity index

was significantly lower for the intermingled pattern than for
the central pattern (0.27 =0.08 vs 0.38 =0.10, p<0.001).

1ll.B.3. Morphological feature—irregularity

The irregularity index is defined to compare the total sur-
face area to the surface area of a sphere with effective diam-
eter D¢ Two examples with high and low irregularity indi-
ces are shown on Fig. 7. They have similar percent densities
(15.1% vs 15.6%) but different parenchymal distribution pat-
terns. The case with a high irregularity index=0.74 (ranking

FiG. 5. The circularity index is sensitive to the spherical vs nonspherical
shapes. The top case is an intermingled pattern with percent density
=9.6% and circularity index=0.29, ranking 33 in all 230 cases. The bottom
case is a central pattern with a similar percent density=9.8%, and a higher
circularity index=0.58, ranking 187 in all 230 cases.
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FiG. 6. The convexity index is sensitive to the convex vs concave shapes.
The top case is an intermingled pattern with percent density=10.9% and
convexity index=0.20, ranking #30 in all 230 cases. The bottom case is a
central pattern with percent density=11.6%, and a higher convexity index
=0.46, ranking #180 in all 230 cases.
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FiG. 7. The irregularity index is sensitive to the irregular vs smooth mar-
gins. The top case is an intermingled pattern with percent density=15.1%
and irregularity index=0.74, ranking #190 in all 230 cases. The bottom case
is a central pattern with percent density=15.6%, and a lower irregularity
index=0.54, ranking #26 in all 230 cases.

#190/230) has an intermingled pattern showing an irregular
border, and the case with a low irregularity index=0.54
(ranking #26/230) has a central pattern with a smooth border.
In all 230 cases, the irregularity index was significantly
higher for the intermingled pattern compared to the central
pattern (0.69 +0.07 vs 0.61 =0.09, p<0.001).

1ll.B.4. Morphological feature—compactness

The compactness index is defined to compare the ratio
between the total surface area and the total volume. Two
cases with comparable percent densities (Type I: 12.9% vs
Type C: 11.8%) are shown in Fig. 8. The case with a high
compactness index=17.5 (ranking #180/230) has an inter-
mingled pattern, and the case with a low index=6.7 (ranking
#32/230) has a central pattern. In all 230 cases, the compact-
ness index was higher for the intermingled pattern than for
the central pattern (14.2%5.2 vs 8.6x4.5, p<0.001).
Among all four analyzed morphological parameters, the

FiG. 8. The compactness index is sensitive to both shape and margin. Round
shape with smooth margin has a relatively low compactness index. The top
case is an intermingled pattern with percent density=12.9% and compact-
ness index=17.5, ranking #180 in all 230 cases. The bottom case is a central
pattern with the percent density=11.8%, and a lower compactness index
=6.7, ranking #32 in all 230 cases.
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FiG. 9. The ROC curves. When only using the compactness index the AUC
is 0.84, and when using all four morphology parameters combined, the AUC
is improved to 0.94.

compactness index was the best parameter to differentiate
between these two parenchymal patterns, and showed the
widest separation between the histogram curves of these two
groups, as shown in Fig. 4(d).

lll.C. Group differentiation using ROC analysis

The power of these four morphological parameters in dif-
ferentiating between the Type I and Type C patterns was
analyzed individually using ROC analysis. As suggested by
the histogram analysis shown in Fig. 4, the compactness in-
dex was the best single predictor among all four parameters,
which attained the highest AUC of 0.84. These four param-
eters have distinctly different definitions, and in theory, they
are sensitive to different aspects of the distribution. However,
in reality, they are all related to shape and margin, and are
highly correlated. When all four morphological parameters
were combined together using the equation shown below, the
AUC could be further increased to 0.94

0.3 + 0.8 X Circularity + 0.7 X Convexity'? - 0.2
X Irregularity’> — 0.1 X Compactness'/2. (1)

A threshold value can be set to classify cases as either
Type I or Type C, for example, a value less than 0.5 could
represent Type I, while a value greater than 0.5 could repre-
sent Type C. The ROC curves can be generated using differ-
ent threshold values, shown in Fig. 9. The results demon-
strate that adding the other three parameters to the
compactness index can further improve the AUC; therefore,
they have a complementary role.

IV. DISCUSSION

In this work we developed an analysis method using
quantitative morphological features to characterize the 3D
distribution patterns of fibroglandular tissue. As an initial
approach for validating the value of these quantitative mor-
phological parameters, we investigated whether these param-
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eters could differentiate between two distinct patterns (inter-
mingled and central pattern) that could be easily separated
visually. After excluding the 71 fatty breast cases with per-
cent density <7%, there were a total of 230 remaining cases.
The ground truth to separate them into Type I and Type C
was carefully established. The densities (percentage and vol-
ume) in these two groups were similar, and the ages of the
patients in these two groups were also well matched. All four
analyzed morphological features showed significant differ-
ences between these two patterns, and when combined they
could achieve an AUC of 0.94 in the ROC analysis. The
intermingled pattern had significantly higher compactness
and irregularity and lower circularity and convexity indices
compared to those of the central pattern. The results strongly
suggest that it is feasible to characterize different distribution
patterns of fibroglandular tissues using quantitative morpho-
logical measures.

We further explored the association of the extracted quan-
titative features with the visual MRI representation of fibro-
glandular tissue distribution. Examples from cases with high
vs low index are demonstrated graphically in Figs. 5—-8. The
circularity and convexity indices were related to “shape,”
while irregularity index was more sensitive to “margin.” The
compactness index reflected the ratio between the surface
area and the volume, and was associated with both shape and
margin. Possibly due to its sensitivity to both shape and mar-
gin, the compactness had the greatest ability to differentiate
between the intermingled and the central patterns. These re-
sults demonstrated that it is feasible to use quantitative pa-
rameters to describe the 3D density distribution on breast
MRI.

Texture parameters are commonly used to analyze the
density distribution on mammography. The analyzed texture
information represents the amount and/or the heterogeneity/
homogeneity of dense tissue distribution on mammograms.
Because the texture parameters are analyzed on the projec-
tion image, one main contributing factor comes from the
overlapping pattern of the dense and fatty tissues. For ex-
ample, “skewness” can distinguish fatty tissues (positive
value) from dense tissues (negative value).'**° Amadasun et
al.*" and Tahoces ef al.”* introduced another two texture fea-
tures, coarseness and contrast, to describe the spatial rela-
tionship between fatty and dense tissues. There was evidence
suggesting that the distribution of fibroglandular tissue is as-
sociated with cancer risk. Huo er al.'"* and Li er al.' used
texture features to compare between the high-risk BRCA1/
BRCA2 mutation carriers and low-risk women, and found
that the BRCA1/BRCA?2 mutation carriers tend to have more
heterogeneously dense tissues (high coarseness and low con-
trast). Very recently, Manduca et al.” reported a systematic
study to assess breast tissue texture using Markovian co-
occurrence matrices, run-length analysis, Laws features,
wavelet decomposition, and Fourier analysis. Following a
comprehensive evaluation of a large community-based
screening population of approximately 750 women, they
have reported that the analyzed texture features predicted
breast cancer risk at the same magnitude as did the percent
breast density. The texture features at low spatial frequencies
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(i.e., coarser mammographic textures) were found to be the
strongest predictors of breast cancer risk. However, the au-
thors also commented that numerical values of texture fea-
tures tend to vary with differences in acquisition variables
such as compression force, angle, kVp, etc.

We would like to point out that the density analyzed based
on mammogram cannot be generalized to predict the results
analyzed from MRI. The density measurements by MRI and
mammography have been shown highly correlated (Khazen
et al.” r=0.78 for 138 high-risk women, Wei er al.** r
=0.89 for 65 patients, Klifa et al.”® r=0.75 for 15 cases, and
Graham et al.”® r=0.79 for 42 cases). However, all these
studies also consistently showed that the mammographic
density was higher than the density measured on MRI, which
was attributed to two-dimensional vs three-dimensional im-
age acquisitions. Mammography only acquires one projec-
tion image, and is not sufficient for analyzing the relative
spatial distribution of dense and fatty tissues. On the other
hand, MRI provides detailed 3D distribution patterns of fib-
roglandular tissue, hence not subject to the issue of tissue
overlapping. Therefore, although both modalities show con-
trast between dense and fatty tissues, the texture results ana-
lyzed from mammography cannot be directly compared to
the parenchymal patterns analyzed from dense tissue mor-
phology on MRI. In fact, we have also performed texture
analysis using gray level co-occurrence matrix and Laws tex-
ture features on MR images, but found them inferior to the
morphology analysis reported here to differentiae between
Type I and Type C.”" In texture analysis, the entire image is
analyzed, and a major part of the measured texture param-
eters is derived from the amount of fatty issue contained
within the image, which is not of our interest. The morphol-
ogy analysis approach used in this study is based on seg-
mented fibroglandular tissue, and we believe that this pro-
vides much more specific information when compared to
blind texture analysis.

It has been reported that the distribution of the mammary
gland is associated with the development breast cancer.'” For
example, the BRCA1 and BRCA2 genes promote lobular
branching, and the resulting denser and more heterogeneous
breast parenchyma leads to increased cancer risk.'* The risk
for breast cancer associated with mammographic density
may be explained by the combined effects of mitogens
(which influence cell proliferation and the size of the cell
population in the breast) and mutagens (which influence the
likelihood of genetic damage to those cells).28 Fatty tissue
has been demonstrated to have the ability to generate prod-
ucts to augment the growth of mammary carcinoma cells.”
Having more surface interaction between the fibroglandular
and fatty tissue may be related to increased breast cancer risk
by releasing lipid-soluble carcinogens into the intimate fib-
roglandular tissue. It is reasonable to expect that the inter-
mingled pattern shown on MRI is more likely to show a
heterogeneous pattern on 2D mammograms. Similar as the
concept of using texture analysis on mammogram to corre-
late with risk, the MRI-based analysis technique that we re-
ported in this work has the potential to facilitate the investi-
gation of the relationship between breast parenchymal
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pattern and cancer risk. We have provided strong evidence to
demonstrate that the four analyzed parameters can differen-
tiate between the central pattern and the intermingled pattern.
To the best of our knowledge, no other group has ever re-
ported on the analysis of breast density morphology based on
MRIL

There are several limitations in this study. First, the data
sets were from a research MRI database, therefore, it is not
representing a general population. However, our purpose is
to develop quantitative measures to distinguish between
these two patterns (Type I and Type C), and as long as we
have a good case number for each group, the data set can be
used to test how well the quantitative parameters analyzed in
this study can differentiate between these two groups. Sec-
ond, we did not analyze the fatty breast cases. As shown in
Fig. 1, since the contrast between fibroglandular and fatty
tissues is not strong, the segmentation of the fibroglandular
tissue may not be reliable for performing further morphology
analysis. On the other hand, the fatty breasts can be easily
classified based on the percent density alone, so further mor-
phology analysis may not be needed. Third, the ground truth
was established using visual inspection, which is subject to
variations of observers. To minimize this observer bias, we
had a total of three reading sessions by two observers (a
radiologist and a physicist), and any case that had discrepant
assignments among three readings was discussed to reach a
consensus. Lastly, the best classifier combining all four mor-
phological parameters was obtained using fourfold cross-
validation within the same data set, not from independent
training and validation data sets. To reduce variability, mul-
tiple rounds of cross-validation were performed using differ-
ent partitions, and the validation results were averaged over
the rounds. If an independent data set is available, we can
further test the ability of each individual parameter and the
combined classifier shown in Eq. (1) to differentiate between
Type I and Type C patterns.

In summary, we have demonstrated that the four morpho-
logical parameters (circularity, convexity, irregularity, and
compactness) can be used to characterize dense tissue distri-
bution patterns based on MRI, and they can be used to in-
vestigate the relationship between parenchymal pattern and
the cancer risk. For example, between two women who have
similar percent density but have differing parenchymal pat-
terns (e.g., central type vs mixed type), who will have a
higher risk of developing cancer? Our method to characterize
the morphology of the fibroglandular tissues provides an es-
sential foundation for such research in the future. Breast den-
sity is a well-established risk factor, and a consensus has
been reached by the Breast Cancer Prevention Collaborative
Group to incorporate quantitative breast density into risk
models.””*" The change in breast density has also been
shown to be a good surrogate marker for predicting the effi-
cacy of chemoprevention drugs.31’32 In the future when the
role of the morphological breast density features is estab-
lished, they may also be incorporated into the risk models to
further improve the accuracy in predicting each individual
woman’s cancer risk, for making an decision about the opti-
mal management plan.
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