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Histone deacetylase inhibitors (HDACi) are potent anti-
cancer agents for variety of cancer types. Suberoylanilide
hydroxamic acid (SAHA) has been approved as a drug to
treat cutaneous T cell lymphoma, and the combination of
HDACi and other agents have been actively tested in
many clinical trials. Adenovirus 5 early region 1A (E1A)
has been shown to exhibit high tumor suppressor activity,
and gene therapy using E1A has been tested in clinical
trials. Here, we showed that proapoptotic activity of
HDACi was robustly enhanced by E1A in multiple cancer
cells, but not in normal cells. Moreover, we showed that
combination of E1A gene therapy and SAHA showed high
therapeutic efficacy with low toxicity in vivo ovarian and
breast xenograft models. SAHA downregulated Bcl-XL
and upregulated proapoptotic BH3-only protein Bim,
whose expression was further enhanced by E1A in cancer
cells. These alterations of Bcl-2 family proteins were
critical for apoptosis induced by the combination in cancer
cells. SAHA enhanced acetylation of histone H3 in Bim
promoter region, while E1A upregulated Egr-1, which was
directly involved in Bim transactivation. Together, our
results provide not only a novel insight into the mechan-
isms underlying anti-tumor activity of E1A, but also a
rationale for the combined HDACi and E1A gene therapy
in future clinical trials.
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Introduction

Cancer gene therapy is a developing therapeutic
approach in which therapeutic cDNAs, antisense oligo

DNAs or short interfering RNAs are systemically or
locally administrated to patients to induce cell death or
growth arrest of cancer cells that show an inadequate
response to conventional chemotherapeutic drugs
(Lo et al., 2005; Stoff-Khalili et al., 2006; Pirollo and
Chang, 2008).

The human adenovirus type 5 early region 1A (E1A)
associates with anti-cancer activities through multiple
molecular mechanisms (Brader et al., 1997; Frisch,
2004; Lo et al., 2005; Liao et al., 2007). Studies using
liposome or viral vector as a gene delivery vehicle have
shown that the E1A gene inhibits tumor development
effectively and prolongs survival in multiple orthotopic
animal models (Yu et al., 1995; Ueno et al., 2002; Liao
et al., 2004). On the basis of the safety study of E1A/
liposome gene therapy, together with the high thera-
peutic efficacy in animal models (Xing et al., 1997,
1998), several clinical trials using E1A/liposome have
been carried out in cancers of the breast, ovary and head
and neck, showing the feasibility of E1A gene therapy
in human (Hortobagyi et al., 2001; Yoo et al., 2001;
Villaret et al., 2002; Madhusudan et al., 2004). E1A was
also shown to sensitize cancer cells to chemotherapeutic
drugs and enhance cell death (Lowe et al., 1993; Brader
et al., 1997; Samuelson and Lowe, 1997; Cook and
Routes, 2005; Liao et al., 2007). Particularly, based on
our preclinical data that E1A increases the cytotoxicity
and anti-tumor activity of paclitaxel in vitro and in vivo
(Ueno et al., 1997, 2000; Liao et al., 2004), combined
paclitaxel and E1A gene therapy is currently
being investigated in a clinical trial for ovarian cancer
patients.

As high expression of histone deacetylase (HDAC)
has been reported in some types of cancer, HDAC is
considered a promising target for cancer therapy (Yang
and Seto, 2008). HDAC inhibitors (HDACi) are a novel
class of anti-cancer agents that induce apoptosis more
effectively in transformed cells than in normal cells
(Burgess et al., 2004; Minucci and Pelicci, 2006;
Xu et al., 2006; Marks and Breslow, 2007). Numerous
HDACi and their combination with other chemother-
apeutic drugs have been tested in clinical trials, and
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has been approved as an anti-cancer drug to treat
cutaneous T cell lymphoma (Marks and Breslow, 2007;
Lane and Chabner, 2009).

HDACi induce hyperacetylation of core histone,
resulting in modulation of gene expression through
chromatin remodeling (Bolden et al., 2006). Anti-
apoptotic Bcl-2 family proteins such as Bcl-2, Bcl-XL
and Mcl-1 are downregulated, whereas pro-apoptotic
proteins such as the death receptors DR5 and Fas and
the pro-apoptotic Bcl-2 family proteins Bim and Bmf
are upregulated in response to HDACi (Bolden et al.,
2006).

In this study, we found that E1A efficiently enhanced
cytotoxic effects of SAHA in a variety of human cancer
cells. Combined treatment using E1A gene therapy and
SAHA also showed highly effective anti-tumor activity
in ovarian and breast cancer xenograft models, with
lesser toxicity than that of E1A and paclitaxel. More-
over, we showed here, the underlying molecular
mechanisms of HDACi-induced apoptosis enhanced
by E1A. These results indicate that the combination
therapy of E1A gene therapy and SAHA would be an
attractive therapeutic strategy for treating human
cancers.

Results

The combination of E1A plus SAHA effectively induces
apoptosis in human cancer cells but not in normal cells
To obtain a general idea of which anti-cancer drugs are
most effectively potentiated by E1A gene therapy
in vitro, we transiently transfected human cancer cells
with either E1A expression or empty plasmid, and then
treated the cells with various anti-cancer drugs, includ-
ing 5-fluorouracil, cisplatin, etoposide, paclitaxel and
SAHA and assessed apoptosis by measuring the caspase
activity (Supplementary Figure S1). Consistent with
previous reports, we observed the sensitization effect of
E1A on chemotherapeutic drugs. Interestingly, we
found that the sensitizing effect of E1A on SAHA was
stronger than the effect on the other chemotherapeutic
drugs tested. The encouraging sensitization effect of
E1A on SAHA prompted us to further investigate
potential therapeutic effects of combination therapy
using E1A gene therapy and SAHA. As a proof of
concept, we compared the effects of SAHA and
trichostatin A (TSA), another HDACi, on the ovarian
cancer cell line SKOV3-ip1 and its E1A stable transfec-
tant (Figures 1a and b) (Yu et al., 1993). HDACi
strongly induced caspase activation in E1A-expressing
cells, whereas control cells were relatively resistant to
HDACi (Figures 1a and b). The sensitization effect of
E1A in SAHA-induced apoptosis was also supported by
the morphological change and the increase in the sub-
G1 population (Figures 1c and d). Furthermore, the
standard colony formation assay showed that the
inhibitory effect of SAHA on colony formation of
SKOV3-ip1 cells was much higher in E1A-expressing
cells than the control cells, indicating that E1A affects

the long-term survival after SAHA treatment (about 60
vs 90% reduction, Figure 1e). Similar results were
obtained in the breast cancer cell line MDA-MB-231
and its E1A stable transfectant (Supplementary
Figures S2a and b). To further confirm the E1A/SAHA
sensitization effect, we also examined the effects of this
combination in other ovarian cancer (2774-c10) and
breast cancer (MDA-MB-468) cells, as well as in
hepatocarcinoma (Hep3B) and head and neck cancer
(TU138) cell lines (Figure 1f and Supplementary Figures
S2c and d). In addition, to determine whether combina-
tion therapy using E1A and SAHA, is less toxic to
normal cells, we also tested human normal fibroblasts
(WI-38) and human normal mammary epithelial cells
(MCF10A). We transiently transfected these cells with
either E1A expression or empty plasmid, and deter-
mined caspase activity and E1A protein expression after
HDACi treatment. The results showed that E1A
robustly enhanced the caspase activation induced by
HDACi in the cancer cell lines examined (Figure 1f). It
is interesting to note that the pro-apoptotic effect of the
combination of E1A and HDACi was much weaker in
the two non-cancer cell lines than in cancer cells
(Figure 1f). Together, these results show that E1A
sensitizes SAHA to induce apoptosis in a variety of
human cancer cells but not in normal cells.

As the use of combination of E1A gene therapy and
paclitaxel is under investigation in a clinical trial, we
next compared the combined effects of E1A and SAHA
with the combined effects of E1A and paclitaxel. We
treated SKOV3-ip1 or MDA-MB-231 E1A stable and
control cells with different concentrations of SAHA or
paclitaxel and determined the cell viability with
the trypan blue dye exclusion assay (Figure 2 and
Supplementary Figure S3). In SKOV3-ip1 control cells,
the drug concentrations that induced 20% cell death
(IC20) were about 4.3 mM for SAHA and 29 nM for
paclitaxel (Figure 2a). At these concentrations, SAHA
killed 66% of SKOV3-ip1-E1A cells, whereas paclitaxel
killed only 36% of the cells, indicating that the
sensitization effect of E1A on SAHA is stronger than
the effect on paclitaxel (Figure 2b). Similarly, E1A
enhanced SAHA-induced cell death more effectively
than paclitaxel-induced cell death in MDA-MB-231
cells (Supplementary Figure S3). To compare the
toxicity of the combination of E1A and SAHA with
that of the combination of E1A and paclitaxel in normal
cells, we transiently transfected MCF10A cells with
either E1A expression plasmid or empty vector and
treated the cells with either SAHA or paclitaxel.
Cytotoxicity was then evaluated by using the caspase
assay (Figure 2c). Although SAHA induced more cell
death than paclitaxel in SKOV3-ip1-E1A or MDA-MB-
231-E1A stable cells at the drug concentrations used
here (Figure 2c), the combination of paclitaxel and E1A
showed more toxicity than the combination of E1A and
SAHA did in MCF10A cells (Figure 2c). Together, these
results indicate that the combination of E1A and SAHA
has an high efficacy against the cancer cells, but less
toxicity in normal cells than combined E1A and
paclitaxel.
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The combinational effect of E1A gene therapy
and SAHA in orthotopic xenograft model of ovarian
and breast cancers
Next, to assess the effects of the combination of
liposome/E1A gene therapy and SAHA in vivo, we
determined tumor growth and survival in orthotopic
xenograft models of human ovarian and breast cancers.
In the ovarian cancer model, we intraperitoneally
inoculated mice with SKOV3-ip1-luciferase stable cells;
tumor formation, growth and reduction were monitored
by a bioluminescent imaging system as described

previously (Day et al., 2006; Xie et al., 2007). Under
the conditions, in which each single treatment did not
suppress tumor growth at the respective doses, tumor
growth was readily suppressed by the combination
treatment (Figure 3a). In addition, the mice treated
with the combination survived significantly longer than
mice treated with either E1A/liposome or SAHA alone,
and 30% of treated mice live tumor-free for longer than
1 year (Figure 3b). We observed similar therapeutic
effects in the MDA-MB-231 breast cancer mammary fat
pad xenograft model (Figures 3c and d). Together, the
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Figure 1 Adenovirus 5 early region 1A (E1A) enhances HDACi-induced cell death in human cancer cells. (a) E1A and actin
expression in SKOV3-ip1 control or E1A cells was verified by immunoblot analysis. (b) SKOV3-ip1 control or E1A cells were treated
with 250 nM of trichostatin A (TSA) or 5mM of suberoylanilide hydroxamic acid (SAHA) for the indicated periods, and caspase-3
activity was determined by caspase assay, using a fluorescence substrate. (c) The cellular morphology of SKOV3-ip1 control or E1A
cells treated with dimethyl sulfoxide (DMSO) or 5 mM of SAHA for 24 h. (d) SKOV3-ip1 control or E1A cells were treated with DMSO
or 5mM of SAHA for 20 h. The cells were then fixed and stained with propidium iodide, followed by flow cytometric analysis.
The percentage of cells with a sub-G1 DNA content is shown within each box. (e) SKOV3-ip1 control or E1A cells were treated with
5mM of SAHA for 24 h. Cellular sensitivity to SAHA was determined by using the clonogenic survival assay. The colony numbers were
counted and shown in the bar graph (n¼ 3). (f) Hep3B, TU138, WI-38 and MCF10A cells were transiently transfected with either
empty or E1A expression plasmid and treated with 250 nM of TSA or 5mM of SAHA for 16 h. Capase-3 activity was then determined by
caspase assay using fluorescence substrate. E1A and tubulin expression in these cells was verified by immunoblot analysis.
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Figure 2 Adenovirus 5 early region 1A (E1A) enhances suberoylanilide hydroxamic acid (SAHA)-induced cell death more effectively
than paclitaxel-induced cell death in cancer cells but not in normal cells. (a) SKOV3-ip1 control or E1A stable cells were treated with
the indicated concentrations of SAHA or paclitaxel for 48 h, and viability was determined by the trypan blue dye exclusion assay. IC20
in control cells was indicated as a dotted line. (b) Comparison of cell death of SKOV3 ip1-E1A cells at the drug concentrations that
induced 20% cell death (4.3mM for SAHA and 29nM for paclitaxel) in SKOV3-ip1 control cells. (c) MCF10A cells were transiently
transfected with either empty or E1A expression plasmid and treated with 5 or 10mM of SAHA or 25 or 50 nM of paclitaxel for 24 h.
Caspase-3 activity was then determined by caspase assay using fluorescence substrate.
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Figure 3 The combination of adenovirus 5 early region 1A (E1A) and suberoylanilide hydroxamic acid (SAHA) suppresses tumor
growth in vivo. (a) Mice bearing SKOV3-ip1-luciferase tumors were treated with vector/liposome (control), E1A/liposome (E1A, 15mg
DNA/mouse), vector/liposome plus SAHA (SAHA 100mg/kg) or E1A/liposome plus SAHA (E1A/SAHA), and luciferase signals
in vivo were monitored. *Po0.01 vs single treatments. (b) Survival curves of animals used in (a). All treatments were terminated at day
31 after inoculation. #Po0.04 vs single treatments. (c) Mice bearing MDA-MB-231 breast tumors were treated with vector/liposome
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in vivo results also support the sensitization effect of
E1A gene therapy on SAHA.

To compare the toxicity of the combination therapy
of E1A gene therapy and SAHA with that of E1A gene
therapy and paclitaxel, we treated the mice with high
doses of the drugs in combination. E1A expression
plasmid/liposome concentration (50 mg DNA/mouse)
was determined based on our previous reports (Xie
et al., 2007, 2009). The concentrations of SAHA and
paclitaxel used in clinic for human are around 400mg/m2

(daily) and 100mg/m2 (once in 2–3 week), respectively.
Thus, we tested SAHA: 130mg/mouse (daily) and
paclitaxel: 32mg/mouse (once), that were calculated
based on a standard conversion formula between human
and mouse (Freireich et al., 1966; Reagan-Shaw et al.,
2008). All the mice treated with E1A liposome plus
paclitaxel died within 3 days, whereas no mice died after
receiving E1A gene therapy plus SAHA (Supplementary
Figure S4a). To evaluate liver toxicity in the mice
treated with the clinical dose of E1A/liposome and
SAHA, aspartate aminotransfrase level was determined
in blood samples from the mice treated with E1A/
liposome plus SAHA (Supplementary Figure S4b). The
aspartate aminotransfrase level remained in the normal
range, suggesting that the combination of E1A/liposome
and SAHA does not cause much liver toxicity. Overall,
the combination of E1A gene therapy and SAHA
effectively reduced the tumor growth and prolonged
animal survival with much better safety profile than the
combination of E1A gene therapy and paclitaxel.

Bim and Bcl-XL are the critical mediators of apoptosis
induced by E1A and SAHA
To determine the underlying mechanisms of apoptosis
induced by the combination of E1A and SAHA, we first
examined whether E1A might enhance cytochrome
c release and Bax conformational change and therefore
promote HDACi-induced apoptosis. Indeed, both
HDACi-induced cytochrome c release (1.7–1.9 vs 1.1–1.2,
Figure 4a) and Bax conformational change, which can
be assessed by immunoprecipitation with a specific
monoclonal antibody (6A7) that recognizes the active
form of Bax, were promoted by E1A in SKOV3-ip1
(Figures 4a and b) and MDA-MB-231 cells (Supple-
mentary Figures S5a and b). Next, to understand the
molecular pathway regulating HDACi-induced Bax
conformational change enhanced by E1A, we deter-
mined the expression of the Bcl-2 family proteins that
have previously been shown to be involved in HDACi-
induced apoptosis (Bolden et al., 2006). Immunoblot
analysis in SKOV3-ip1 control and E1A cells treated or
untreated with HDACi showed that Bcl-XL was down-
regulated and Bim was upregulated in response to
HDACi (Figure 4c). In SKOV3-ip1 cells, E1A enhanced
Bim expression but did not alter the Bcl-XL expression
level (Figure 4c). RT–PCR analysis indicated that Bim
upregulation and Bcl-XL downregulation occurred at
the mRNA level (Figure 4d and Supplementary Figure
S5c). Similar results were obtained when other cancer
cell lines were tested by western blot analysis using Bim

and Bcl-XL antibodies (Supplementary Figures S5d
and e). Interestingly, in the normal MCF10A cells, E1A
neither enhanced nor sensitized HDACi-induced Bim
expression, which may explain, at least in part, why
normal cells are relatively resistant to the combination
treatment (Figure 1f and Supplementary Figure S5f). To
determine the role of Bim and Bcl-XL in apoptosis
induced by E1A and HDACi, we knocked down Bim or
overexpressed Bcl-XL in SKOV3-ip1-E1A cells, and
determined the effects of HDACi, by using the caspase
assay. We found that caspase activation induced by
HDACi was reduced by Bim knockdown or Bcl-XL
overexpression in SKOV3-ip1-E1A cells (Figures 4e
and f). Thus, these results suggest that both Bim and
Bcl-XL have a critical role in apoptosis induced by the
combination of E1A and SAHA. Apoptosis initiation is
controlled by the balance between anti- and pro-
apoptotic Bcl-2 family proteins (Youle and Strasser,
2008). To further confirm the role of Bim upregulation
in apoptosis induced by the combination of SAHA and
E1A, we transfected reduced amounts of short interfer-
ing RNA against Bim in SKOV3-ip1-E1A cells to
knockdown Bim expression comparable to the level of
Bim in the untreated cells (Supplementary Figure 6a).
We found that reduction of Bim attenuated caspase
activation induced by SAHA, indicating that induction
of Bim might be critical for caspase activation induced
by SAHA and E1A, and that E1A sensitizes SAHA-
induced apoptosis partially by enhanced Bim expres-
sion. As we did not observe a complete inhibition of
caspase activation when Bim was knocked down, it is
likely that the loss of Bim expression raised the
threshold, required for apoptosis and that other BH3-
only Bcl-2 family proteins may also contribute to SAHA
and E1A-induced apoptosis.

Bim is upregulated by E1A-induced Egr-1
and SAHA-induced chromatin remodeling
Next, we asked how Bim is upregulated by E1A and
HDACi. We first examined the response of the Bim
promoter region to E1A and SAHA by reporter assay
(Figure 5a). The transactivation of Bim promoter
was enhanced by SAHA, E1A and the combination
well consistent with western blot and RT–PCR data
(Figures 4c and d). HDACi induce hyperacetylation of
core histones, resulting in the modification of chromatin
structures and augmentation of transcriptional activity.
We, therefore examined the acetylation level of histone
H3 on the Bim promoter region by the chromatin
immunoprecipitation assay using acetylated histone
H3-K9 antibody. We found that the acetylation level
of histone H3 around the Bim promoter was enhanced
by SAHA, supporting that SAHA upregulates Bim
through the hyperacetylation of histone on the Bim
promoter (Figure 5b). However, interestingly, E1A does
not affect the acetylation of Bim promoter regions,
suggesting that other mechanisms exist for the combina-
tional effect of E1A and SAHA on Bim expression.
To determine the transcription factor(s) involved in Bim
upregulation induced by E1A plus SAHA, we further
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analyzed the promoter region of Bim. Luciferase assay
with the deletion mutants of Bim promoter narrowed
down the potential transcription factor binding sites to
the sequence between –24 and –189, which does not
include FOXO3a binding site, previously identified
(Figure 5c). We searched this sequence and found the
Egr-1 binding sequence (GCGGGGGCG) in this region
of both the human and mouse Bim promoters. There-
fore, we tested the possible role of Egr-1 in Bim
upregulation by E1A plus SAHA. We mutated the
Egr-1 binding site in the Bim promoter and determined
its response to E1A plus SAHA. Indeed, the SAHA/
E1A-induced Bim promoter activity was significantly

reduced in the Bim promoter containing the mutation
in the Egr-1 binding site (Figure 5d). Similarly,
dominant negative Egr-1 attenuated Bim promoter
activation by SAHA in E1A-expressing cells (Supple-
mentary Figure S6). Consistently, chromatin immuno-
precipitation analysis using Egr-1 antibody showed that
Egr-1 binds to the Bim promoter, which was enhanced
by both SAHA and E1A (Figure 5e). These results
suggest that Egr-1 is directly involved in Bim transcrip-
tional regulation.

To further investigate how E1A and SAHA enhanced
the Egr-1 activity, we found that E1A enhanced the
expression of Egr-1 (Figure 6a), and Egr-1 expression
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then treated with 250 nM of TSA or 5mM of SAHA for 14 h and subjected to caspase assay. Bcl-XL and tubulin expressions are shown
in the right panel.
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was also enhanced by HDACi in SKOV3-ip1 cells,
consistent with the previous reports (Pan et al., 2007;
Lubieniecka et al., 2008) (Figure 6a). Quantitative
RT–PCR analysis and reporter assay using Egr-1
promoter indicated that both E1A and SAHA upregu-
lated transcription of Egr-1 (Figures 6b and c). When we
knocked down Egr-1, Bim induction and caspase
activation by HDACi were reduced in E1A-expressing
cells (Figure 6d).

We next examined the acetylation level of histone H3
on the Egr-1 promoter region by the chromatin
immunoprecipitation assay using acetylated histone
H3-K9 antibody. We found that the acetylation level
of histone H3 around the Egr-1 promoter was enhanced
by SAHA, but not by E1A (Figure 6e), suggesting that
SAHA induces the hyperacetylation of histone on Egr-1
promoter, similar to Bim promoter. To further investi-
gate how E1A activates Egr-1 promoter activity, we
searched for E1A-activating DNA elements that also
reside in the Egr-1 promoter. Among the known DNA
elements, serum responsible element (SRE) was identi-
fied. Interestingly, SRE was also shown to be respon-
sible for serum-induced Egr-1 promoter activity (Thiel
and Cibelli, 2002). Indeed, while testing with Egr-1
promoter and SRE-mutant Egr-1 promoter activity, we
found that SRE of Egr-1 promoter was responsible for
E1A-mediated Egr-1 activation (Figures 6f and g).
Together, these results suggest that E1A enhances Bim
expression through the upregulation of Egr-1 through
its SRE.

Discussion

Together with mutation-activated Ras, E1A has been
shown to transform primary rodent cells (Ruley, 1983;
Byrd et al., 1988). As Ras oncoprotein also can
transform only rodent cell lines but not primary rodent
cells, and because immortalization is used to distinguish
cell lines from primary cultured cells, the adenovirus
type 5 E1A was considered an immortalization onco-
protein even though it does not associate with oncogenic
activity (Frisch, 1991; Yu et al., 1991; Hung et al., 2000;
Liao et al., 2007). Later, it was found that adenovirus
E1A shows multiple anti-tumor activity (Yan et al.,
1991; Yu et al., 1991; Frisch and Mymryk, 2002; Frisch,
2004; Liao et al., 2007). Overexpression of E1A induces
growth arrest and apoptosis of human cancer cells
in vitro, and it has been shown that apoptosis has a
critical role in E1A-mediated anti-tumor activity
(Frisch, 1991; Rao et al., 1992; Lowe et al., 1993; Deng
et al., 1998). Moreover, liposome or adenovirus-
mediated E1A gene transfer suppresses tumor growth
and metastasis in animal models (Yu et al., 1995; Chang
et al., 1997; Hubberstey et al., 2002; Ueno et al., 2002;
Liao et al., 2004). On the basis of these preclinical
studies, E1A gene therapy was tested in several clinical
trials that show that this therapy is feasible in humans
(Hortobagyi et al., 2001; Yoo et al., 2001; Villaret et al.,
2002; Madhusudan et al., 2004). Moreover, a clinical
trial of the combination of paclitaxel and E1A/liposome
for ovarian cancer is currently ongoing. In addition to
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this particular combination therapy, we have been
investigating more effective combinations of E1A gene
therapy with other anti-cancer drugs. The present study
shows that the combination of E1A gene therapy and
SAHA is more potent in tumor suppression and safer
than the combination of E1A gene therapy and
paclitaxel, which justifies the combination of E1A gene
therapy and SAHA in clinical trials in the near future.

It has been shown that SAHA selectively kill
transformed cells (Ungerstedt et al., 2005). In this study,
we showed that the combination of E1A and SAHA also
showed relatively low toxicity in normal cells. Our data
also suggest that the selective alteration of Bcl-2 family
protein expression might be involved in the killing
effects of HDACi and E1A against transformed cells. In
particular, Bim may be involved in the cancer cell killing
activity of SAHA and E1A. Here, we showed that
SAHA enhances the acetylation levels of histone H3 on
the Bim promoter region (Figure 5b). This is likely to
contribute to the transactivation of Bim induced by

SAHA. However, we could not detect the additive
effects on the acetylation of histone H3-K9 by the
combination of E1A and SAHA (Figure 5b). Therefore,
the combination of E1A and SAHA enhances Bim
expression through a histone H3 acetylation-indepen-
dent mechanism. Here, we showed that Egr-1, which
functions as a tumor suppressor, is also involved in Bim
upregulation and apoptosis in response to the combina-
tion of E1A and HDACi (summarized in Figure 7).
Egr-1 expression was induced by either SAHA or E1A
and further enhanced by the combination. Egr-1 was
upregulated though SRE in its promoter by E1A, while
SAHA enhances acetylation of histone H3 in Egr-1
promoter region (Figures 6e–g).

In this study, we showed that the combination of E1A
and SAHA induces cell death more effectively than E1A
plus paclitaxel or etoposide, even though some drugs
such as etoposide and paclitaxel are also known to
induce Bim (Supplementary Figure S1 and Figure 2).
It has been shown that etoposide and paclitaxel induce
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Bim through FOXO3a (Sunters et al., 2003; Liu et al.,
2005). Our data showed that SAHA enhances Bim
expression through chromatin remodeling, while E1A
does through upregulation Egr-1 (Figures 5 and 6). In
contrast, FOXO3a is not involved in Bim induction by
the SAHA and E1A (Figure 5c). As SAHA also
enhances Egr-1 expression though chromatin remodel-
ing, SAHA enhances Bim expression not only by itself,
but also enhancing the effects of E1A. These differences
of mechanisms underlying Bim upregulaiton may
explain, at least in part, why SAHA sensitize E1A more
effectively than paclitaxel or etoposide.

In summary, we have shown that the combination of
E1A gene therapy and SAHA shows high efficacy
in vitro and in vivo with virtually no toxicity. In addition,
we established a signal cascade, explaining the molecular
mechanisms underlying apoptosis induced by the
combination (Figure 7). Thus, this study provides us
strong rationale to test the combination of E1A gene
therapy and SAHA in future clinical trials.

Materials and methods

Reagents
Trichostatin A, paclitaxel, 5-fluorouracil, etoposide, anti-
tubulin monoclonal antibody and actin-polyclonal antibodies
were purchased from Sigma (St Louis, MO, USA). Anti-Bim
and Bmf polyclonal antibodies were purchased from Calbio-
chem (Gibbstown, NJ, USA). Anti-E1A, cytochrome c
monoclonal antibodies and Mcl-1 polyclonal antibody were
purchased from BD Biosciences (San Jose, CA, USA). Anti-
Bax, Bcl-XL monoclonal antibodies and anti-Egr-1 polyclonal
antibody were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Anti-Bak, Bax and Egr-1 antibodies
were purchased from Cell Signaling (Danvers, MA, USA).
Anti-acetylated histone H3 (K9) polyclonal antibody was
purchased from Abcam (Cambridge, MA, USA). Control
short interfering RNA and short interfering RNA against Bim
and Egr-1 were purchased from Dharmacon (Lafayette, CO,
USA). SAHA were synthesized in Department of Experi-
mental Diagnostic Imaging at MD Anderson Cancer Center.

Plasmid
pUK21-CMV-E1A, which regulates E1A expression by CMV
promoter, was used for transient transfection. Dominant

negative Egr-1 was described previously (Zhang et al., 2003).
Bim-luciferase plasmid was prepared by using PCR. Egr-1
luciferase plasmid was described previously (Baek et al., 2003).
Egr-1luciferase deletion and SRE mutants were constructed by
using PCR.

Cell culture and transfection
All the cell lines except MCF10A were maintained in
Dulbecco’s modified Eagle’s medium/F12 medium supplemen-
ted with 10% fetal bovine serum. MCF10A cells were cultured
in Dulbecco’s modified Eagle’s medium/F12 medium supple-
mented with 5% horse serum, 10 mg/ml insulin, 20 ng/ml EGF,
100 ng/ml cholera toxin and 500 ng/ml hydrocortisone.
SKOV3-ip1 and MDA-MB-231 control and E1A stable cell
lines were described previously (Ueno et al., 2000; Liao et al.,
2004). Plasmid and short interfering RNA transfection was
performed by using electroporation.

Immunoblot, subcellular fractionation, immunoprecipitation
and quantitative–PCR
Immunoblot analysis was carried out by a standard protocol.
To detect Bax conformational change, the cells were lysed in
CHAPS lysis buffer (150mM NaCl, 10mM HEPES, pH 7.4,
1% CHAPS) containing protease and phosphatase inhibitors.
Total proteins (500mg) were subjected to immunoprecipitation
using 1mg of anti-Bax 6A7 monoclonal antibody and 15 ml of
protein G agarose. Active form of Bax was detected by
immunoblot analysis with anti-Bax polyclonal antibody.
Subcellular fractionation was carried out as described pre-
viously (Uren et al., 2005). Quantitative RT–PCR was
performed as described previously (Chou et al., 2009). The
primers for Bim and Egr-1 are following; CCAGGCCTTCAA
CCACTATC and TCTTGGGCGATCCATATCTC (Bim);
TGAACAACGAGAAGGTGCTG and AGCGGCCAGTAT
AGGTGATG (Egr-1).

Apoptosis assay
Caspase activity was measured as described previously
(Yamaguchi et al., 2003). In brief, the cells were lysed in
CHAPS lysis buffer, and 50mg of total proteins was applied for
the caspase assay using fluorescent caspase-3/7 substrate
(Sigma). The fluorescence signal was read using a fluorescent
plate reader following 1 h of incubation at room temperature.
Results are presented as the mean plus standard error (n43).
For analysis of sub-G1 populations by flow cytometry, cells

treated or untreated with SAHA were harvested and fixed with
methanol. In total, 106 cells were then incubated in 1ml of
phosphate-buffered saline containing 100 mg/ml RNaseA and
40 mg/ml propidium iodide at 37 1C for 1 h. DNA contents
were then analyzed by BD FACS Diva (BD Bioscience).
For the clonogenic survival assay, cells treated or untreated

with SAHA were harvested and plated at 15 000 (SKOV3-ip1)
or 20 000 (MDA-MB-231) cells per 100-mm dish without
SAHA. After 12 days, the clones were visualized by crystal
violet staining and counted.

Luciferase assay
Mouse Bim promoter regions were amplified by PCR and
subcloned into pGL3-basic vector based on the previous report
(Bouillet et al., 2001). Egr-1 binding site (GCGGGGGCG,
from �37 to �27) was mutated (GCGGATCCG) by two-step
PCR. SKOV3-ip1 cells were transiently transfected with the
indicated plasmids, and the luciferase assay was performed by
using the dual-luciferase system, according to the manufac-
turers’ protocol (Promega, Madison, WI, USA).

Bax activation
Cytochrome c releaseE1A Egr-1 Bim

Histone acetylation
Chromatin remodeling

SAHA ApoptosisBcl-XL

Figure 7 The model of apoptosis signaling induced by the
combination of adenovirus 5 early region 1A (E1A) and
suberoylanilide hydroxamic acid (SAHA). E1A upregulates Bim
expression through Egr-1 pathway, whereas SAHA upregulates
Bim, as well as Egr-1 expression by enhancing its promoter
acetylation. Bcl-XL is downregulated by SAHA. The alterations of
Bim and Bcl-XL expression contribute to Bax activation,
cytochrome c release and subsequent caspase activation.
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Chromatin immunoprecipitation assay
The chromatin immunoprecipitation assay was carried out as
described previously (Wang et al., 2006). SKOV3-ip1 control
and E1A stable transfectants were treated with or without 5mM
SAHA for 12 h. The cells were then crosslinked with
formaldehyde, lysed and sonicated. Soluble chromatin was
incubated overnight with anti-histone H3 (acetyl-K9), anti-
Egr-1 polyclonal antibody or rabbit immunoglobulin G,
followed by incubation with protein A agarose by rotation
for 2 h at 4 1C. Immune complexes were then reversed by
protein–DNA crosslinking and digested with proteinase K and
RNaseA. The purified DNA was dissolved with 20 ml of dH2O.
The human Bim promoter sequences containing the Egr-1
binding site were amplified by PCR using the following
primers: CAGGCAGAGTTACTCCGGTAAACACG and
CAGAGCTCCAACAAACTGCAGACCAG. The primers
used to determine the histone H3-K9 acetylation in were as
follows: GAAGTGTACCCTAGCCTC and ACGGCCTCTG
TCTCTTAG (Bim promoter); ACCCTTATTTGGGCAGC
AC and TATGGGAAGCAGAAGCCCTA (Egr-1 promoter).

Animal study
In the ovarian cancer model, SKOV3-ip1-luciferase stable cells
were inoculated intraperitoneally (3� 106 cells/mouse). In the
breast cancer model, MDA-MB-231 cells (3� 106 cells/mouse)
were injected into the mammary fat pad. One week after
inoculation, the treatments were started. Liposome/E1A or
empty vector (15 mg/mouse) was injected intravenously into the
mice once weekly, followed by SAHA administration (100mg/
kg per mouse, intraperitoneally) four times per week. Each
group contained 10 mice. The treatments were terminated

4weeks after inoculation (at day 28 for gene therapy and day
31 for SAHA). Quantification of bioluminescence data and
breast tumor volume was as described previously (Liao et al.,
2004; Xie et al., 2007).
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