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SUMMARY
We found that the receptor for erythropoietin (EpoR) is coexpressed with human epidermal growth factor
receptor-2 (HER2) in a significant percentage of human breast tumor specimens and breast cancer cell lines.
Exposure of HER2 and EpoR dual-positive breast cancer cells to recombinant human erythropoietin
(rHuEPO) activated cell signaling. Concurrent treatment of the cells with rHuEPO and trastuzumab reduced
the cells’ response to trastuzumab both in vitro and in vivo.We identified Jak2-mediated activation of Src and
inactivation of PTEN as underlying mechanisms through which rHuEPO antagonizes trastuzumab-induced
therapeutic effects. Furthermore, we found that comparedwith administration of trastuzumab alone, concur-
rent administration of rHuEPO and trastuzumab correlated with shorter progression-free and overall survival
in patients with HER2-positive metastatic breast cancer.
INTRODUCTION

Erythropoietin (EPO) has long been known to be an important

hematopoietic cytokine that regulates the survival, proliferation,

and differentiation of the erythroid progenitor cells in the bone

marrow (Krantz, 1991; Jelkmann, 1992). Recombinant human

EPO (rHuEPO) has frequently been used in the treatment of

cancer-related and chemotherapy-induced anemia and fatigue

since the 1990s (Henry and Abels, 1994). Recent studies,

however, have suggested that EPO, which was once thought

to act solely on the erythroid compartment, is a pleiotropic

cytokine (Lappin et al., 2002). A 2003 trial to investigate the
Significance

Recombinant human erythropoietin (rHuEPO) has been used
anemia and fatigue, including in patients with breast cancer.
by activating cell signaling pathways that overlap substantially
pathways, including that of the human epidermal growth factor
and clinical evidence and mechanistic insights indicating that
anti-HER2 antibody, may be contraindicated in patients with
Our studywarrants further evaluation of clinical outcomes of pa
rent rHuEPO and trastuzumab.

Can
effect of rHuEPO for the prevention of anemia on the survival

of nonanemic patients with metastatic breast cancer was

terminated earlier than planned because of a higher-than-

expected mortality rate among patients in the group treated

with epoetin alfa (Leyland-Jones, 2003). Another study in

anemic patients with head and neck cancer showed that

although epoetin beta was successful in correcting anemia, it

failed to improve, and might even have impaired, cancer

control and survival (Henke et al., 2003). Recently, two meta-

analyses were reported of 53 and 52 published randomized

trials, respectively, in which rHuEPO (epoetin alfa, epoetin

beta, or darbepoetin alfa) was used for prophylaxis or
widely to treat cancer-related and chemotherapy-induced
EPO has strong activity in protecting cells from apoptosis
with several growth factor receptor-mediated cell signaling
receptor-2 (HER2). Our results provide important preclinical
concurrent administration of rHuEPO and trastuzumab, an
breast cancer that are positive for both HER2 and EpoR.
tients with HER2-positive breast cancer treatedwith concur-
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treatment of anemia in patients with cancer (Bohlius et al.,

2009; Tonelli et al., 2009). The authors concluded that overall

survival was worse in patients treated with rHuEPO than in

patients treated with placebo control. It should be noted

that the increased mortality associated with EPO treatment

was attributed mainly to an increase in adverse events (e.g.,

thromboembolic and cardiac complications) and not neces-

sarily to a lower efficacy of chemotherapy, radiotherapy, or

radiochemotherapy.

The functions of EPO are mediated by its specific cell-

surface receptor, EpoR, which is now known to be found not

only in erythroid progenitor cells but also in multiple types of

normal and cancerous tissues (for a list, see Hardee et al.,

2006). In hematopoietic cells, EPO induces homodimerization

of EpoR (Watowich et al., 1992), triggering activation of the

receptor-associated kinase Jak2 and activation of STAT5

(Witthuhn et al., 1993). Adaptor proteins containing the Src

homology 2 domain, such as Grb2 and Shc (Damen et al.,

1993a; Liu et al., 1994), transduce EPO-induced cell signaling

via interaction with specific tyrosine-phosphorylated regions

within the activated EpoR, leading to activation of downstream

signaling pathways, such as the MEK/Erk and PI3K/Akt path-

ways (Damen et al., 1993b, 1995; He et al., 1993; Miura

et al., 1994).

These downstream signaling pathways activated by EPO via

EpoR overlap substantially or interact with those activated by

human epidermal growth factor receptor-2 (HER2), a member

of the HER family, which is overexpressed in approximately

25% of breast cancers (Slamon et al., 1987). An anti-HER2 anti-

body, trastuzumab, is approved for use in combination with

a taxane for HER2-overexpressing metastatic breast cancer

(Slamon et al., 2001) and for use as adjuvant therapy in women

with early stage breast cancer to reduce the risk of cancer

recurrence and/or metastasis after surgery or radiotherapy

(Romond et al., 2005). However, clinical resistance to trastuzu-

mab remains a challenging problem—only one-third of patients

with HER2-positive breast cancer, who would be expected to

benefit from trastuzumab, actually respond to the treatment

(Hortobagyi, 2005; Esteva et al., 2010). Recent studies have

shown a relationship between poor response to trastuzumab

and low PTEN levels (Nagata et al., 2004) or PIK3CA activating

mutations (Berns et al., 2007). Mutationally activated PI3K can

activate critical downstream targets, such as Akt, indepen-

dently of HER2, thereby allowing cells to escape the effect of

trastuzumab, which is believed to function in part through

disruption of HER2/HER3/PI3K complexes (Junttila et al.,

2009). However, low PTEN levels and PIK3CA activating muta-

tions are not the only reason for trastuzumab resistance, as

resistance to trastuzumab is also seen in patients whose tumors

have normal PTEN and PIK3CA (Nagata et al., 2004; Berns

et al., 2007).

It is currently unknown whether HER2 and EpoR are coex-

pressed in the same breast cancer cells. We hypothesized

that, if HER2 and EpoR are coexpressed in the same breast

cancer cells and patients are treated concurrently with rHuEPO

and trastuzumab, rHuEPO may have antagonistic effects on

trastuzumab-induced antitumor activity in HER2-positive breast

cancer cells. In this article, we report our findings from testing

this hypothesis.
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RESULTS

HER2 and EpoR Are Coexpressed in a Significant
Proportion of Breast Cancer Cell Lines and Tumor
Tissues
We analyzed the expression of HER2 and EpoR by western blot

analysis in a panel of 10 breast cancer cell lines. EpoR was

readily detected in five of them: MDA453, SKBR3, MCF7,

MDA157, and MDA468 (Figure 1A). Of these five cell lines, four

also expressed HER2: SKBR3 expressed high levels of both

HER2 and EpoR; MDA453 expressed intermediate levels of

both receptors; and MCF7 and MDA157 expressed high levels

of EpoR but relatively low levels of HER2. MDA468 expressed

high levels of EpoR but no HER2.

To ensure the specificity of the EpoR antibody used for the

western blotting, we knocked down EpoR expression in MCF7

cells by RNA interference (RNAi) using small interfering RNA

(siRNA) and found that western blot analysis with the antibody

clearly demonstrated a decrease in EpoR expression level in

the knockdown cells compared with the level in control siRNA-

treated cells (Figure 1B). To further determine the identity of

EpoR recognized by the antibody, we used a series of U6

promoter-driven pRS vectors constructed with short hairpin

RNA (shRNA) complementary to various regions of the EpoR

sequence (see Figure S1A available online). We found that the

antibody detected knockdown of EpoR expression in cells trans-

fected with any of the EpoR shRNA vectors (E1–E6) but not in

cells transfected with the backbone vector or a control vector

constructed with a shRNA against green fluorescent protein

(GFP). Because of the broad range of targeted sequences, it is

virtually impossible that the expression-silenced protein was

not EpoR. Therefore, we concluded that the antibody specifically

detected EpoR expression in a fraction of the breast cancer cell

lines in our study.

To further confirm coexpression of HER2 and EpoR, we con-

ducted flow cytometric studies of cells double-immunofluores-

cently stained for HER2 and EpoR. Figure 1C shows the flow

cytometric results for MDA453 cells, which have naturally

occurring coexpression of HER2 and EpoR. We found that the

majority of MDA453 cells were positive for both HER2 and

EpoR, a result similar to that found in MCF7-HER18 cells, which

have high levels of endogenous EpoR and were transfected for

overexpression of exogenous HER2. A similar flow cytometric

study of cells double-immunofluorescently stained for HER2

and EpoR showed that SKBR3 cells had a population of cells

highly expressing both HER2 and EpoR, whereas BT474 cells

only expressed a high level of HER2 (Figure S1B).

We next examined HER2 and EpoR expression in breast

cancer tissue specimens from patients. First, we optimized

immunohistochemical staining for EpoR in slides from paraffin-

embedded cell blocks prepared identically to conventional

tissue blocks. We confirmed that the EpoR antibody detected

differences in EpoR levels between MCF7-HER18 cells with

and without siRNA knockdown of EpoR expression (Figure S2).

We then examined HER2 and EpoR expression in 55 paraffin-

embedded breast cancer tissue sections, including 30 whole-

tissue sections and 25 specimens assembled in a breast cancer

tissue microarray. Overall, 13 of 15 HER2-positive samples and

33 of 40 HER2-negative samples had various degrees of positive
.



Figure 1. Coexpression of HER2 and EpoR in Human Breast Cancer

Cell Lines

(A) Expression of HER2 and EpoR in human breast cancer cell lines. Exponen-

tially proliferating breast cancer cells of the indicated lines were harvested by

trypsinization. Equal amounts of cell lysates were subjected to western blot

analysis with specific antibodies directed against EpoR and HER2. The level

of b-actin served as a protein-loading control.

(B) Expression knockdown of EpoR by RNAi. MCF7 cells were subjected to

EpoR expression knockdown with EpoR-specific Dharmacon SMARTpool

siRNA or control siRNA for the indicated durations. Cell lysates were prepared,

and the levels of EpoR were measured by western blot analysis with EpoR-

specific antibody. The level of b-actin served as a protein-loading control.

(C) Coexpression of HER2 and EpoR. MDA453 and MCF7-HER18 cells were

subjected to double-immunofluorescent staining with primary antibodies

directed against EpoR (rabbit IgG) and HER2 (mouse IgG), followed by incuba-

tion with fluorescein isothiocyanate (FITC)-labeled goat anti-mouse IgG anti-

body and Cy3-labeled goat anti-rabbit IgG antibody. The cell suspensions

were then analyzed by flow cytometry. See also Figure S1.
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staining for EpoR. The photomicrographs in Figure 2 were taken

from two adjacent tissue sections from a paraffin-embedded

tissue block. The pattern of HER2 positivity overlapped with

the pattern of EpoR positivity, suggesting that this breast cancer

sample coexpressed HER2 and EpoR. The table under Figure 2

summarizes the findings of our case series study. Overall EpoR

positivity rates were similar in HER2-positive and HER2-negative

cases. For all 55 breast cancer tissue sections, the rate of EpoR

positivity, from weakly positive (+) to strongly positive (+++), was

83.6% (46 of 55 cases).

rHuEPO Activates Cell Signaling in Breast Cancer Cells
Expressing EpoR
To determine whether the EpoR expressed in breast cancer cells

is functional, we exposed three breast cancer cell lines with

moderate or high expression of EpoR—MDA453, SKBR3, and

MCF7—to rHuEPO. We found that rHuEPO activated cell

signaling in all three cell lines, as measured by western blot anal-

ysis detecting activation-specific phosphorylation of Akt, Erk,

and STAT5 (Figure 3A). An increase in S473-phosphorylated

Akt was found in all three cell lines 30 min after rHuEPO stimula-

tion, and this increase was most prominent in MCF7 cells.

Stimulation with rHuEPO also increased Erk phosphorylation,

particularly in SKBR3 cells. An increase in STAT5 phosphoryla-

tion seemed to be cell type-specific—it was found only in

SKBR3 cells. Knockdown of EpoR in MCF7 cells remarkably

abolished the effect of rHuEPO on the cells, indicating that the

observed activation of cell signaling by rHuEPO was mediated

specifically via the EpoR expressed in the cells (Figure 3B). Fig-

ure 3C shows the effect of rHuEPO in additional EpoR-positive

and EpoR-undetectable breast cancer cells. rHuEPO activated

cell signaling in MDA468 cells (EpoR positive/HER2 negative),

but not in BT474 cells (expressing high HER2) or T47D cells

(expressing low HER2), in which EpoR was not detectable (Fig-

ure 1A). It is noteworthy that, although MDA468 cells are known

to be PTEN deficient (Lu et al., 2003), stimulation of the cells with

rHuEPO still led to a mild increase in Akt phosphorylation, strong

increase in Erk phosphorylation, but no increase in STAT5 phos-

phorylation. Together, these data indicate that rHuEPO activated

cell signaling (mainly the Akt and Erk pathways) directly via the

EpoR expressed in breast cancer cells.

rHuEPO Protects against Trastuzumab in HER2/EpoR
Dual-Positive Breast Cancer Cells
We next tested our hypothesis that cell signaling in response to

concurrent administration of rHuEPO constitutes a mechanism

of resistance to trastuzumab in HER2 and EpoR dual-positive

breast cancer cells. Trastuzumab inhibited Akt phosphorylation

and moderately inhibited Erk phosphorylation in breast cancer

cell lines with naturally occurring intermediate to high levels of

HER2 (MDA453 and SKBR3) or experimentally elevated levels

of HER2 (MCF7-HER18) after overnight treatment (Figure 4A).

In contrast, rHuEPO increased Akt and Erk phosphorylation in

all three cell lines. Concurrent exposure of the three cell lines

to rHuEPO and trastuzumab reduced trastuzumab’s inhibitory

effect on Akt and Erk phosphorylation.

Furthermore, after 5 days of culture, trastuzumab inhibited cell

survival and proliferation in all three cell lines (Figure 4B), and

rHuEPO stimulated cell survival and proliferation, with the effect
cer Cell 18, 423–435, November 16, 2010 ª2010 Elsevier Inc. 425



Figure 2. Expression of HER2 and EpoR

in Human Breast Cancer Tissues from

Patients

Two adjacent tissue slides from a whole-tissue

paraffin block of a breast cancer specimen were

stained immunohistochemically for the expres-

sions of HER2 (left panel, stained brown with dia-

minobenzidine tetrahydrochloride) and EpoR (right

panel, stained red with 3-aminoethyl-carbazole).

The nuclei were counterstained with hematoxylin.

Selected fields under low-power magnification

(scale bar = 400 mm) were then viewed under

high-power magnification (scale bar = 50 mm)

and had the same pattern of HER2 and EpoR

expression in ductal carcinoma in situ and in inva-

sive cancer. The table summarizes findings from

all 55 cases examined. See also Figure S2.
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ranging from prominent in MDA453 cells to marginal in MCF7-

HER18 cells. We found that rHuEPO significantly antagonized

trastuzumab-induced inhibition of cell growth: When rHuEPO

was added to trastuzumab, the percentage of surviving cells

increased from 58.2% to 80.4% in MDA453 cells, from 57.2%

to 77.7% in SKBR3 cells, and from 34.0% to 57.5% in MCF7-

HER18 cells.

In addition, rHuEPO significantly counteracted trastuzumab-

induced inhibition of cell migration and invasion, measured in

SKBR3 and MCF7-HER18 cells using Matrigel-coated transwell

chamber assays (Figure 4C). (MDA453 cells had very low base-

line levels of cell migration and invasion [data not shown]).

rHuEPO also markedly decreased trastuzumab-induced inhibi-

tion of clonogenic survival, as shown by statistically significant

differences in the number and size of surviving colonies between

the trastuzumab-treated MCF7-HER18 cells with and without

cotreatment with rHuEPO (Figure 4D). (MDA453 and SKBR3

cells did not form clearly individual colonies [data not shown]).

rHuEPO Counteracts Trastuzumab-Induced Inhibition
of Breast Cancer Xenograft Growth
To determine whether concurrent administration of rHuEPO

with trastuzumab would affect the therapeutic effect of trastuzu-

mab in vivo, we used two cell lines: an MDA453 derivative

(MDA453b) that we previously showed can produce tumor xeno-

grafts in immunodeficient mice compared with parental MDA453

cells that cannot (Hu et al., 2004), and a bioluminescent subline

of MCF7-HER18 cells (MCF7-HER18/Fluc-GFP) that not only

can grow in nude mice but also can be tracked using an in vivo
426 Cancer Cell 18, 423–435, November 16, 2010 ª2010 Elsevier Inc.
imaging system to monitor tumor growth

andmetastasis potential. We used severe

combined immunodeficiency (SCID)mice

for growing MDA453b xenografts (they

grow more robustly in SCID mice than in

nude mice) and used nude mice for

growing MCF7-HER18/Fluc-GFP xeno-

grafts. On day 26 after inoculation of

MDA453b cells and day 20 after inocula-

tion of MCF7-HER18/Fluc-GFP cells into

the mammary fat pads of the mice, the

SCID mice that had developed tumors
were divided into four groups (five mice each) with similar

average tumor volume, and the nude mice that had developed

tumors were also divided into four groups (10 mice each) with

similar average tumor volume.

To ensure that the data from our animal study would be closely

related to clinical scenarios, we used epoetin alfa (Procrit),

a prescription form of rHuEPO that was proven to activate cell

signaling in our cell culture studies (data not shown). The mice

were treated with epoetin alfa and trastuzumab alone and in

combination. Phosphate-buffered saline was used as a control.

The sizes of tumors in each group were measured with calipers

and plotted as the average tumor volumes ± standard deviation

for each group versus time. Whereas the xenografts in the

control and epoetin alfa-treated groups grew robustly, the xeno-

grafts in the mice treated with trastuzumab alone shrank or

stopped growing, and concurrent exposure of the mice to epoe-

tin alfa and trastuzumab resulted in a reduced therapeutic

response to treatment (Figure 5). These data were consistent

with the findings from our cell culture study (Figure 4), but the

difference in tumor volume between trastuzumab-alone-treated

and trastuzumab-plus-rHuEPO-treated mice after 4 weeks of

treatment was more striking than the difference in the proportion

of surviving cells between trastuzumab-alone-treated and tras-

tuzumab-plus-rHuEPO-treated cells after 5-day culture.

MCF7-HER18 cells do not metastasize when they grow in the

mammary fat pads of nude mice. Administration of rHuEPO did

not seem to make these cells metastatic in our study, either at

2 weeks after the treatment (by bioluminescent imaging of

MCF7-HER18/Fluc-GFP) or at the point when the mice had to



Figure 3. Activation of Cell Signaling by rHuEPO in EpoR-Positive

but Not in EpoR-Undetectable Breast Cancer Cells

(A) Activation of cell signaling by rHuEPO in human breast cancer cell lines. The

indicated cells were left untreated or were treated with 10 U/ml rHuEPO for

30 or 120 min in low-serum medium. Cell lysates were prepared, and equal

amounts of cell lysates were subjected to western blot analysis with antibodies

directed against total and activation-specific phosphorylated Akt, Erk, and

STAT5. The ratios represent quantitative analysis of densitometric values of

specific band intensities normalized to the value of the corresponding

untreated controls, which was arbitrarily set at 1. The level of b-actin served

as a protein-loading control.

(B) Dependence of rHuEPO-induced activation of cell signaling on EpoR

expression. MCF7 cells were transfected for 72 hr with a control vector or

one of two shRNA constructs targeting different regions of EpoR. The cells
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be sacrificed. Figure S3A illustrated the protective effect of

rHuEPO against trastuzumab-mediated antitumor activity by

bioluminescent imaging of the tumors 2 weeks after the initiation

of treatment. Because most tumors in the trastuzumab-

alone-treated group disappeared after extended treatment, we

examined markers of cell proliferation (PCNA, Figure S3B),

angiogenesis (CD31, Figure S3C), apoptosis (TUNEL, Fig-

ure S3D), and cell signaling (Figure S3E) by immunohistochem-

ical staining of tumor specimens of MCF7-HER18/Fluc-GFP

xenografts obtained only at the 2-week mark. The differences

in the levels of these markers between trastuzumab-alone-

treated and trastuzumab-plus-rHuEPO-treated mice at the

2-week mark were similar to the differences in cell growth

in vitro (Figure 4) and tumor volumes in vivo at the 2-week

mark (Figure 5). It seems that rHuEPO had an effect on angiogen-

esis (Figure S3C), which is consistent with reports in the literature

(Hardee et al., 2007; Okazaki et al., 2008).

rHuEPO Activates Cell Signaling via Promoting
Associations between Src and EpoR/Jak2
and between Src and HER2 in HER2/EpoR
Dual-Positive Breast Cancer Cells
To elucidate the mechanisms by which rHuEPO rescues HER2

and EpoR dual-positive breast cancer cells from trastuzumab

treatment, we first examined the dependence of rHuEPO-

induced effects in the breast cancer cells on Jak2 expression

and activity, which are known to be required for EPO- and

rHuEPO-mediated effects in hematopoietic cells (Witthuhn

et al., 1993). We found that AG490, a Jak2 inhibitor, markedly

inhibited rHuEPO-induced activation of Jak2, Akt, and Erk in

MCF7-HER18 cells (Figure 6A). Similar results were found in cells

in which Jak2 expression was silenced by RNAi (Figure 6B), indi-

cating an essential role of Jak2 in mediating rHuEPO-induced

signaling in the breast cancer cells.

Because Src is known to be activated by association with

HER2 in HER2-overexpressing cells (Belsches-Jablonski et al.,

2001), we hypothesized that Src mediates rHuEPO-induced

resistance against trastuzumab by acting as a bridge between

the HER2 and EpoR/Jak2 pathways. To address this hypothesis,

we examined the levels of HER2 and Jak2 coimmunoprecipi-

tated with Src by a Src antibody after rHuEPO stimulation. We

found that there was an increase in protein associations between

Src and HER2 and between Src and Jak2 after rHuEPO stimula-

tion in both MCF7-HER18 and MDA453b cells (Figure 6C).

Furthermore, we detected an enhanced association between

Src and EpoR after rHuEPO stimulation; both the association

between Src and HER2 and the association between Src and

EpoR were reduced when the expression of Jak2 was knocked

down (Figure 6D). Figure 6E shows that Src was robustly acti-

vated upon rHuEPO stimulation in a Jak2-dependent manner.

Together, these data indicate that Src is activated by rHuEPO

stimulation via association with EpoR/Jak2 and plays an impor-

tant role in the interaction between EpoR and HER2. Because
were stimulated with 10 U/ml rHuEPO for 30 min and immediately lysed for

western blot analysis with the indicated antibodies.

(C) Effect of rHuEPO on cell signaling in additional breast cancer cell lines. The

indicated cell lines were treated and analyzed as described in (A).

cer Cell 18, 423–435, November 16, 2010 ª2010 Elsevier Inc. 427



Figure 4. Antagonism by rHuEPO of Trastuzumab-Induced Inhibition of Cell Signaling and Antitumor Activities in Vitro

(A) Antagonism by rHuEPOof trastuzumab-induced inhibition of cell signaling. The indicated cell lines were left untreated or were treatedwith 20 nM trastuzumab,

10 U/ml rHuEPO, or both in low-serum medium overnight (16 hr). Cell lysates were prepared for western blot analysis with the indicated antibodies. The ratios

represent quantitative analysis of densitometric values of specific band intensities normalized to the value of the corresponding untreated controls, which was

arbitrarily set at 1.

(B) Antagonism by rHuEPO of trastuzumab-induced inhibition of cell growth. The indicated cell lines were treated as described in (A) for 5 days, and then an MTT

colorimetric assay was performed to quantify relative survival and proliferation. The optical density value in each group of cells was directly plotted against the

types of treatment.

(C) Antagonism by rHuEPOof trastuzumab-induced inhibition of cell invasion andmotility. The indicated cell lines were used in a Boyden transwell chamber assay

(Becton Dickinson, Franklin Lakes, NJ) with the membrane coated with Matrigel. The cells were left untreated or treated with 20 nM trastuzumab, 10 U/ml

rHuEPO, or both for 24 hr, and then the cells that had penetrated through the membrane were stained and counted using an inverted microscope equipped

with a 310 objective. The data are shown as the average number of cells per field. All scale bars represent 80 mm.
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Figure 5. Antagonism by rHuEPO of Trastuzumab-Induced Inhibition of Breast Cancer Xenograft Growth in Mouse Mammary Fat Pads

Starting on day 26 after inoculation of MDA453b cells into themammary fat pads of female ICR SCIDmice (4–6 weeks old, fivemice/group) (A) and starting on day

20 after inoculation of MCF7-HER18/Fluc-GFP cells into the mammary fat pads of female Swiss nude mice (4–6 weeks old, 10 mice/group) (B), the mice were

treated with phosphate-buffered saline (PBS) (control), trastuzumab (0.5mg/mouse twice a week), epoetin alfa (100 U/mouse daily on weekdays), or trastuzumab

plus epoetin alfa (same doses and schedules as each treatment alone) for 4 weeks or until mice were sacrificed, whichever came first. Tumor sizes were

measured with a digital caliper every other day and plotted as a function of days after tumor cell inoculation. See also Figure S3.

Cancer Cell

rHuEPO Antagonizes Trastuzumab in Breast Cancer
Src is associated with both HER2 and Jak2, and because Jak2 is

associated with EpoR, HER2 and EpoR may coexist in the

complex; however, we were unable to detect direct association

between EpoR and HER2 in our experiments.

A recent study showed that trastuzumab reduces Akt phos-

phorylation by disrupting HER2/HER3/PI3Kp85 complex, result-

ing in dissociation of PI3Kp85 from HER3 (Junttila et al., 2009).

We therefore examined whether rHuEPO has any effects in stim-

ulating interactions between HER2, HER3, and PI3Kp85. We

found basal associations between HER2 and HER3, HER2 and

PI3Kp85, and HER3 and PI3Kp85 in both MCF7-HER18 and

MDA453b cells by immunoblotting HER2 immunoprecipitates

with anti-HER3 and PI3Kp85 antibodies and immunoblotting

HER3 immunoprecipitates with anti-HER2 and PI3Kp85 anti-

bodies; however, we did not find notable changes in associa-

tions between HER2 and HER3, HER2 and PI3Kp85, and

HER3 and PI3Kp85 in MDA453b or MCF7-HER18 cells after

rHuEPO treatment (Figure S4). These data indicate that rHuEPO

does not stimulate HER2, HER3, and PI3Kp85 interaction in the

cell models used in our studies.

Src Activation and PTEN Inactivation Contribute
to rHuEPO-Mediated Resistance to Trastuzumab
Treatment
It was previously shown that trastuzumab reduced association

between Src and HER2 in BT474 cells and that this effect of tras-

tuzumab is important for trastuzumab-induced therapeutic

effects (Nagata et al., 2004). In the present study, we confirmed

this phenomenon in BT474 cells but found that trastuzumab did

not reduce the association between Src and HER2 in MCF7-

HER18 or MDA453b cells, suggesting that the reduction in asso-
(D) Antagonism by rHuEPO of trastuzumab-induced inhibition of cell clonogenic f

tuzumab in the presence or absence of 10 U/ml rHuEPO for 3 weeks. Numbers of

rHuEPO were normalized to the number of colonies in the control group (withou

Can
ciation between Src and HER2 after trastuzumab treatment is

cell type specific (Figure S5). However, rHuEPO stimulated asso-

ciation between Src and HER2 in these cells, and this increased

association remained, albeit modestly less, when cells were

treated concurrently with rHuEPO and trastuzumab, suggesting

that rHuEPO can confer resistance to trastuzumab in MCF7-

HER18 and MDA453b cells through enhancing the association

between Src and HER2 (Figure 7A).

An increased association between Src and HER2 can poten-

tiate HER2 downstream pathways through activation of Ras/

Raf/MEK and PI3K, thereby conferring resistance to trastuzu-

mab. To explore additional mechanisms by which activation

of Src following rHuEPO stimulation protects breast cancer

cells from trastuzumab treatment, we examined whether

PTEN, which counteracts the effect of PI3K and the function of

which can be inactivated by Src through phosphorylation on

tyrosine (Lu et al., 2003) and indirectly on serine/threonine at

the carboxyl terminal (S380/T382/T383) of PTEN (the latter

phosphorylation leads to increased stability of PTEN but loss

of its functions; Vazquez et al., 2000), plays a role in rHuEPO-

mediated resistance to trastuzumab. Figure 7B shows that

rHuEPO induced a moderate increase in tyrosine phosphoryla-

tion of PTEN, but the increase in phosphorylation was more

convincing on the triple residues (S380/T382/T383). Figure 7C

further shows that the level of phosphorylation of the triple resi-

dues correlated well with the effects of rHuEPO on protecting

MCF7-HER18 cells from trastuzumab-induced inhibition of Akt

and Erk phosphorylation.

To confirm the role of Src in rHuEPO-mediated PTEN phos-

phorylation on the triple residues, we treated the cells with

PP2, a small-molecule inhibitor of Src, and found that PP2 clearly
ormation. MCF7-HER18 cells (500 cells per 60 mm dish) were exposed to tras-

cell colonies in trastuzumab-treated groups with or without current exposure to

t any treatment).
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Figure 6. Roles of Jak2 and Src in Mediating rHuEPO-Induced Cell Signaling in HER2 and EpoR Dual-Positive Breast Cancer Cells

(A and B) Dependence of rHuEPO-induced activation of cell signaling on Jak2 activity and expression. MCF7-HER18 cells were preexposed to 50 mM AG490 or

DMSO in low-serum medium overnight (A) or subjected to expression knockdown of Jak2 by transient transfection with one of two different Jak2 shRNA

constructs or control vector for 72 hr (B). The cells were then stimulated with 10 U/ml rHuEPO for 30 min, followed by cell lysis and western blot analysis with

the indicated antibodies.

(C) Increased associations between Src and Jak2 and between Src and HER2 after rHuEPO stimulation. MCF7-HER18 and MDA453b cells were treated or

untreated with 10 U/ml rHuEPO for 30 min or not. Cell lysates were subjected to immunoprecipitation with a Src antibody or mock antibody, followed by western

blot analysis with antibodies direct against Jak2 and HER2.

(D and E) Role of Jak2 in rHuEPO-induced associations between Src and EpoR and between Src andHER2, and in rHuEPO-induced Src activation. MCF7-HER18

cells were transiently transfected with Jak2 shRNA constructs or control vector as described in (B) and then stimulated with 10 U/ml rHuEPO for 30 min. Src

immunoprecipitates (D) and whole-cell lysates (E) were subjected to western blot analysis with the indicated antibodies. See also Figure S4.
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decreased rHuEPO-mediated PTEN phosphorylation as well as

Akt and Erk phosphorylation in a PP2 dose-dependent manner

(Figure 7D). Phosphorylation of PTEN on the triple residues is

catalyzed directly by a threonine/serine kinase called casein

kinase 2 alpha (CK2a), which is a known substrate of Src

(Vazquez et al., 2000). We thus further examined association

between Src and CK2a in the cells treated with trastuzumab

and rHuEPO, alone and together. Although trastuzumab did

not reduce the association between Src and HER2 (Figure 7A),

there was a reduced association between Src and CK2a and

decrease in the level of activation-specific phosphorylation of

Src in trastuzumab-treated cells compared with untreated cells.

The levels of Src/CK2a association and Src phosphorylation

were markedly increased by rHuEPO treatment, which pre-

vented trastuzumab-mediated decrease in the levels of Src/

CK2a association and Src phosphorylation (Figure 7E).
430 Cancer Cell 18, 423–435, November 16, 2010 ª2010 Elsevier Inc
To further confirm the roles of Src and CK2a in mediating

rHuEPO-induced activation of Akt and Erk, we knocked down

the expression of Src and CK2a alone and together. Figure 7F

shows that knockdown of either Src or CK2a markedly

decreased rHuEPO-mediated PTEN phosphorylation on S380/

T382/T383, but decrease of the accompanying Akt phosphoryla-

tion was more prominent with Src knockdown alone than with

CK2a knockdown alone. The level of rHuEPO-induced Erk

phosphorylation was less affected than the level of Akt phos-

phorylation. Dual knockdown of Src andCK2a resulted in a slight

rebound in basal Akt phosphorylation level, but it completely

abolished rHuEPO-induced increase in Akt and Erk phosphory-

lation (Figure 7F). Together, these results indicate that both

Src activation and Src activation-induced PTEN inactivation

are involved in rHuEPO-mediated antagonism of trastuzumab

treatment. On the basis of these data, we propose the model
.



Figure 7. Roles of Src Activation and PTEN Inactivation in Conferring Resistance to Trastuzumab by rHuEPO

(A) Effects of rHuEPO and trastuzumab on association between Src and HER2. MCF7-HER18 cells were cultured in the presence or absence of 20 nM trastu-

zumab overnight in low-serum medium and then stimulated with 10 U/ml rHuEPO or not for 30 min. The cell lysates were subjected to immunoprecipitation of

HER2 with an anti-HER2 antibody, followed by western blot analysis with the indicated antibodies.

(B) Phosphorylation of PTEN upon rHuEPO stimulation. MCF7-HER18 cells were treated as described in (A). Cell lysates were prepared and subjected to immu-

noprecipitation for PTEN, followed by western blot analysis with the indicated antibodies.

(C) Correlation of rHuEPO-induced phosphorylation of PTEN with its antagonizing effects on trastuzumab-mediated inhibition of cell signaling. MCF7-HER18

cells were treated as described in (A). Cell lysates were subjected to western blot analysis with the indicated antibodies.

(D) Dependence of rHuEPO-induced cell signaling on Src activity. MCF7-HER18 cells were left untreated or treated with 5 mMor 25 mMPP2 (Src inhibitor) in 0.5%

FBSmedium overnight and then stimulated with 10 U/ml rHuEPO or not for 30 min, followed by cell lysis and western blot analysis with the indicated antibodies.

(E) Effects of rHuEPO and trastuzumab on Src and CK2a association. MCF7-HER18 cells were treated as described in (A). Cell lysates were prepared and sub-

jected to immunoprecipitation of Src, followed by western blot analysis of the immunoprecipitates with the indicated antibodies.

(F) Roles of Src and CK2a in rHuEPO-mediated phosphorylation of Akt and Erk. MCF7-HER18 cells were transfected with siRNA for expression knockdown of

CK2a, Src, or CK2a and Src, as indicated. After 72 hr, the cells were stimulated with 10 U/ml rHuEPO or not for 30 min, followed by cell lysis and western blot

analysis with the indicated antibodies.

(G) Schematic of our working model. Trastuzumab binds to HER2 expressed by breast cancer cells, preventing activation of HER2-mediated cell signaling

(dashed lines). rHuEPO binds to EpoR expressed by the same breast cancer cells, leading to activation of EpoR-associated protein tyrosine kinase Jak2 and

subsequent activation of Src and inactivation of PTEN. The thick arrows indicate the pathways identified in the current study. The thick arrow with a question

mark indicates a need for further confirmation. All of the experiments (A–F) were repeated at least once with similar findings. See also Figure S5.
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Figure 8. Progression-Free Survival and Overall Survival of Patients with HER2-Positive Metastatic Breast Cancer Treated with Trastuzu-

mab-Based Chemotherapy with or without Concurrent rHuEPO

(A) Progression-free survival.

(B) Overall survival. See also Figure S6 and Tables S1 and S2.
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in Figure 7G for the pathway through which rHuEPO antagonizes

trastuzumab in HER2-overexpressing breast cancer cells.

Concurrent Treatment with rHuEPO Correlates
with Poor Progression-Free Survival and Overall
Survival in Patients Treated with Trastuzumab
We conducted a retrospective case-control study to determine

the impact of concurrent rHuEPO and trastuzumab on progres-

sion-free survival (PFS) and overall survival (OS) in patients with

HER2-overexpressing metastatic breast cancer. The Depart-

ment of Pharmacy Informatics identified 1941 women with

breast cancer treated with rHuEPO (epoetin alfa or darbepoetin)

at MD Anderson from December 1998 to February 2006.

Complete treatment data and outcomes were available for

1482 patients in our Breast Cancer Management System data-

base. Two-hundred seventy-three of these patients had received

trastuzumab for breast cancer. Because of the retrospective

nature of the analysis and to reduce potential selection bias,

we used specific criteria to select patients treated with trastuzu-

mab (±chemotherapy) and concurrent rHuEPO (rHuEPO group)

and similar patients treated with trastuzumab (±chemotherapy)

without rHuEPO (control group). The rHuEPO group included

patients who had received trastuzumab as first-, second-, or

third-line treatment for metastatic breast cancer and who had

not received prior trastuzumab in the adjuvant or metastatic

settings. Because the longer the PFS, the higher the probability

that a patient would receive rHuEPO, only patients for whom

rHuEPO was started within 40 days from the beginning of trastu-

zumab were included in the rHuEPO group. Inclusion criteria for

the control group were the same as inclusion criteria for the

rHuEPO group except that patients in the control group received

trastuzumab (±chemotherapy) without rHuEPO.

Thirty-seven patients met the criteria for the rHuEPO group. To

serve as a control group, 74 patients (1:2 ratio of case-control

matching to enhance the power of comparison) were identified

from the Breast Cancer Management System database.

Because the number of patients eligible as controls exceeded
432 Cancer Cell 18, 423–435, November 16, 2010 ª2010 Elsevier Inc
the number of patients required for the matching process,

a random selection of the patients was applied. Age, hormone

receptor status, type of chemotherapy used in combination

with trastuzumab, nuclear grade, prior adjuvant or neoadjuvant

chemotherapy, and sites of metastatic disease were well

balanced between the rHuEPO and control groups (Table S1).

Twenty four of 37 patients (64.9%) received rHuEPO concur-

rently with trastuzumab for more than 50% of the duration of

trastuzumab administration. The PFS curves for the rHuEPO

and control groups are shown in Figure 8A. The PFS curves

separate after 6months, and the difference becomes statistically

significant at 1 year, when the PFS rates were 40% (95% confi-

dence interval [CI], 31%–53%) in the control group and 19%

(95% CI, 10%–37%) in the rHuEPO group (chi-square test

p = 0.039), although the overall difference in PFS was not statis-

tically significant on either univariate analysis (hazard ratio [HR],

1.40 [0.92–2.13]; p = 0.11) or multivariate analysis (HR, 1.41

[0.90–2.22]; p = 0.14) (Table S2). OS curves are shown in Fig-

ure 8B. The control group had better OS than the rHuEPO group.

The OS difference was statistically significant on multivariate

analysis (HR, 1.69 [1.04–2.73]; p = 0.03) but not on univariate

analysis (HR, 1.51 [0.97–2.37]; p = 0.07).

We were able to retrieve eight tumor specimens of patients in

the rHuEPO-treated group from our institutional tumor bank.

Immunohistochemical staining showed that five of the eight

tumor specimens were positive for EpoR, and five of the eight

specimens had PTEN protein expressed. Figure S6 shows one

case of PTEN-negative and two representative cases of PTEN-

positive staining, one being focal positive and the other being

100% positive. Using a mass spectrometry-based method

recently described (Berns et al., 2007), we identified a homozy-

gous PI3Kmutation (PIK3CA_E542K_G1624A) in one of the eight

specimens, which happened to be PTEN positive. Together, four

of the eight tumor specimens (three PTEN-negative specimens

and one specimen with the PI3K mutation) had aberrations in

the PI3K pathway. Although the number of tumor specimens is

small, this result clearly indicates that the PI3K pathway is not
.
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aberrantly activated in all trastuzumab-resistant breast cancers.

Up to 50% of the patients in our series may have had cancers

that were PTEN positive and had wild-type PI3K. Because the

patients in our rHuEPO group were treated concurrently with

rHuEPO and trastuzumab, our analysis of clinical data, together

with our preclinical studies on cell signaling and animal models,

support our conclusion that concurrent use of rHuEPO consti-

tutes a resistance mechanism to trastuzumab in patients with

HER2-positive breast cancer.

DISCUSSION

In this study, we generated preclinical and clinical data demon-

strating the antagonizing effect of rHuEPO on trastuzumab-

induced antitumor activity in HER2 and EpoR dual-positive

breast cancer cells and elucidated underlying mechanisms

by which rHuEPO protects HER2-positive breast cancer

from trastuzumab. We show that HER2 and EpoR are coex-

pressed in a significant percentage of HER2-positive breast

cancer cell lines and patient specimens. Our study differs from

previous studies reporting detrimental outcomes associated

with rHuEPO use in cancer patients receiving chemotherapy

for two main reasons. First, our study focused on targeted

therapy (i.e., trastuzumab) in a specific breast cancer subtype

(i.e., HER2-positive disease) rather than nontargeted chemo-

therapy in unselected populations. Second, our study was

based on a clear rationale that enabled us to demonstrate the

underlying mechanisms and causally explain how rHuEPO

protects breast cancer cells against trastuzumab treatment

using preclinical models. The previous studies, in contrast,

were correlative in nature and did not examine underlying

mechanisms.

Our data clearly showed that rHuEPO activated cell signaling;

however, rHuEPO alone did not seem to have a noticeable

impact on the growth of the breast cancer cell lines used in the

current study in vivo. This result is consistent with findings

from a few studies reporting minimal or no effect of rHuEPO on

the behavior of cancer cells in vivo (Hardee et al., 2006). A

possible explanation is the self-sufficiency of these cells growing

in vivo; according to this explanation, tumors would not respond

to additional growth and survival signals produced by rHuEPO

unless cell signaling became inadequate because of interruption

of a major pathway for cell proliferation and survival, such as the

inhibition of HER2 by trastuzumab in our study.

Although additional mechanisms potentially underlying

rHuEPO-mediated antagonism of trastuzumab’s effects in

breast cancer need to be explored—such as the potential

involvement of STATs, which are major downstream mediators

of EpoR/Jak2 in hematopoietic cells in response to rHuEPO

stimulation—our current study identified the underlying mecha-

nism in which Src is activated as a result of rHuEPO-induced

associations between Src and EpoR/Jak2 and between Src

and HER2 in breast cancer. Increased association between

Src and HER2 has been reported in the literature to contribute

to resistance to trastuzumab (Nagata et al., 2004). The activation

of common downstream pathways resulting from rHuEPO-stim-

ulated associations between Src and EpoR/Jak2 and between

Src and HER2 collectively contributes to rHuEPO-mediated

cellular resistance to trastuzumab.
Can
Our clinical data strongly support our preclinical findings;

however, the finding of potential detrimental effects of rHuEPO

in patients undergoing trastuzumab-based therapy should be

interpreted with caution because our data are based on a small

retrospective study. Patients treated with rHuEPO might have

had more extensive disease (i.e., subclinical bone marrow infil-

tration) or been in worse general condition at the time of treat-

ment (performance status at that time was not available) than

patients not treated with rHuEPO. The difference observed in

OS between the rHuEPO and control groups could also be

explained by an unfavorable effect related to rHuEPO adminis-

tration alone, as described in other malignancies, such as head

and neck cancer (Bohlius et al., 2009; Tonelli et al., 2009).

Another theoretically possible explanation for the differences

between patients treated and not treated with rHuEPO is differ-

ences in PTEN levels and PIK3CA status (Nagata et al., 2004;

Berns et al., 2007). However, our study with a relatively small

number of patient specimens suggested that as many as 50%

of the tumor specimens in our current series had normal PI3K

pathway functions. A future, larger study should better address

the potential impact of PTEN and PIK3CA status and concurrent

use of rHuEPO on trastuzumab resistance by multivariate

analyses.

Interestingly, the observation of a significant difference in

PFS between the two groups observed 6 months after treat-

ment with rHuEPO and trastuzumab raises the possibility that

antagonism of trastuzumab by rHuEPO could be related to

the duration of treatment; this possibility can also be ad-

dressed later in a larger study. Because of these potential

biases and to confirm our intriguing findings, prospective clin-

ical trials are warranted. If confirmed, our findings would have

a strong impact on clinical care for patients with HER2-overex-

pressing breast cancer.

EXPERIMENTAL PROCEDURES

Materials

We purchased epoetin alfa (Procrit; 4000 U/ml, Amgen, Inc., Thousand Oaks,

CA) and trastuzumab (Herceptin, Genentech, Inc., San Francisco, CA) from the

pharmacy of MD Anderson and the cell culture-grade rHuEPO from R&D

Systems (Minneapolis, MN). The antibodies we used for western blot analysis,

immunoprecipitation, and immunohistochemical staining are summarized in

Supplemental Experimental Procedures. We purchased all other materials

from Sigma-Aldrich (St. Louis, MO) unless otherwise specified.

Cell Lines and Culture

We maintained all breast cancer cell lines in Dulbecco’s minimal essential

medium containing high glucose levels and 10% fetal bovine serum (FBS).

Western Blotting, Immunoprecipitation, and Immunohistochemical

Staining

We performed western blot analysis and immunoprecipitation analysis as

previously described (Li et al., 2008). We obtained human tumor specimens

in accordance with Institutional Review Board protocols and the tumor

specimens from nude mice in accordance with Institutional Animal Care and

Use Committee (IACUC) protocols. Details of experimental procedures are

provided in Supplemental Experimental Procedures.

TUNEL Assay

We used a kit from R&D Systems to detect apoptosis in 5 mm paraffin tissue

sections fromwhole tissue. Details are provided in Supplemental Experimental

Procedures.
cer Cell 18, 423–435, November 16, 2010 ª2010 Elsevier Inc. 433



Cancer Cell

rHuEPO Antagonizes Trastuzumab in Breast Cancer
RNA Interference

We ordered the SMARTpool siRNA against EpoR, Jak2, Src, and CK2a and

nontargeting siRNA from Dharmacon, Inc. (Lafayette, CO) and the shRNA

constructs (pRS) against EpoR and Jak2 from OriGene Technologies, Inc.

(Rockville, MD). We used a ratio of 50 pmol siRNA/ml FuGENE-6 (Roche, Indi-

anapolis, IN) to mix them in 300 ml of serum-free medium for 20 min and then

used the siRNA/FuGENE6 mixture to transiently transfect the cells overnight.

After siRNA transfection, we cultured the cells for an additional 48 hr to allow

knockdown of expression of the targeted genes.

Cell Proliferation Assay

We allowed the cells to attach to 24-well culture plates by overnight culture in

the regular medium, after which we replaced the medium with fresh culture

medium containing various treatment additions as described in the figure

legends. At the end of treatment, we subjected the cells to a 3-(4,5-dimethylth-

iazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay described in detail in

Supplemental Experimental Procedures.

Cell Invasion and Migration Assay

We performed in vitro invasion and migration assays using a modified Boyden

chamber in which the filter surfaces had been coated withMatrigel. The proce-

dures are described in detail in Supplemental Experimental Procedures.

Monolayer Clonogenic Assay

We seeded exponentially growing cells onto 60 mm dishes at a low density

overnight prior to treating the cells with various additions in 10% FBS culture

medium for extended periods. We then fixed, stained, and counted the

surviving colonies using procedures detailed in Supplemental Experimental

Procedures.

Animal Studies and Imaging of Tumor Bioluminescence

We used 4- to 6-week-old female ICR SCID mice (Taconic, Hudson, NY) and

Swiss nude mice (nu/nu, colony maintained by the Department of Experi-

mental Radiation Oncology, MD Anderson Cancer Center) for inoculation of

MDA453b cells and MCF7-HER18/Fluc-GFP cells, respectively, into the

mammary fat pads (1 3 107 cells/mouse in 100 ml) of the mice. We started

treatment 26 days after implantation of MDA453b cells and 20 days after

implantation of MCF7-HER18/Fluc-GFP cells. We administered trastuzumab

(0.5 mg/mouse) intraperitoneally twice a week for 4 weeks (Wang et al.,

2005). We administered epoetin alfa (100 U/mouse) through subcutis injection

into the nape of the neck daily on weekdays for 4 weeks in mice, compared to

40,000 to 60,000 U epoetin alfa once weekly up to 16 weeks in human (Gabri-

love et al., 2001). Additional information can be found in Supplemental Exper-

imental Procedures.

All mouse experiments were approved by MD Anderson Cancer Center

Institutional Animal Care and Use Committee. Mice were cared for in accor-

dance with guidelines set forth by the American Association for Accreditation

of Laboratory Animal Care and the U.S. Public Health Service Policy on

Humane Care and Use of Laboratory Animals.

Patient Data and Tumor Specimens

MD Anderson Cancer Center Institutional Review Board (IRB) approved the

retrospective case-control study and waived the requirement for informed

consent. The IRB also approved the study of patient tumor specimens, which

was exempt from the requirement for informed consent because it used previ-

ously collected residual tissue samples.

Statistical Analysis

We assessed the results using Student’s t test to compare two groups or one-

way analysis of variance for multiple comparisons and expressed the results

as means ± standard deviation. P values < 0.05 were considered statistically

significant. For patient survival analysis, we used the R survival and Design

package (http://www.r-project.org). PFS was defined as the time from the

beginning of trastuzumab treatment to the development of progressive

disease. OS was defined as the time from the beginning of trastuzumab treat-

ment to death. Kaplan-Meier plots were compared using log-rank tests. The

univariate and multivariate HRs and 95% CIs were estimated using Cox
434 Cancer Cell 18, 423–435, November 16, 2010 ª2010 Elsevier Inc
regression analysis. In multivariate models, patients with missing variables

were excluded.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at doi:

10.1016/j.ccr.2010.10.025.
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