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Abstract. Aim: The relationship between COX-2 gene and childhood leukemia risk is 

still ambiguous. In this study, the association and interaction of genotypic 

polymorphisms in cyclooxygenase 2 (Cox-2) gene and smoking habits with childhood 

leukemia are investigated. Materials and Methods: Up to 266 patients with 

childhood leukemia and 266 healthy controls recruited from the China Medical 

Hospital in central Taiwan were genotyped by PCR-RFLP method. We investigated 

six polymorphic variants of Cox-2, including G-1195A, G-765C, T+8473C, intron 1, 

intron 5, and intron 6, and analyzed the association of specific genotype with 

susceptibility to childhood leukemia. Results: The data showed that although for each 

genotype of Cox-2 G-1195A, G-765C, T+8473C, intron 1, intron 5, and intron 6, there 

is no difference in the distribution between the childhood leukemia and control groups 

(P > 0.05), the analysis of joint effect for Cox-2 G-765C and intron 6 showed that 

individuals with GC at G-765C and GG or AG+AA at intron 6 present a slightly 

higher potential for developing childhood leukemia than other groups. Conclusion: 

Our findings suggest that the C allele of Cox-2 G-765C may be responsible for 

childhood leukemia and may be useful in early detection of child leukemia. 

Key Words: Cox-2, polymorphism, childhood leukemia. 
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Acute lymphoblastic leukemia (ALL) is the most common cancer in childhood, 

accounting for 30% of the childhood malignancies {Karathanasis, 2009 #3}. The 

etiology of childhood ALL is mostly unknown. Although infections in the first years 

and some environmental factors such as ionizing radiation and parental alcohol and 

tobacco use could play a causative role in ALL {Schmiegelow, 2008 #4; Rubnitz, 

1997 #6; Liu, 2008 #7}. However, the genomic contributing factors of leukemia are 

still largely unknown, both in adult and child leukemia. ALL is known to result from 

an accumulation of mutations in tumor suppressor genes and oncogenes, and genetic 

alterations affecting several chromosomes {Kawamata, 2008 #8; Armstrong, 2005 #9; 

Patterson, 2009 #11; Pui, 2006 #12; Pui, 2004 #13}. Although common genetic 

variations may play a role in determining individual susceptibility of leukemia 

development in children, limited studies have evaluated the association between 

genetic polymorphisms in candidate genes such as CYP, GST, NAT, MTHFR, NQO1, 

XRCC1, MDR1, cyclin D1, CCND1, and XRCC4 with childhood ALL risk 

{Chokkalingam, 2008 #279; Karathanasis, 2009 #270; Kim, 2006 #281; Sinnett, 2006 

#280; Wu #282}. Anyway, it is commonly agreeable that single environmental or 

genetic factor can only ambiguously explain a small part of subjects developed child 

ALL. Thereafter, the genetic factors may be more comprehensive and less ignorable. 

Cyclooxygenases (also known as prostaglandin endoperoxide synthases or PTGSs) 
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are key enzymes to convert arachidonic acid to prostaglandin H2, a precursor to all of 

the other prostanoids {DeWitt, 1991 #231}. There are two forms of human COXs, i.e., 

Cox-1 and Cox-2. It was reported that Cox-2 over-expression may contribute to 

carcinogenesis via its regulation on apoptosis, immunosurveillance, angiogenesis, and 

also xenobiotic metabolism {Nishihara, 2003 #11; Gumgumji, 2003 #12}. In several 

animal and clinical studies, Cox-2 specific inhibitors have both preventive and 

therapeutic effects as anticancer drugs for breast, bladder, lung and pancreas cancers 

{Davies, 2003 #13; Sanchez-Alcazar, 2003 #14; Levitt, 2002 #15; Mizutani, 2002 

#16}. However, the association of Cox-2 genotypes with childhood ALL has never 

been investigated. In addition, the mRNA and protein levels of Cox-2 may vary 

among individuals, and this variability may be partially genetically determined under 

different molecular mechanisms, which may depends on single nucleotide 

polymorphisms (SNPs) of Cox-2 {Cok, 2001 #239; Papafili, 2002 #238}. 

Although COX-2 over-expression and COX-2 inhibitor drugs have been 

extensively studied in cancer, there were very few studies reporting the effects of 

COX-2 inhibition in hematologic malignancies, not to mention childhood ALL. In 

2002, it was reported that COX-2 over-expression was frequent in patients with 

chronic myelocytic leukemia (CML) and also found to be associated with shorter 

survival {Giles, 2002 #17}. The present work is motivated by the biological 
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plausibility that genetic variation in the Cox-2 could alter enzyme expression levels or 

biochemical function and consequently may have an impact on modifying the 

individual risk of childhood ALL. To clarify the hypothesis that the SNP variants of 

Cox-2 are associated with the risk of childhood ALL, we analyzed the genetic 

polymorphisms of six Cox-2 SNPs, including G-1195A (rs689466), G-765C (rs20417), 

T+8473C (rs5275), intron 1 (rs2745557), intron 5 (rs16825748), and intron 6 

(rs2066826), in a large Taiwanese childhood ALL population (control/case=266/266). 

 

Materials and Methods 

Study population and sample collection. Two hundred and sixty-six patients 

diagnosed with childhood ALL (i.e. the population under 18 years old) were recruited 

at the Pediatric Departments at the China Medical University Hospital and National 

Taiwan University Hospital, Taiwan, in 2005-2009. Each patient and non-cancerous 

healthy person (matched by gender and age after initial random sampling from the 

Health Examination Cohort of the two hospitals) completed a self-administered 

questionnaire and provided their peripheral blood samples. 

Genotyping assays. Genomic DNA was prepared from peripheral blood leukocytes 

using a QIAamp Blood Mini Kit (Blossom, Taipei, Taiwan) and further processed 

according to previous studies {Chang, 2009 #18; Chang, 2009 #19; Chiu, 2008 #20; 
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Chiu, 2008 #21; Chiu, 2008 #22; Hsu, 2009 #134; Hsu, 2009 #27; Yang, 2009 #43}. 

The polymerase chain reaction (PCR) cycling conditions were: one cycle at 94oC for 

5 min; 35 cycles of 94oC for 30 sec, 55oC for 30 sec, and 72oC for 30 sec, and a final 

extension at 72oC for 10 min. Pairs of PCR primer sequences and restriction enzyme 

for each DNA product are all listed in Table I.  

 

Statistical analyses. Only those with both genotypic and clinical data 

(control/case=266/266) were selected for final analysis. To ensure that the controls 

used were representative of the general population and to exclude the possibility of 

genotyping error, the deviation of the genotype frequencies of Cox-2 SNPs in the 

controls from those expected under the Hardy-Weinberg equilibrium was assessed 

using the goodness-of-fit test. Pearson’s chi-square test or Fisher’s exact test (when 

the expected number in any cell was less than five) was used to compare the 

distribution of the genotypes between cases and controls. Data were recognized as 

significant when the statistical P-value was less than 0.05. 
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Results 

The frequency distributions of selected characteristics of 266 childhood ALL patients 

and 266 controls are shown in Table II. These characteristics of patients and controls 

are all well matched. None of the differences between both groups were statistically 

significant (P>0.05) (Table II). 

The frequencies of the genotypes for the Cox-2 SNPs in controls and childhood 

ALL patients are shown in Table III. The genotype distributions of the genetic 

polymorphisms of Cox-2 of the six polymorphisms investigated were not significant 

between the two groups (P>0.05) (Table III). The frequencies of the alleles for Cox-2 

SNPs in controls and childhood ALL patients are shown in Table IV. Neither of the 

allele of the Cox-2 of the SNPs were found to be associated with lung cancer 

(P>0.05). 

To further investigate the association of Cox-2 genotype and childhood ALL, the 

interactions among SNPs were investigated by genotype analysis. Each of the 

frequencies of combined genotypic polymorphisms was analyzed, and here only the 

results of G-765C and intron genotypes were shown in Table IV, while other 

combinations were not significant (data not shown). There were no significant 

differences in frequencies of the combined genotypes between the two groups for 

each combined genotype. The odds ratios (ORs) of the GG/AG+AA, GC/GG, GC/ 
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and AG+AA combined genotypes compared with common GG/GG reference 

genotype were 1.23 (95% confidence interval, CI=0.76-1.98; P=0.4639), 1.67 (95% 

CI=0.97-2.86; P=0.0612), and 1.67 (95% CI=0.58-4.79; P=0.4315), respectively. 

 

Discussion 

In order to know the role of Cox-2 and to find potential biomarkers of childhood ALL, 

in this study, we selected six SNPs of the Cox-2 gene and investigated their 

associations with the susceptibility for childhood ALL in a population in northern and 

central Taiwan. We found that as for single SNP, the variant genotypes of Cox-2 were 

not significantly associated with the susceptibility for childhood ALL (Tables III and 

IV). This may not be due to small sample size (it is relatively large in childhood ALL 

studies), but more likely Cox-2 may play a minor role in the etiology of childhood 

ALL, which is an outcome of complex genetic and environmental interactions. 

Among the SNPs we checked, G-765C (rs20417) was found to be slightly associated 

with childhood ALL (P=0.06), although not statistically significant. The genotypic 

distribution of GC at G-765C was higher in the childhood ALL group (18%) than the 

control group (12%) (Table 3). The lack of CC homozygote at G-765C in the 

investigated population of this study may indicate that the individuals with CC 

homozygote at Cox-2 G-765C were of some fetal defects related to this SNP which 
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lead to apoptosis of the cells or early lethality of the people. We propose that the C 

allele of Cox-2 G-765C, via the differential sensitivity to the transcription factors, 

may influence the expression level of Cox-2 and associated with the carcinogenesis of 

childhood ALL. The supporting evidence comes from the study documented that 

COX-2 is responsible for many processes such as inflammatory, organ development, 

and carcinogenesis {Tsujii, 1997 #20}. Also, several studies have reported that 

COX-2 over-expression is important in mediating drug resistance to apoptosis in CLL 

{Secchiero, 2005 #21}. Pharmacological suppression of COX-2 might enhance the 

effect of chemotherapy-mediated apoptosis in lymphoma patients {Wun, 2004 #22}, 

and COX-2 over-expression in multiple myeloma is closed related to a poor survival 

rate {Ladetto, 2005 #23}. Therefore, our non-significant results still meaningfully 

suggested that in people who have a risky genetic variant, such as the C allele of 

G-765C, may increase their childhood ALL susceptibility. 

To sum up, this is the first study which focuses on the SNPs of Cox-2 and their 

joint effects on childhood ALL risk. We found that the presence of the C allele of 

G-765C may play a minor role, not as strong as XRCC4 G-1394T which we 

previously reported {Wu #282}, in childhood ALL. Further investigations of multiple 

SNPs of other related genes, gene-gene interactions, and phenotypic assays of the 

childhood ALL-associated SNPs are needed in the future. 
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Table I. The primer sequences, polymerase chain reaction and restriction fragment length polymorphism 

(PCR-RFLP) conditions for Cox-2 gene polymorphisms. 

Polymorphism 

(location) 

Primers sequences (5’ to 3’) Restriction 

enzyme 

SNP 

sequence 

DNA fragment 

size (bp) 

G-1195A  

(rs689466) 
F: CCCTGAGCACTACCCATGAT 

R: GCCCTTCATAGGAGATACTGG 

Hha I A 

G 

273 

220 + 53 

G-765C 

(rs20417) 
F: TATTATGAGGAGAATTTACCTTTCGC 

R: GCTAAGTTGCTTTCAACAGAAGAAT 

PvuⅡ C 

G 

100 

74 + 26 

T+8473C  

(rs5275) 
F: GTTTGAAATTTTAAAGTACTTTTGAT 

R: TTTCAAATTATTGTTTCATTGC 

Bcl I 

 

T 

C 

147 

124 + 23 

intron 1 

(rs2745557) 

F: GAGGTGAGAGTGTCTCAGAT 

R: CTCTCGGTTAGCGACCAATT 

Taq I G 

A 

439 

353 + 76 

intron 5 

(rs16825748) 

F: GCGGCATAATCATGGTACAA 

R: CAGCACTTCACGCATCAGTT 

BsrG I T 

A 

417 

314 + 103 

intron 6 

(rs2066826) 

F: ACTCTGGCTAGACAGCGTAA 

R: GCCAGATTGTGGCATACATC 

Aci I 

 

A 

G 

327  

233 + 94  

*F and R indicate forward and reverse primers, respectively. 
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Table II. characteristics of 266 childhood ALL patients and 266 controls 

Characteristic Controls (n = 266) Patients (n = 266) p-valuea 

 n % Mean (SD) n % Mean (SD)  

Age (years)  8.3 (4.8)   7.0 (4.4) 0.64 

Gender      1.00 

  Male 148 55.6%  148 55.6%   

  Female 118 44.4%  118 44.4%   

a Based on chi-square test.
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Table III. Distribution of Cox-2 genotypes among the childhood leukemia patient and 

control groups. 

Genotype Controls %  Patients %  p-valuea

A-1195G (rs689466)      0.9793 

AA  74 27.8%  75 28.1%   

AG 127 47.7% 128 48.1%   

GG  65 24.4%  63 23.7%   

G-765C (rs20417)      0.0684 

GG 234 88.0% 218 82.0%   

GC 32 12.0% 48 18.0%   

CC 0   0% 0   0%   

T+8473C (rs5275)   0.7834 

TT 178 66.9% 174 65.4%   

TC 88 33.1%  92 34.6%   

CC 0   0% 0   0%   

intron 1 (rs2745557)   0.7575 

GG 197 74.1% 204 76.7%   

AG 65 24.4% 59 22.2%   

AA 4 1.5% 3 1.1%   

intron 5 (rs16825748)   1.0000 

TT 260 97.7% 261 98.1%   

AT 6 2.3% 5  1.9%   

AA 0  0% 0   0%   

intron 6 (rs2066826)   0.6351 

GG 221 83.1% 214 80.5%   

AG  39 14.6%  43 16.1%   

AA   6 2.3%  9  3.4%   
a Based on chi-square test. 
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Table IV. Cox-2 allelic frequencies among the childhood leukemia patient and control 

groups. 

Allele Controls % Patients %  p-valuea 

A-1195G (rs689466)      0.8539 

  Allele A 275 51.7% 278 52.3%   

  Allele G 257 48.3% 254 47.7%   

G-765C (rs20417)      0.0629 

  Allele G 500 94.0% 484 91.0%   

  Allele C 32 6.0% 48 9.0%   

T+8473C (rs5275)      0.7436 

  Allele T 444 83.5% 440 82.7%   

  Allele C   88 16.5% 92 17.3%   

intron 1 (rs2745557)      0.4654 

  Allele G 459 86.3% 467 87.8%   

  Allele A 73 13.7% 65 12.2%   

intron 5 (rs16825748)      0.7618 

  Allele T 526 98.9% 527 99.1%   

  Allele A   6 1.1% 5 0.9%   

intron 6 (rs2066826)      0.3178 

  Allele G 481 90.4% 471 88.5%   

  Allele A 51 9.6% 61 11.5%   

a Based on chi-square test. 
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Table IV. Frequencies of combined Cox-2 G-765C and intron 6 genotype polymorphisms among the childhood leukemia and control groups. 

Cox-2 G-765C /intron 6 

genotype 

Control

n 

 

% 

Patients

n 

 

% 

 OR (95% CI) P-valuea 

All 266 100.0 266 100.0    

  GG/GG 195 73.3 175 65.8  1.00  

  GG/AG+AA 39 14.7 43 16.2  1.23 (0.76-1.98) 0.4639 

  GC/GG 26 9.8 39 14.6  1.67 (0.97-2.86) 0.0612 

  GC/ AG+AA 6 2.2 9 3.4  1.67 (0.58-4.79) 0.4315 

a Based on Fisher’s exact test. OR, Odds ratio; CI, Confidence interval.  


