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amycin Regulates Stearoyl CoA Desaturase 1
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malian target of rapamycin (mTOR) signaling is a central regulator of protein translation, cell
h, and metabolism. Alterations of the mTOR signaling pathway are common in cancer, making
a promising therapeutic target. In clinical trials, rapamycin analogs have shown modest response

or most cancer types, including breast cancer. Therefore, there is an urgent need to better understand
echanism of action of rapamycin to improve patient selection and to monitor pathway inhibition. To
y novel pharmacodynamic markers of rapamycin activity, we carried out transcriptional profiling of
nd polysome-associated RNA in three breast cancer cell lines representing different subtypes. In all
cell lines, we found that rapamycin significantly decreased polysome-associated mRNA for stearoyl-
esaturase 1 (SCD1), the rate-limiting enzyme in monounsaturated fatty acid synthesis. Activators of
increased SCD1 protein expression, whereas rapamycin, LY294002, and BEZ235 decreased SCD1

n expression. Rapamycin decreased total SCD1 RNA expression without inducing a significant de-
n its relative polysomal recruitment (polysome/total ratio). Rapamycin did not alter SCD1 mRNA
ty. Instead, rapamycin inhibited SCD1 promoter activity and decreased expression of mature tran-
on factor sterol regulatory element binding protein 1 (SREBP1). Eukaryotic initiation factor 4E (eIF4E)
interfering RNA (siRNA) decreased both SCD1 and SREBP1 expression, suggesting that SCD1 may
ulated through the mTOR/eIF4E-binding protein 1 axis. Furthermore, SCD1 siRNA knockdown in-
breast cancer cell growth, whereas overexpression increased growth. Taken together these findings
hibited

show that rapamycin decreases SCD1 expression, establishing an important link between cell signaling and
cancer cell fatty acid synthesis and growth. Mol Cancer Ther; 9(10); 2770–84. ©2010 AACR.
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mmalian target of rapamycin (mTOR) regulates cell
h and metabolism. Its best studied targets are eu-
tic initiation factor 4E (eIF4E)-binding protein 1
1), which regulates the availability of eIF4E, a rate
g factor for cap-dependent translation, and S6 ki-
(S6K1), which regulates ribosomal S6 phosphory-
cin is a macrolide fungicide that inhibits
ng by binding to FK506-binding protein
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. Althoughmany breast cancer cell lines are sensitive
growth-inhibitory effects of rapamycin in preclini-
odels (2–4), the overall response rates observed in
al studies involving mTOR inhibitors in patients
reast cancer have beenmodest (5–7). These findings
prompted further studies of the mechanism behind
owth-inhibitory effects of rapamycin with the goal
eloping effective rational combinatorial therapies.
cer cells have increased metabolic autonomy. Com-
with normal tissues, cancer cells take up nutrients
etabolize them at high rates to support rapid
h and proliferation. How cancer cells achieve high
of fatty acid synthesis, and how oncogenic path-
influence this, is not well understood. Stearoyl-
desaturase 1 (SCD1) is a critical mediator of fatty
ynthesis. SCD1 catalyzes the introduction of the
ouble bond in the cis-Δ9 position of saturated fatty
oAs, such as palmitoyl- and stearoyl-CoA. This
etermining step produces monounsaturated fatty
namely palmitoleoyl- and oleoyl-CoA (8), which
n provide substrates for the development of poly-
urated fatty acids. SCD1 therefore has a direct effect

ratio of saturated to monounsaturated fatty acids.

nbalanced ratio contributes to altered membrane
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y and has been implicated in a variety of diseases,
ing cancer (9, 10). Further, the activity of a number
phospholipid growth factors such as lysophospha-
cid, which is implicated in the development and
ession of breast cancer, is altered by the saturation
y acyl chains (11). Lipid analyses from transformed
es have indicated an increase in the conversion of
ted stearic acid to monounsaturated oleic acid, re-
g a significant decrease in the saturation index of
ll (12, 13). SCD1 is overexpressed in mouse models
ically susceptible to hepatocarcinogenesis, suggest-
at SCD1 may play a role in carcinogenesis (14, 15).
er, SCD1 has recently been identified in a RNA inter-
e screen as a potential target for cancer therapy (16).
further work is needed to determine the regulators
y metabolism and specifically SCD1 in cancer cells.
role of mTOR in metabolism is shown by its ability
grate nutrient availability and energy through ami-
id biosynthesis and glucose homeostasis (17). Re-
tudies have also pointed to a role for mTOR in
genesis (18–20). Clarifying the role of mTOR in cel-
fat metabolism is important in understanding how
cells support the accelerated metabolism essential

creased cell proliferation.
identify novel pharmacodynamic markers of re-
e to rapamycin as well as potential targets for
inatorial therapy, we carried out a high-throughput
array polysome analysis of three rapamycin-sensitive
cancer cell lines representing the key breast cancer
pes to identify genes regulated at the transcriptional
nslational level. We show here that rapamycin
s a dramatic decrease in SCD1 mRNA and protein
ssion. Rapamycin inhibits SCD1 promoter activity,
decreases expression of mature sterol regulatory
nt binding protein 1 (SREBP1), a transcription factor
ed in fatty acid and cholesterol homeostasis (21).
o show that SCD1 is regulated by eIF4E, suggesting
may regulate SCD1 through the mTOR/4E-BP1/
axis. Furthermore, suppression of SCD1 inhibits
t cancer cell growth, whereas overexpression in-
s cell growth. These findings support an important
etween the oncogenic cell signaling of mTOR and
r cell fat metabolism. This novel observation is
rtant in understanding how tumor cells establish
pport the accelerated fatty acid synthesis essential

creased cell proliferation.

rials and Methods

ines and cultures
20, BT-474, BT-483, BT-549, HCC1143, HCC1937,
, MDA-MB-157, MDA-MB-231, MDA-MB-361,
-MB-436, MDA-MB-468, SK-Br-3, T47D, and ZR-
ells were obtained from the American Type Tissue
re Collection (ATCC) in January 2006. Cell lines
passaged for <6 months after resuscitation, and

ere not tested for characterization. The ATCC Mo-
r Authentication Resource Center provides a varie-

ized
chips

acrjournals.org
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applications to identify and characterize the cell
including cloning and gene synthesis, real-time
analyses, site-directed mutagenesis, sequencing,
tandem repeat, single nucleotide polymorphism,
ingerprint analyses (http://www.atcc.org/Science/
nticationandPreservation/AuthenticationTechnology/
209/Default.aspx). Cells were cultured in DMEM/F12
emented with 10% fetal bovine serum at 37°C and
ified 5%CO2. Lipoprotein-deficient serumwas pur-

d from Sigma-Aldrich. Stable SCD1-overexpressing
nes and controls were generated using MDA-MB-
lls transfected with either myc/DDK-tagged human
ORF DNA clone or its control vector. Colonies
then selected with G418 at a final concentration of
mL, and positive colonies were confirmed by West-
ot analysis.

ents
amycin, LY294002, and cyclohexamide were pur-
d from LC Laboratories, Inc. DMSO, insulin-like
h factor-I (IGF-I), insulin, actinomycin D, and me-
in were purchased from Sigma-Aldrich. BEZ235
indly provided by Novartis Institutes for BioMedi-
search-Novartis Oncology. Chemical structures of
ycin (22), LY294002 (23), and BEZ235 (24) are

n in Supplementary Fig. S1.

nucleotides and plasmids
gonucleotides were synthesized by Sigma-Aldrich.
uman SCD1 cDNA, the human β-actin cDNA,
he myc/DDK-tagged human SCD1 ORF and its
l were all obtained from Origene Technologies,
he promoter-reporter gene plasmid hSCD-Luc
was a gift from Dr. James M. Ntambi (University
sconsin, Madison, WI; ref. 25). The pRL-TK vector
btained from Promega Corporation. Constitutively
(CA) Akt plasmid was provided by Dr. Philip N.
is (Fox Chase Cancer Center, Philadelphia, PA).
1 wild-type (4E-BP1 WT) and 4E-BP1 five phos-
lation sites mutated (4E-BP1 5A) plasmids were
ded by Dr. Thurl E. Harris (University of Virginia,
ottesville, VA).

se density gradients
er cells were treatedwith either rapamycin or control
hours, sucrose density gradients were done as de-
d elsewhere (26). The resulting monosomal and
omal fractions were pooled and RNAwas extracted.

extraction for microarray analysis
h monosomal and polysomal RNA were extracted
enol and chloroform. Total RNA from all in vitro
les was extracted using TRIzol reagent per the
facturer's protocol (Invitrogen). Total RNA from
rafts was extracted using the RNeasy Mini Kit
en Inc.). Total and polysomal RNA were hybrid-

to Affymetrix Human Genome U133 Plus 2.0
(Affymetrix, Inc.).

Mol Cancer Ther; 9(10) October 2010 2771
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time PCR analysis
l-time PCR was done on the ABI PRISM 7900HT
nce Detection System (Applied Biosystems). The
s-on-Demand gene expression products used in-
d human SCD1 (Hs01682761m1), 18S (4319413E),
(4326315E), and glyceraldehyde 3-phosphate de-

genase (GAPDH; 4326317E; Applied Biosystems).
an Universal PCR Master Mix (Applied Biosys-
was used to amplify the cDNA. The Sequence
tion System software automatically determined
hange for SCD1 in each sample relative to the
enous control.

ern blot analysis
ls were washed with cold PBS and lysed in either
mol/L Tris-HCl (pH 6.8), 4% SDS, and 20% glyc-
r 1% Triton X-100, 150 mmol/L NaCl, 20 mmol/L
m phosphate buffer (pH 7.4), 1% aprotonin,
ol/L phenylmethylsulfonylfluoride, 10 μg/mL
ptin, 100 mmol/L NaF, 2 mmol/L Na3VO4,
ol/L EGTA, and 5 mmol/L sodium pyrophos-
. Cell lysates containing 50 μg of protein were sep-
by SDS-PAGE. The protein was transferred to a
ol/L polyvidine difluoride membrane (Bio-Rad

atories). Membranes were blocked in 0.1% casein
S.
SCD1 antibodies were from Santa Cruz Biotech-
y, Inc. Antibodies against total Acetyl CoA Car-
ase (ACC), total Akt, phospho-Akt (Thr 308),
ho-Akt (Ser 473), mTOR, total S6K1, phospho-
(Thr 389), eIF4E, and phospho-S6 ribosomal
n (S6RP; Ser 240/244) were purchased from Cell
ling Technology, Inc. Antibodies against fatty acid
ase (FAS) and SREBP1 were purchased from BD
ences, Inc. Antibodies against β-actin were from
-Aldrich. The immunoblots were visualized using
the Odyssey IR imaging system or software
r Biosciences), or the enhanced chemilumines-
detection kit (ECL) from GE Healthcare Corp.

ern blot analysis
ctrophoresis of total RNA and Northern analysis
done using the NorthernMax kit (Ambion Inc.).
CD1 probe was constructed via PCR reaction from
mid containing the human SCD1 cDNA clone us-
-CCACAGCATATCGCAAGAAA-3′ as the forward
r and 5′-CCCAGCTGTCAAAGAGAAGG-3′ as the
e primer. The β-actin probe was constructed simi-
from a plasmid containing the human β-actin
clone using 5′-GGCATCCTCACCCTGAAGTA-3′
forward primer and 5′-GGGGTGTTGAAGGTCT-
-3′ as the reverse primer. The respective probes

labeled with α P32 dCTP using the Prime-a-Gene
ing System (Promega). Unincorporated radioiso-
was removed using Illustra MicroSpin G-25 col-
(GE Healthcare Corp.). All blots were developed

a Molecular Dynamics Storm 860 phosphorimager
ealthcare Corp.).

hour
Repor

ancer Ther; 9(10) October 2010

American Association Copyright © 2010 
 mct.aacrjournals.orgDownloaded from 
l interfering RNA
silencing of SCD1, mTOR, S6K1, or eIF4E with
interfering RNA (siRNA) was achieved by using
aFECT 1 transfection reagent (Dharmacon, Inc.).
TOR single siRNA sequence was CCCUGCCUUU-
UGCCU (27). The eIF4E single siRNA sequence 1
GAUGGUAUUGAGCCUAUG and sequence 2
CAAACCUGCGGCUGAUCU (28). The S6K1
siRNA sequence 1 was CAGUGGAGGAGAA-
UU (29), sequence 2 was CUUCUGGCUCGAAA-

GG, and sequence 3 was UGUAUGACAUGCU‐
GG. The S6K1 pool sequences were CAUGGAA-

UGUGAGAAAUU, GGAAUGGGCAUAAGUU-
UU, GUAAAUGGCUUGUGAUACUUU, and
AUUAGCAUGCAAGCUUUU (29). The SCD1
siRNA sequencewasCUACGGCUCUUUCUGAU-
and sequence 2 was GAGAUAAGUUGGAGAC-

UU (16). The SCD1 pool siRNA sequences were
CAAGAGUGGCUGAGUUUU, CUACGGCU-
UCUGAUCAUU, GCACAUCAACUUCACCA-
U, and GAACAGUGCUGCCCACCUCUU
macon). A negative control single siRNAwas used
periments involving single sequence siRNA, and
siRNA sequences were used in the silencing of
. All siRNAs were purchased from Dharmacon,
on, or Sigma.

stability study
A-MB-468 cells were inoculated with either rapa-
or vehicle at 12 time points spanning 24 hours.

mples were incubated with actinomycin D at a final
ntration of 5 μg/mL. No treatment was given at the
r time points, which were the designated controls
ch study. Total RNA was extracted with TRIzol
nalyzed via Northern blotting.

ient transfection and dual reporter gene assay
nsient cotransfections were done using the Fu-
6 transfection reagent per manufacturer's proto-
oche Applied Science, Inc.). Each experiment
one in triplicate. For rapamycin regulation of
experiments, cells were transfected with 0.5 μg/

of both hSCD-Luc pGL3 and pRL-TK plasmids.
fected cells were incubated in complete medium
hours, followed by serum-free medium 12 hours
to treatment. The cells were then treated in

mol/L rapamycin, 5 μmol/L mevinolin, or a com-
on in media with 10% lipid-deficient serum. Cells
harvested 24 hours after treatments using the Dual
rase Reporter Assay System (Promega). For 4E-
lasmid cotransfection experiments, cells were
ected with 1 μg/well of hSCD-Luc pGL3, pRL-
nd empty vector, or 4E-BP1 WT or 4E-BP1 5A plas-
Transfected cells were incubated in complete
m for 72 hours, followed by a combination media
10% lipid-deficient serum. Cells were harvested 24

s after treatments using the Dual Luciferase
ter Assay System (Promega). All readings were
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using a Sirius Single Tube Luminometer (Berthold
tion Systems).

o studies
animal studieswere approved by theM.D.Anderson
al Care and Use Committee. The animal care pro-
is fully accredited by the Association for the
sment and Accreditation of Laboratory Animal Care,
ational. Eight-week-old female nu/nu mice (Harlan
ue Dawley Inc.) were inoculated with 1.5 × 107

-MB-468 or MCF7 cells in their mammary fat pads.
75 to 150 mm3 tumors formed, mice were given
y i.p. injections of either rapamycin (15 mg/kg) or
for 3 weeks. Mice were euthanized 24 hours after

st or fourthweekly injection. Tumorswere harvested,
NAwas extracted using RNAlater (Ambion).

se phase proteomic array
tein lysates were prepared from frozen mice xeno-
and printed on nitrocellulose-coated slides. Slides
probed with phospho-S6 ribosomal protein (Ser
44) antibody (Cell Signaling Technology), which
alidated for reverse phase proteomic array (RPPA).
etailed procedure is described elsewhere (30).

P1 transcription factor assay
clear protein was extracted using a Nuclear/Cytosol
onation Kit (BioVision Inc.). Specific transcription
DNA binding activity was then assayed using a
n SREBP1 Transcription Factor Assay Kit (Cayman
ical Co.).

rowth, dose-effect, and cell cycle analysis
l growth was determined by the protein content of
d and untreated cells through the sulforhodamine B
assay (31). The experiment was done in 96-well
in triplicate. Plated cell numbers were adjusted ac-
g to the growth rate of the cell lines. Absorbance
easured at a wavelength of 570 nm. Dose-effect
50 analysis are described elsewhere (32). Cell cycle

sis was done as previously described (33).

tical analysis
results formatted as bar graphs are presented as
s ± SE. Data were analyzed using Student's t-test,
ay ANOVA, and Spearman rank correlation tests
appropriate by GraphPad Prism v5.01 software

hPad Software).
probe intensities on microarrays were processed
the Position-Dependent Nearest Neighbor model
imate gene expression values (34). The β Uniform
re model (35) was used to estimate false discovery.
ene list was considered significant at a false dis-
y rate of 20%. For all other analyses, differences
considered significant at P < 0.05. Two group com-
ns were done by using Student's t-test using the

discovery rate cutoff of 20% for both total and
omal RNA groups, and the data are presented as

SCD1
MCF7

acrjournals.org

American Association Copyright © 2010 
 mct.aacrjournals.orgDownloaded from 
± SE. Calculations and presentations of microar-
ata were done in log 2. Calculations of RPPA data
done in log 2.

lts

mycin treatment suppresses SCD1 expression
ro
sought to identify genes regulated by rapamycin in
cell lines representing different breast cancer sub-
: MDA-MB-468, estrogen receptor/progesterone
tor/human epidermal growth factor receptor 2
2) negative, i.e., triple negative; MCF7, estrogen re-
r positive; and BT-474, HER2 positive. As rapamy-
s been shown to affect transcription and translation
7), we compared the gene expression profiles of to-
lular mRNA and polysome-associated, translation-
ctive mRNA in the presence and absence of
ycin (Fig. 1A). Cells were treated with 100 nmol/L
ycin, a dose that significantly inhibits growth in all
breast cancer cell lines and that has been shown to be
cally achievable peak concentration in temsirolimus
(38, 39). In all three cell lines, we found a statistically
icant drop in the levels of polysome-associated
A for SCD1, suggesting that there is a decline in
ationally active SCD1 mRNA in all three cell lines.
was a 2.8-fold decline in MDA-MB-468 cells (P =
, a 2.1-fold decline in MCF7 cells (P = 0.001), and a
ld decline in BT-474 cells (P = 0.002) after rapamycin
ent. SCD1 total RNA levels in MDA-MB-468 cells
ed by 2.3-fold after rapamycin treatment (P =
, raising the possibility that the decline in polysomal
A could be due to a decrease in total RNA. In MCF7
there was a minimal drop in total SCD1 mRNA lev-
on rapamycin treatment by microarray analysis,
lthough there was a decline in total RNA in BT-474
P = 0.011), this was not statistically significant using
e discovery rate cutoff of 20%. Thus, in MCF7 and
4 cells we could not determine by microarray anal-
hether the drop in polysomal SCD1 levels was pri-
y attributable to a decrease in total RNA or a
ase in polysomal recruitment of SCD1 mRNA.
valuate the mechanism of SCD1 downregulation by
ycin, we used quantitative reverse transcriptase-
(Q-PCR) to assess SCD1 mRNA levels in total
and monosomal and polysomal RNA fractions in
-MB-468 and MCF7 cells cultured in the absence or
ce of rapamycin. Total RNA was isolated after 24
of exposure to either 100 nmol/L rapamycin or ve-
Cell lysates were separated with sucrose gradient
fugation to obtain pooled monosomal and polyso-
NA batches. Real-time PCR was done to quantitate
e RNA levels for SCD1 and actin in both total RNA
e monosomal and polysomal fractions. The results
similar to those observed by microarray analysis,
n Q-PCR a statistically significant decline in total

mRNA was shown in both MDA-MB-468 and
cells. Q-PCR revealed a significant decrease in

Mol Cancer Ther; 9(10) October 2010 2773
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1. Rapamycin decreases SCD1 expression. A, MDA-MB-468, MCF7, and BT-474 cells were treated with 100 nmol/L rapamycin or 0.01% DMSO for
rs. Polysomal RNA was separated by sucrose gradient centrifugation. Total polysomal RNA was extracted and hybridized to Affymetrix Human
e U133 Plus 2.0 chips. The RNA expression in the rapamycin-treated samples was compared with that of untreated total and polysomal RNA
s using Student's t-test. The gene of interest was considered significant in each cell line if it met a false discovery rate of 20%. All comparisons
t this cutoff are demarcated by an asterisk (*). Data are means ± SE. B, Q-PCR analysis was done to quantitatively assess total RNA, and monosomal
lysomal fractions in MDA-MB-468 and MCF7 cells treated with rapamycin versus vehicle for 24 hours. Actin was used as the endogenous
. RNA expression in rapamycin-treated and untreated samples was compared by using Student's t-test. Data are means ± range (min–max).
hern blot analysis for SCD1 and actin was done on total RNA isolated from MDA-MB-468 and MCF7 cells grown in either rapamycin or vehicle for
96 hours. D, to study the effect of rapamycin on SCD1 in vivo, MDA-MB-468 or MCF7 xenografts were treated with either rapamycin or vehicle
y or 3 weeks. Tumor volumes at day 22 are shown as means ± SE. Vehicle versus rapamycin groups were compared using Student's t-test
t). Protein lysates prepared from three xenografts were printed on RPPA slides and probed with P-S6RP (Ser 240/244) antibody. Relative P-S6RP

ion in rapamycin-treated and untreated groups were compared by using Student's t-test (top right). Data are means ± SE. Total RNA from
mor samples from each group was evaluated using Q-PCR to assess SCD1 and actin expression (bottom). Data are means ± SE.
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mRNA in both the monosomal and the polysomal
fractions exposed to rapamycin compared with ve-
Fig. 1B). Similar results were obtained when SCD1
ormalized to GAPDH or 18S ribosomal RNA (data

was done using P-Akt (Thr 308), Akt, SCD1, and actin antibody. Right, M
. Lysates were collected at 6 hours and Western blotting was done using
own). These results argue against the regulation of
by rapamycin at the translational level, as transla-

that th
ily at
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regulation would have led to a drop in polysomal
ons and an increase in monosomal fractions. In-
the decline in total SCD1 mRNA as well as mRNA
th polysomal and monosomal fractions suggests

B-468 cells were cultured with DMSO or 1, 10, or 100 nmol/L
(Ser 473), Akt, and actin antibody.
2. SCD1 expression is inhibited by PI3K/mTOR inhibitors and increased by insulin signaling. A, MDA-MB-468, MCF7, and BT-474 cells were treated
0 nmol/L rapamycin or DMSO for 24, 48, 72, and 96 hours, and 10% SDS-PAGE and Western blotting using SCD1 and actin antibody were
op). MCF7 cells were treated with various concentrations of rapamycin for 96 hours. Western blotting was done using SCD1 and actin antibody
). B, MCF7 cells were incubated overnight in serum-free media. Cells were then cultured for 8 hours in one of the following conditions: no treatment,
containing 10 μg/mL of insulin, or 100 ng/mL of IGF-I. SDS-PAGE (10%) and Western blotting using SCD1 antibody and actin were done (left).
eriments were replicated in triplicate and quantified according to a relative expression of SCD1/β-actin. Top band was used for quantification.
SCD1 expression in the treatment groups was compared with that of the no treatment group using Student's t-test (middle). Data are means ± SE.
ernight serum starvation, cells were cultured for 8 hours in one of the following conditions: no treatment or medium containing 25 or 100 ng/mL
I in the absence or presence of pretreatment with 100 nmol/L rapamycin (right). SDS-PAGE (10%) and Western blotting using SCD1 antibody
in were done. C, MCF7 cells were transfected with control and constitutively active Akt (CA-Akt) plasmids. Sixty hours later, serum-free media were
and cells were incubated for an additional 36 hours. Western blotting was done for SCD1, Akt, P-S6RP (Ser 240/244), and actin (right). D, left,
B-468 cells were cultured for 24 hours with no treatment, DMSO, 100 nmol/L rapamycin, and 50 μmol/L LY294002. Western blotting was done using
nd actin antibody. S6K1 and phospho-S6K1 (Thr 389) were used to confirm inhibition of the mTOR pathway. Middle, MDA-MB-468 cells were
with DMSO, or 1, 10, or 100 nmol/L BEZ235. Lysates were collected at 6 hours (for P-Akt and Akt) or 24 hours (for SCD1 and actin). Western
e regulation of SCD1 by rapamycin occurs primar-
the level of total RNA.
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confirm this observation, total RNA from both cell
as isolated after 24 or 96 hours of exposure to rapa-
or vehicle, andNorthern analysis was done (Fig. 1C).
ata reveal two transcripts (3.0 and 5.2 kb) that are
n to encode the same size polypeptide (40). Rapamy-
eatment was associated with a >50% reduction in
mRNA levels. Both transcripts were equally

sed in the presence of rapamycin. These findings con-
he regulation of total SCD1 RNA by rapamycin.

mycin treatment decreases growth and
esses SCD1 expression in vivo
etermine the effect of rapamycin on tumor growth
CD1 expression in vivo, we inoculated mice with
-MB-468 or MCF7 cells and once tumors had

d treated the mice with rapamycin or vehicle for
or 3 weeks. Xenografts of both cell lines showed

91% (
of rap

ancer Ther; 9(10) October 2010
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ically significant inhibition of tumor growth with
ycin treatment. Tumor volumes of MDA-MB-468
rafts on day 22 were 355 ± 80 mm3 (mean ± SE)
DMSO group and 140 ± 13 mm3 in the rapamycin-
d group (P = 0.03). Tumor volumes of MCF7 xeno-
on day 22 were 388 ± 54 mm3 in the DMSO group
87 ± 29 mm3 in the rapamycin group (P = 0.004)
1D). Next, we assessed the effect of rapamycin on

downstream signaling by RPPA in xenografts
d with rapamycin for 1 day, or weekly for 3 weeks;
rs were in both cases harvested approximately
urs after rapamycin treatment. After 3 weeks of
ent, rapamycin significantly reduced P-S6RP
40/244) phosphorylation in MDA-MB-468 xeno-
by 90% (P < 0.001) and in MCF7 xenografts by

P < 0.001; Fig. 1D). Then we established the effect
amycin on SCD1 RNA in vivo. SCD1 RNA levels
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3. Rapamycin regulates
romoter activity, but
D1 mRNA stability.
-MB-468 cells were treated
0 nmol/L rapamycin or
at 12 time points spanning
rs. All samples were
ed with actinomycin D at
concentration of 5 μg/mL.
tment was used at the
time points, which were
ignated controls for each
Total RNA was extracted
ch sample and analyzed via
rn blotting. Quantitation of
rthern blot was shown
B, Western blot analyses in
ells were used to study the
of rapamycin (100 nmol/L)
mevinolin-based (5 μmol/L)
n of SCD1 in medium
ented with lipid-deficient
These results were
ed in triplicate. C, dual
se assays were done
transfecting MCF7 cells
D1 promoter reporter
-Luc pGL3) and control
lasmids. Results from
e experiments show a
ion of the SCD1 promoter
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d some decline in MDA-MB-468 tumors with the
e at 3 weeks approaching statistical significance
.051; Fig. 1D). MCF7 tumors showed a significant
e in SCD1 RNA levels at both day 1 and week 3
.006 and P = 0.025, respectively; Fig. 1D). These
s show that rapamycin regulates SCD1 total RNA
ssion both in vivo and in vitro.

expression is increased with activation of
/Akt/mTOR signaling
sought to determine whether rapamycin regulates
protein expression. After exposing the cells to ra-
cin for 24 to 96 hours, we observed a robust
regulation of SCD1 protein levels in all three cell
(Fig. 2A). A dominant band and a smaller frag-
were noted in most Western blots; the smaller

ol/L rapamycin for 96 hours. SDS-PAGE and Western blotting using ACC
showed equal modulation by rapamycin. This
ent may represent a SCD1 cleavage product (41).

Rapam
overc
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cubated MCF7 cells with increasing concentrations
amycin for 24 hours and found a dose-dependent
ase in SCD1 expression, which became evident at
ol/L (Fig. 2A).
investigate the role of phosphoinositide 3-kinase
)/Akt/mTOR signaling in SCD1 expression, we
d the effects of insulin and IGF-I, two mitogens
n to induce mTOR activity (42, 43). After 12
of serum starvation, MCF7 cells were exposed

her insulin or IGF-I, and their SCD1 expression
ompared with cells grown in no serum. Western
nalyses showed an increase in SCD1 expression
both stimuli (Fig. 2B, left). The results from three
endent experiments showed that, indeed, both in-
and IGF-I significantly increased SCD1 expression
.0002 and P = 0.04, respectively; Fig. 2B, middle).

SCD1, SREBP1, and actin antibodies were done.
4. Rapamycin regulates expression of mature SREBP1. A, MCF7 and MDA-MB-468 cells were treated with 100 nmol/L rapamycin or vehicle for
96 hours. SDS-PAGE (8%) and Western blotting using SREBP1 and actin antibodies were done. Each SREBP1 blot had a precursor band (P) and a
mature band (M). These results were confirmed in triplicate experiments. Nuclear protein extracts from MCF7 (B) and MDA-MB-468 (C) cells
with 100 nmol/L rapamycin or vehicle for 1 and 4 days were assayed for specific transcription factor-DNA binding activity. All experiments were
ycin pretreatment was at least in part able to
ome IGF-induced SCD1 overexpression (Fig. 2B,
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. We conducted a gain-of-function experiment
ransfected the MCF7 cell line with control and

itutively active Akt plasmids. Sixty hours after targe

-Luc pGL3) and control (pRL-TK) plasmids were cotransfected, and 96 hours later,
rol. Analysis was done by using one-way ANOVA and Tukey post hoc test (right).
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d for 36 hours. There was an increase in phos-
lation of S6 ribosomal protein, a downstream

t of mTOR, and accompanying increase in ex-
fection, serum was removed and cells were pression of SCD1 (Fig. 2C).

5. eIF4E knockdown decreases SCD1 and SREBP1 expression and SCD1 promoter activity. A, MDA-MB-468 cells were transfected with siRNA
R and eIF4E. After 72 hours,Western blottingwith SCD1,mTOR, and eIF4E and actinwas done. These resultswere confirmed in triplicate experiments.
-MB-468 cells were transfected with control siRNA or two separate sequences of eIF4E siRNA. After 72 hours, Western blotting with SCD1, eIF4E, and
as done. C, MDA-MB-468 cells were transfected with single or pool siRNA for S6K1, and 72 hours later, Western blotting was done using S6K1,
kt (Thr 308), P-Akt (Ser 473), SCD1, SREBP1, and actin antibody (left). MDA-MB-468 cells were transfected with siRNA for eIF4E and S6K1. After
s, Western blotting with SCD1, SREBP1, eIF4E, and S6K1 was done (right). These results were confirmed in triplicate experiments. D, MCF7 cells were
nsfected with siRNA for eIF4E. Dual luciferase assays were then done after cotransfecting with SCD1 promoter reporter (hSCD1-Luc pGL3) and
(pRL) plasmids. Treatment with and without rapamycin served as control. These results reflect an average of three independent experiments done
ate (left). MDA-MB-468, MCF7, and BT-474 cells were transfected with vector, 4E-BP1 WT, or 4E-BP1 5A plasmids. SCD1 promoter reporter
dual luciferase assays were carried out. Vector transfection served
This experiment was repeated three times in triplicate. Bars, SE.
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further confirm the role of PI3K/mTOR signaling
D1 expression, we studied the effects of LY294002,
l PI3K and mTOR inhibitor (44). Similar to rapa-
, treatment with LY294002 led to the repression of
(Fig. 2D). In addition, we tested the effect of a

generation dual PI3K/mTOR inhibitor, BEZ235
e found that BEZ235 treatment also led to a de-
in SCD1 levels, consistent with a role for PI3K/
signaling in SCD1 expression (Fig. 2D).

mycin regulates SCD1 promoter activity
etermine whether rapamycin affects the stability of
mRNA, MDA-MB-468 cells were cultured in either
ycin or vehicle in the presence of 5 μg/mL actino-
D. The lack of a difference between the 24-hour
of SCD1 mRNA levels in the two groups suggests
apamycin does not affect SCD1 mRNA stability
A). We thus hypothesized that rapamycin regulates
transcription by inhibiting SCD1 promoter activity.
ltured MCF7 cells with rapamycin in the absence or
nce of mevinolin, a known inducer of SCD1 pro-
activity (21, 46). Western blot analysis showed that
ycin repressed the induction of SCD1 protein ex-
on by mevinolin (Fig. 3B). We next did a dual pro-
assay (25). After cotransfecting MCF7 cells with
promoter reporter plasmid hSCD1-Luc pGL3 and
l plasmid pRL-TK in triplicate, SCD1 promoter

ty was significantly suppressed in the presence of
ycin, both with and without mevinolin (P = 0.013
= 0.009, respectively; Fig. 3C). These results sup-
he notion that rapamycin modulates SCD1 tran-
ion by inhibiting SCD1 promoter activity.

mycin regulates SREBP1
next sought to determine how rapamycin sup-
es SCD1 promoter activity. We focused on the
P1 transcription factor based on a recently pro-
association between the PI3K/mTOR pathway
REBP1 (47, 48). Both MDA-MB-468 and MCF7
xposed to rapamycin for 24 and 96 hours showed
ine in the mature active form of SREBP1 on West-
ot (Fig. 4A). In addition, levels of SREBP1 precur-
rotein decreased in MCF7 at both time points.
in the nucleus, the mature form of SREBP1 binds
ically to the SREBP response element (SRE) on the
promoter (25). The enzyme-linked immunosor-
ssay (ELISA) was used to detect specific transcrip-
actor DNA binding activity. The assay kit has a
e-stranded DNA sequence containing the SRE im-
ized onto wells of a 96-well plate. Nuclear extracts
both MCF7 and MDA-MB-468 cells treated with
ycin for 24 and 96 hours showed a clear decrease
cific transcription factor DNA binding activity in
resence of rapamycin. The tabulated P values for
MCF7 (P = 3.1 × 10−10, P = 0.00014; Fig. 4B) and
-MB-468 (P = 0.0014, P = 0.00054; Fig. 4C) show

inding to be supportive of a role for rapamycin-
ted decrease in SREBP1 DNA binding activity. Be-

As
ing, w
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SREBP1 is known to regulate transcription of
ple genes in the fatty acid synthesis pathway, we
d the effects of rapamycin on two additional tran-
ion targets (21). MDA-MB-468 cells treated with
ycin for 96 hours also showed a suppression of
and FAS protein expression in addition to that
D1, suggesting a broader effect on fatty acid syn-
(Fig. 4D).

plays a role in the regulation of both SCD1
REBP1
ivation of mTOR results in the phosphorylation of
ectors, the best studied of which are 4E-BP and
(49). Because rapamycin decreases 4E-BP1 phos-
lation (50), thereby decreasing the availability of
, we assessed the effect of eIF4E siRNA on SCD1
ssion in MDA-MB-468 cells. We used the knock-
of mTOR by siRNA as a positive control. We found
TOR knockdown decreased SCD1, consistent with
pectation that the effect of rapamycin on SCD1 oc-
hrough decreased mTOR signaling. We found that
knockdown, like mTOR knockdown, also led to a
e in SCD1, suggesting a potential role for the
/4E-BP1 axis in SCD1 regulation (Fig. 5A). We con-
that two separate eIF4E siRNA sequences led to a

e in SCD1 levels (Fig. 5B). In MDA-MB-468 cells, si-
g S6K1, an mTOR downstream target, neither re-
SCD1 levels nor increased P-Akt levels (Fig. 5C).
then further studied the role of mTOR effectors on
P1. MDA-MB-468 cells were transfected with siRNA
F4E and S6K1. Western blot analysis showed a de-
in both precursor and mature forms of SREBP1

n expression, as well as SCD1 expression for the
siRNA–transfected cells only (Fig. 5C). We next
dual promoter assay using MCF7 cells cotrans-
with SCD1 promoter reporter plasmid hSCD1-
GL3 and control plasmid pRL-TK in triplicate;
und SCD1 promoter activity to be significantly
essed with knockdown of eIF4E by siRNA. The
of relative promoter activity decline with eIF4E
was similar to that observed with rapamycin

0.005 and P = 0.019, respectively; Fig. 5D). Taken
er, these results show a role for eIF4E in the reg-
n of SCD1.
support the role of 4E-BP1/eIF4E on expression of
we cotransfected SCD1 promoter reporter plasmid
1-Luc pGL3 and control plasmid pRL-TK with
vector or 4E-BP1 WT plasmid or 4E-BP1 5A plas-
sing MDA-MB-468, BT-474, and MCF7 cell lines
5D). Using dual promoter assay, we found SCD1
oter activity to be significantly reduced with trans-
n of 4E-BP1 5A plasmid compared with empty
and wild-type in all cell lines (P < 0.05).

suppression and overexpression modulates
rowth

SCD1 expression is regulated by mTOR signal-
e hypothesized that baseline SCD1 expression
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may be a predictor of rapamycin sensitivity. To
is hypothesis, we quantified the baseline expres-

f SCD1 protein in a panel of 15 breast cancer
nes by Western blotting (Fig. 6A). This panel of

inhibi
tween

ancer Ther; 9(10) October 2010

American Association Copyright © 2010 
 mct.aacrjournals.orgDownloaded from 
nes was also treated with increasing concentra-
of rapamycin and 5 days after exposure, growth

tion was measured by SRB assay. Correlation be-
SCD1 expression and IC50 was not significant
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rman r = −0.3424, P = 0.2116; Fig. 6A). Thus,
ne level of SCD1 protein expression did not de-
e sensitivity of breast cancer cells to the growth-
tory action of rapamycin.
mTOR is known to regulate cell growth, we
t to determine whether the suppression of SCD1
ssion has any effect on cell growth. MCF7 and
-MB-468 cells were transfected with both single
ool SCD1 siRNA and their respective controls
6B). One day after transfection, the cells were
erred to 96-well plates in quadruplicates. Treat-
with rapamycin, a known suppressor of growth
th cell lines, was used as control (2). A parallel
was maintained for subsequent Western blot anal-
Fig. 6B). Cell proliferation was assessed after 3
days of culture by SRB assay. In both MCF7 cells
DA-MB-468 cells, SCD1 pool and single siRNA
down led to a significant decrease in growth;
rn blot analysis confirmed SCD1 knockdown. Sta-
lly significant growth inhibition was obtained
SCD1 knockdown using two separate siRNA se-
es in MCF7 and BT474 cells (Fig. 6B). SCD1
down in MCF7 cells induced cell cycle arrest, as
by a statistically significant increase in percent-

f cells in G0-G1 phase (50% G0-G1 with control siR-
ersus 70% with SCD1 siRNA, P = 0.002, and 61%
SCD1 siRNA 2, P = 0.011; Fig. 6C). SCD1 down-
ation did not significantly affect cell cycle in
-MB-468 and BT474 cells. Taken together, however,
results show that suppression of SCD1 yields a
icant decline in cell growth.
next determined whether overexpression of SCD1
crease cell growth. We used MDA-MB-231, a cell
ith relative low expression of SCD1, to develop a
SCD1-overexpressing cell line along with its re-

ve control. Both overexpresser and control MDA-
31 were grown in 96-well plates. After 96 hours,
say for cell number was done, yielding a signifi-
ncrease in proliferation with the overexpression
D1 (P = 1.8 × 10−4; Fig. 6D). Western blot analysis

med the presence of exogenous SCD1 expression
D).

of S6K
howe

experiments done in triplicate (left). Western blotting with SCD1 and actin was d
spective control to confirm expression of the transfected myc-tagged SCD1 prot

acrjournals.org
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ssion

amycin and its analogs are currently undergoing
sive study to evaluate the determinants of their
mor efficacy. Identifying how rapamycin affects
gh rate of metabolism required for tumor growth
important first step that could lead to useful bio-
rs or effective rational combinatorial therapy. The
f mTOR in cellular metabolism is emphasized by
ility to control amino acid biosynthesis, glucose ho-
asis, and adipogenesis (17). We show that mTOR
ling regulates SCD1 expression. We propose that
k between mTOR and SCD1 is one of the key inter-
s that may play a role in the effect of mTOR on tu-
rowth and metabolism.
OR is a critical regulator of protein translation. Ra-
cin inhibits mTOR complex 1 signaling, resulting in
sphorylation of its effectors, the best studied of
are 4E-BP1 and S6K1. Hyperphosphorylation of

1 leads to inhibition of binding of 4E-BP to eIF4E,
decreases the amount of eIF4E available to initiate
ependent translation. S6K1 phosphorylates ribo-
protein S6, in some models enhancing the transla-
f mRNAs possessing a 5′ terminal oligopyrimidine
51). S6K1 phosphorylates several other translation-
ulators, including eukaryotic initiation factor 4B,
ammed cell death 4, and eukaryotic elongation
-2 kinase (52). Although we initially identified SCD1
RNA that is decreased in polysomes upon rapamy-
eatment in all three cell lines, we found that this is
rily a reflection of a drop in total SCD1 mRNA lev-
e to inhibition of SCD1 promoter activity, rather
ue to a significant inhibition of polysomal recruit-
Induction of SCD1 expression or promoter activity
ulin and abolishment of this activity by rapamycin
hown in liver cancer (47), but the players connect-
TOR and SCD1 are not very well defined. S6K1 ac-
s liver X receptor α (LXRα), and LXRα promotes
nesis by regulating expression of lipogenic genes,
ing SREBP1 (53). We could not show involvement

1 in regulation of SCD1 expression; interestingly,

ver, we found that silencing eIF4E also resulted in
6. SCD1 regulates breast cancer cell growth. A, left, baseline SCD1 protein expression in 15 breast cancer cell lines. Western blotting was done
CD1 and actin antibody. Right, SCD1 and actin bands were quantified; the average of three independent experiments is shown as relative
ctin expression. The same chart shows IC50 values of breast cancer cell lines. Cells were treated with increasing concentrations of rapamycin for
and IC50 was determined on the basis of the dose-response curves using SRB assay. B, MCF7 cells (top left) and MDA-MB-468 cells (top right)
ansfected with single or pool control siRNA and SCD1 siRNA. Cells were grown in medium supplemented with lipid-deficient serum and cell
analysis was then done with readings recorded after 96 hours of treatment by SRB assay. Cells treated with and without rapamycin were the
ted controls. These results reflect experiments done in triplicate. Western blotting with SCD1 and actin were done on the treated cells of both
nd MDA-MB-468 cells to confirm adequate suppression of SCD1 by siRNA after 96 hours. MCF7 cells (bottom left) and BT474 cells (bottom right)
ansfected with single control siRNA, SCD1 siRNA, or a SCD1 siRNA 2. Cells were grown in regular medium and cell growth analysis was then
ith readings recorded after 96 hours of treatment by SRB assay. SCD1 siRNA–treated cells were compared with control siRNA–treated cells using
t's t-test. These results are representative of two independent experiments. C, MCF7 (left), MDA-MB-468 (middle), and BT474 cells (right) were
ted with single control siRNA, SCD1 siRNA, or a SCD1 siRNA 2. Cells were grown in regular medium and analyzed for cell cycle profile after
rs. Percentage of cells in G0-G1 was compared using Student's t-test. D, MDA-MB-231 SCD1 overexpressing stable cells were grown alongside
in media supplemented with lipid-deficient serum. Cell growth analysis was then done with readings recorded after 96 hours of growth. These results
one on MDA-MB-231–overexpressing stable cells alongside
ein (right).
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hibition of SCD1 promoter activity and subsequent
ssion, suggesting that SCD1 is downstream of
. Further work is needed to determine whether
fect of rapamycin on SCD1 is mediated through
gulation of SREBP1 expression by eIF4E. Indeed,
sults show that both precursor and mature forms
BP1 are affected in the presence of eIF4E suppres-
dditionally, although eIF4E is a principal modula-
translation initiation (54), recent studies have

n that it maintains a presence in the nucleus and
lay a role in both selective mRNA export and post-
riptional modulation (55, 56). This suggests the
ce of a signaling module from mTOR to eIF4E to
P1 culminating in SCD1. The module is likely to
te a suite of enzymes involved in fatty acid synthe-
e to the activity of SREBP1 in coordinate promoter
tion of this group of enzymes.
sity in postmenopausal women is a risk factor for
oping breast cancer (57). Hormones (estrogen) and
kines such as leptin and IGF-I all show mitogenic
in MCF7 cells and stimulate cell proliferation in
ary glands of obese rats, suggesting an increase

k for breast cancer (58). The role that human
plays in the production of monounsaturated fatty
makes it an important factor in cellular fat metab-
and a novel target in the prevention of obesity-
ated breast cancer. Studies in mice point to a clear
regulation of the genes involved in lipogenesis
SCD1 expression is decreased (59). These studies
that SCD1 plays a central role in cellular fat me-
sm, further highlighting the significance of our
t findings. SCD1 is already being pursued as a
eutic target for obesity (60, 61). Recent data sug-
hat SCD1 may also hold promise as a cancer ther-
arget (16). To better define the role of SCD1 in
cancer biology, we sought to determine the effects
th knockdown and overexpression of SCD1 on
cancer cell growth in vitro. Transient knockdown

D1 yields a significant drop in cell growth/prolif-

n, whereas overexpression yields elevated cell pro-
ion. These findings support the notion that SCD1
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