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Abstract
Background Advanced renal cell carcinoma (RCC) frequently develops
skeletal metastasis and is highly resistant to conventional therapies. We
hypothesized that the osteocalcin (OC) promoter may be a promising
gene delivery system for RCC targeted gene therapy because osteotropic
tumors gain osteomimetic properties and thrive in the new environment by
exhibiting a bone-like gene expression profile. Human OC (hOC) expression
is highly regulated by vitamins and hormone. In the present study, we
tested the feasibility of vitamin-regulatable hOC promoter for RCC-specific
transcriptional targeting, and examined the anti-tumor effect of vitamins C
and D3 with hOC-based adenoviral vectors towards RCC.

Methods Real-time reverse transcriptase-polymerase chain reaction mea-
sured OC expression induced by vitamins C and D3, either alone or in
combination, in RCC and human renal epithelial cells (HRE) normal renal
epithelial cell lines. The RCC-cytotoxic effects of concomitant vitamins and
hOC promoter-based adenoviral vectors, Ad-hOC-TK and Ad-hOC-E1, were
evaluated in both cell culture and a xenograft murine model.

Results We found that high doses of vitamin C induced H2O2-dependent
apoptosis in RCC but not HRE. Treatment of RCC cells with combined
vitamins C and D3 treatment significantly increased OC promoter activity
compared to single reagent treatment. Combined vitamin therapy reduced
tumor size (85%) and complete tumor regression occurred in 38% of mice
co-administrated Ad-hOC-E1.

Conclusions The results obtained in the present study demonstrate that
vitamins C and D3 synergized with the anti-tumor effects of therapeutic genes
driven by hOC promoter through direct cytotoxicity as well as transcriptional
targeting. This combined gene therapy provides a promising modality for
advanced RCC targeted therapy. Copyright  2010 John Wiley & Sons, Ltd.

Keywords adenoviral vectors; gene therapy; osteocalcin promoter; renal
cell carcinoma; vitamin C; vitamin D3

Introduction

Human renal cell carcinoma (RCC) is the most common, malignant form of
kidney cancer that arises from renal epithelium. The age-adjusted incidence
of this disease has been rising by 3% per year during the past five decades [1].
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Approximately 57 760 new cases of RCC and 12 980
deaths are expected to have occurred in the USA in 2009
[2]. Up to one-third of patients with RCC have metastases
at presentation [3], and approximately 40% of patients
treated for a localized tumor develop recurrence [4].
Despite improvements in the management of localized
RCC, treatment of advanced RCC with systemic therapies
or surgical intervention has been largely unsuccessful.
Advanced RCC patients have an extremely poor outcome
with an estimated median survival of less than 1 year [5].
Thus, the development of new agents with more effective
anti-tumor activity, in particular targeting the metastatic
phase of RCC, merits a high priority in the treatment of
advanced RCC.

Gene therapy has been identified as the most promising
treatment option for metastatic cancers [6]. Transcrip-
tional regulation of transgene expression using tumor-
or tissue-specific promoters within adenoviral vectors has
already been attempted to treat tumors [7,8]. However,
only a limited number of promoters that restrict gene
expression to RCC have been studied [9–11] because
clinically defined RCC tumor markers whose promoter
is highly active in tumors but either silent or active at
very low background levels in normal kidney cells are not
available. Therefore, the development of a novel inducible
promoter system that allows reliable and controllable
transactivation of ectopic gene expression in restricted
tissue or cell types by administration of inducing agents is
essential for the success of a RCC targeted gene therapy
that does not induce serious kidney damage.

Osteocalcin (OC) is a major noncollagenous bone
protein, which is deposited onto bone matrices at the
time of bone mineralization. OC binds to the extracellular
matrix and acts as a chemoattractant for bone-resorbing
cells which maintain bone mineral homeostasis [12].
Bone-specific transcription of the OC gene is regulated
principally by the Runx2 transcription factor that binds to
the osteocalcin-specific elements OSE1 and OSE2, which
are located approximately 50 and 140 bp upstream of
the transcriptional start site, respectively [13]. OSE2 site
is also required for the activation of OC by vitamin C
(ascorbic acid) [14,15]. Other important transcriptional
elements include the OC box and hormone receptor
binding sites, which are both positively and negatively
regulated by a number of vitamins and hormones
[16]. Rat and human OC, but not mouse OC gene
expression, is regulated by a vitamin D responsive element
(VDRE) [16,17] recognized by the vitamin D3 receptor
(VDR) complex upon ligand (1α,25-dihydroxyvitamin
D3) activation [18,19]. The finding that OC gene is
expressed almost exclusively in differentiated osteoblasts
and osteotropic tumors, including osteosarcoma [20] and
ovarian, lung, brain and prostate cancers [21], has led to
the development of OC promoter-mediated targeted gene
therapy for the treatment of patients with bone disorders
[22,23] or tumor metastasis to the skeleton [21,24–27].
We have previously characterized an approximately
800 bp of human osteocalcin (hOC) promoter, which
contains three regulatory elements, OSE1, OSE2 and

VDRE [28]. Its activity can be highly induced by vitamin
D3. When the hOC promoter regulated adenoviral E1A
and E1B gene expression in a bi-directional manner,
vitamin D-enhanced viral replication was observed in
androgen-independent and highly metastatic prostate
cancer cell lines [29]. Similar to prostate cancer, RCC
frequently metastasizes to the skeleton in the later
stages of the disease [30]. This observation suggests
that hOC promoter-based expression vectors combined
with transcriptional inducers may provide a novel
inducible gene delivery system for the treatment of
human RCC.

In the present study, we showed that treatment
of human RCC cells with hOC promoter and its
inducers vitamin C and vitamin D3 together signif-
icantly increased OC expression compared to single
agent treatment. The triple agent treatment had no
effect on normal renal epithelial cells, which have
an undetectable basal level of OC promoter activ-
ity. The combination of vitamins C and D3 syner-
gized with the anti-tumor effects of therapeutic genes
driven by hOC promoter on cultured RCC cell lines
and established RCC tumors in immunodeficient mice.
The results obtained provide the first in vivo demonstra-
tion of the efficacy and safety of triple combination
therapy of the hOC promoter-based adenoviral vec-
tors, vitamin C and vitamin D3 for the treatment of
human RCC.

Materials and methods

Cell lines and cell culture

The established human renal cell carcinoma cell lines,
RCC29, RCC45, RCC6 and RCC42, were described pre-
viously [10] and grown in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum and
1% penicillin-streptomycin (Invitrogen, Grand Island, NY,
USA). Normal human renal epithelial cells (HRE) pur-
chased from Lonza (Rockland, ME, USA) were maintained
in renal epithelial cell growth medium in accordance with
the manufacturer’s instructions (Lonza).

Reagents and adenoviral vectors

Vitamin D3 analog (Ro 25–9022) was provided by Roche
(Nutley, NJ, USA). Ethanol was used as the vehicle con-
trol for vitamin D3. L-ascorbic acid and catalase were
purchased from Sigma Aldrich (St Louis, MO, USA). The
adenoviruses, Ad-hOC-TK and Ad-hOC-E1 used in the
present study, were produced and described previously
[25,29]. Ad-hOC-TK, a replication-defective adenovirus,
expresses herpes simplex virus thymidine kinase under
the control of a 3.9-kb human OC promoter. Ad-hOC-E1
is a conditional replication-competent adenovirus con-
taining a single bidirectional 800-bp human OC promoter
to drive both early viral E1 A and E1B genes.
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Reverse transcriptase-polymerase
chain reaction (RT-PCR) analysis

Cells were treated with 5 nM vitamin D3 analog (Ro
25–9022) for 48 h. RNA was extracted by using RNeasy
Mini Kit (Qiagen, Valencia, CA, USA) and first-strand
cDNA was synthesized by using 1 µg of total RNA with
Moloney Murine Leukemia Virus reverse transcriptase
(Invitrogen, Grand Island, NY, USA) in accordance with
the manufacturer’s instructions. The primer sequences for
hOC were 5′-ACACTCCTCGCCCTATTG-3′ (forward) and
5′-GATGTGGTCAGCCAACTC-3′ (reverse) and for GAPDH
were 5′-ACCACAGTCCATGCCATCA-3′ (forward) and
5′-TCCACCACCCTGTTGCTGT-3′ (reverse).

Real-time quantitative PCR

Cells were treated with 5 nM vitamin D3 analog
(Ro 25–9022) and 0.15 mM vitamin C alone or
combination for 48 h. Quantitative RT-PCR was per-
formed using the LightCycler 480 TaqMan master kit
with Universal ProbeLibrary probe (Roche Applied Sci-
ence, Mannheim, Germany). The primers and probes
were designed by a web-based Assay Design Center
(http://www.universalprobelibrary.com). The real-time
PCR reaction was conducted in accordance with the man-
ufacturer’s instructions, consisting of a denaturation step
(10 min) and 55 cycles of amplification (95 ◦C for 10 s,
60 ◦C for 10 s followed by single fluorescence acquisition
at 72 ◦C for 10 s). The relative gene expression of specific
target in each group was represented as 2−�CT, the �CT
is determined by subtracting the average housekeeping
gene HSPCB Ct value from the average target gene value.

Apoptosis detection by annexin V
binding assay

Annexin V binding assays were performed by using an
Annexin V-FITC Apoptosis Detection kit in accordance
with the manufacturer’s instructions (Sigma Aldrich).
Briefly, RCC cells were exposed to various concentra-
tions of vitamin C for 24 h. Both floating and adherent
cells were collected. After a rinsing step with phosphate-
buffered saline (PBS), cells were resuspended in binding
buffer that contained FITC-conjugated annexin V and
propidium iodide (PI) for 15 min and subjected to flow
cytometry analyzed with a FACScan (Becton Dickinson,
Mountain View, CA, USA). Results were integrated with
the CellQuest software (Becton Dickinson) for calculation
of percentage cells with apoptosis per group.

In vitro cytotoxicity assays

For vitamin C induced cytotoxicity, cells seeded on 24-well
plates were incubated with vitamin C (L-ascorbic acid) at a
concentration of 0–200 µg/ml in the presence or absence

of 100 U of catalase. For adenoviral vector-induced cyto-
toxicity, cells were infected with adenoviral vectors at
a range of multiplicity of infection (MOI). After 2 h of
adsorption, the virus-containing medium was replaced
with fresh medium. After 24 h, cells infected with ade-
noviral vectors were incubated with 5 µM vitamin D3 or
150 nM vitamin C, or both. An additional 10 µg/ml gan-
ciclovir was used as the prodrug for Ad-hOC-TK-infected
cells. After 7 days of treatment, the viable cells were
detected by crystal violet staining. Each experiment was
carried out either in duplicate or triplicate.

Human RCC xenograft model

Institutional guidelines and an Animal Research
Committee-approved protocol were followed for mouse
studies. Male nu/nu mice aged 5–6 weeks old were
obtained from Charles River (Wilmington, MA, USA). Sub-
cutaneous tumors were established by injecting 2 × 106

RCC42 cells into the bilateral flanks of mice. When tumors
reached 100 mm3, four treatment groups were randomly
assigned (n = 8 in each group): PBS controls, vitamin C
(15 g/l in drinking water), Ad-hOC-E1 (2 × 109 pfu, i.v.
injection with single dose) plus vitamin D3 (4 ng/dose,
i.p. injection every other day for 3 weeks) and Ad-hOC-E1
plus vitamin C and D3. Vitamin D3-treated mice were
fed a sterilized calcium deficient diet (ICN Research
Diets, Costa Mesa, CA, USA). Tumors were measured
weekly with calipers. Volumes were calculated by the
formula: volume = 0.5236 × width2 × length. Data were
expressed as the fold of tumor volume increase, obtained
by assessing tumor size relative to the initial size at the
time of treatment. The mice were sacrificed 6 weeks after
treatment. Tumors were dissected, fixed in formalin, and
subjected to histopathological examination.

In situ analysis of apoptotic cells
in tissues

Apoptosis was evaluated using the Apo-BrdU-IHC In Situ
DNA Fragmentation Assay Kit (BioVision, Inc., Mountain
View, CA, USA) as described previously [31]. Briefly,
paraffin-embedded tumor sections were dewaxed and
permeabilized with proteinase K for 20 min. The DNA
strand breaks were labeled with BrdU in a terminal
deoxynucleotidyl transferase reaction mixture at 37 ◦C
for 1 h, and detected with anti-BrdU-Biotin conjugate
with diaminobenzidine in accordance with the manu-
facturer’s instructions. The samples were counterstained
with 1% methyl green to show viable cells. Cells in which
the nuclei were clearly dark brown were considered to be
apoptotic cells.

Statistical analysis

Differences between treatment groups were analyzed
using Student’s t-test and two-tailed distribution. p < 0.05
was considered statistically significant.
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Results

Vitamin C synergized with vitamin D3
to induce osteocalcin expression
in human RCC cells

To assess whether human OC promoter-based gene
therapy combined with vitamin D3 may be useful
for the treatment of human renal cancers without
affecting normal kidney cells, semi-quantitative RT-PCR
was performed to compare the basal and vitamin D3-
induced OC expression in human normal and malignant
renal epithelial cell lines (Figure 1A). The expression of
OC mRNA can be detected clearly in MG63, a human
osteoblastic cell line, under normal culture conditions.
This expression was further stimulated by vitamin D3

analog (Ro 25–9022) treatment, which demonstrated the
regulatory activity of vitamin D3 on OC expression. Both
normal renal epithelial cells and renal epithelial cancer
cell lines that we tested had very low or undetectable
OC mRNA expression. Vitamin D3 markedly induced
OC expression in all tested RCC cell lines excepting
RCC45, which showed a relatively lower induction, but
caused no change in OC expression of normal HRE cells.
We also found that the RCC cell lines and MG63 in
which OC was induced by vitamin D3 expressed VDR,
whereas normal HRE cells which had no to minor basal
and vitamin D3-induced OC promoter activity lacked
VDR expression. Moreover, transfection of RCC cells
with VDR-specific targeting siRNA significantly attenuated
vitamin D3-induced OC mRNA expression (see Supporting
information, Figure S1). These results suggested that the
VDR complex with VDRE in the proximal region of the
human OC promoter plays a major role for up-regulating
the OC transactivating activity in RCC and bone cell
lines.

The vitamin highly induced OC gene transcription in
RCC but not in normal HRE was also confirmed by quan-
titative RT-PCR (Figure 1B). Vitamin D3 exerted a 26-fold
induction in OC expression in RCC42 cells. In addition,
vitamin C (L-ascorbic acid) treatment itself induced mod-
erate OC expression (3.8-fold increase) and synergized
with vitamin D3 to reach a more than 80-fold transcrip-
tional induction. However, HRE barely responded to the
OC induction by these vitamins, either alone or combined
treatment, with less than significant (≥ 2) fold changes
in expression compared to cells grown in the normal
conditions.

Runx2 is known as a primary bone-related tran-
scriptional regulator in modulating OC expression in
osteoblasts [32]. We further determined whether Runx2
played a role in the OC induction by vitamin C and vitamin
D3 by examining the influence of vitamins on Runx2 gene
transcription. Consistent with other data obtained in rat
and mouse osteoblastic cells [33,34], our quantitative RT-
PCR result revealed a 33% reduction of Runx2 transcripts
in RCC42 cells after vitamin D3 treatment (Figure 1C). By
contrast, vitamin C enhanced Runx2 gene transcription by

4.6-fold compared to that of untreated cells. This vitamin
C-dependent up-regulation of Runx2 was 40% reduced in
those cells concomitantly treated with vitamin D3. Similar
to the OC induction, no changes in Runx2 transcription
was observed in HRE cells under the vitamin treatment
conditions. Taken together, these results suggested that
OC gene expression in RCC is differentially regulated
by vitamin D3 and vitamin C and that both pathways
functionally interact.

Vitamin C induced apoptosis in RCC
but exhibited no toxicity to normal
renal epithelial cells

Vitamin C (ascorbic acid) or its derivatives have shown
antineoplastic properties against several malignant cell
lines [35–37]. We assessed the effect of vitamin C
on cultured RCC cells. An in vitro cytotoxicity assay
(Figure 2) showed a dose-dependent vitamin C-induced
cell death in both RCC45 and RCC42 cell lines with
50% inhibitory concentrations (IC50) of 0.3–0.6 mM.
By contrast, a higher dose of vitamin C (1.2 mM)
promoted rather than inhibited cell growth of normal
renal epithelial cells (HRE). This vitamin C-dependent
cytotoxicity of RCC cells was completely abrogated
by the addition of catalase, an enzyme that degrades
hydrogen peroxide (H2O2). This finding suggested
that H2O2 was involved in the vitamin C induced
cytotoxic pathway in RCC cells. On the other hand,
catalase did not antagonize the vitamin C-induced
HRE cell proliferation. To assess whether apoptosis
was contributing to the cytotoxic effects of vitamin
C towards RCC, we examined annexin V/PI surface
staining following treatment with vitamin C or media
alone. As shown in Figure 3, vitamin C induced a
dose-dependent early (annexin V-positive only) and late
(annexin V/PI positive) apoptosis in RCC42 cells. These
data demonstrate that cytotoxicity occurred, induced by
a high dose of vitamin C, at least in part, through the
induction of apoptosis.

Combining vitamin C and vitamin D3
potentiated the cytotoxicity of hOC
promoter-based adenoviral vectors
in cultured human RCC cells

Vitamin C and vitamin D3 together resulted in a sig-
nificant increase of hOC expression compared to single
reagent treatment (Figure 1B). These results raised the
possibility that vitamins C and D3 could synergize with
the anti-tumor effects of therapeutic genes driven by
hOC promoter on human RCC through the transcriptional
induction of exogenous hOC promoter activity. To test
this hypothesis, we evaluated two hOC promoter-based
adenoviral vectors in the presence or absence of sub-
lethal doses of vitamin C (150 nM) and vitamin D3 (5 nM)
for cytotoxicity of RCC42 cells (Figure 4). As shown in
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Figure 1. Vitamin D3 and vitamin C regulated osteoblastic gene expression in human RCC cells. (A). Basal and vitamin D3-induced
OC and VDR mRNA expression in human normal and malignant renal cell lines. RT-PCR was performed using total RNA prepared
from a human normal renal epithelial (HRE) cell line, a series of human RCC cell lines (RCC29, RCC45, RCC6 and RCC42), and
a human osteoblast cell line (MG63) cultured in the presence or absence of 5 nM vitamin D3 for 48 h. MG63 cell line was used
as a positive control for vitamin D3 action, and GAPDH was used as the RNA loading control. Quantitative RT-PCR analysis of the
induction of (B) OC and (C) Runx2 by vitamin D3 (5 nM) and vitamin C (0.15 mM), either alone or combination for 48 h, in RCC42
and HRE cells. The data were normalized to housekeeping gene HSPCB expression and presented as fold changes relative to the
vesicle control (EtOH)

Figure 4A, a conditional replication-competent Ad-hOC-
E1 [29] alone induced cytotoxicity towards RCC42 in a
dose-dependent manner. At a MOI of 1, Ad-hOC-E1 alone
and combined with vitamin C did not cause significant cell
death by day 7. The addition of vitamin D3 to the Ad-hOC-
E1 treatments induced approximately 50% cell lysis (and
25% further when vitamin C was present). Similarly, Ad-
hOC-TK/GCV treated cells (Figure 4B) showed evidence
of synergistic cytotoxicity by combining vitamin C and
vitamin D3 with Ad-hOC-TK/GCV at a MOI of 30. By con-
trast, Ad-hOC-TK/GCV and Ad-hOC-E1, either used alone
or combined with vitamins C and D3 had no cell-killing
activities in HRE cells (see Supporting information, Figure
S2), indicating the selectivity of these agents to malignant
cells.

Vitamin C enhanced the anti-tumor
effects of systemic Ad-hOC-E1 plus
vitamin D3 therapy on human RCC
xenografts in nude mice

To test the therapeutic efficacy of vitamin C and Ad-hOC-
E1/vitamin D3 treatment against human renal cancer cells
in vivo, nude mice at the age of 6–8 weeks were implanted
with RCC42 cells subcutaneously. When tumors were
established, groups of tumor-bearing mice were treated
with vitamin C only, Ad-hOC-E1 plus vitamin D3, triple
combination of Ad-hOC-E1, vitamin D3 and vitamin C,
or PBS, as the untreated control. RCC42 xenografts were
shown to be very aggressive tumors that grew to 35-
fold of its initial volume at 6 weeks (Figure 5A). A single
tail vein injection of Ad-hOC-E1 combined with vitamin
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Figure 2. Vitamin C induced H2O2-dependent cytotoxicity towards RCC cells. RCC45, RCC42 and HRE cells were cultured in the
presence of the indicated concentration of vitamin C with or without the additional catalase (100 U) for 5 days. Cell proliferation
was determined by using crystal violet staining (left panel). The relative cell number was assessed by absorbance at 590 nm after
staining (right panel). ∗p < 0.05 significantly different between groups

D3 administration suppressed tumor growth significantly
(p < 0.05). Mice drinking water that contained vitamin
C also inhibited RCC42 tumor growth with an almost
70% reduction in tumor volume (TV) compared to TV
of the untreated group. Triple therapy with Ad-hOC-
E1, vitamin D and vitamin C caused the greatest tumor
growth retardation because three out of eight animals
were completely tumor-free at the end of the treatment
period. Histological analysis (Figure 5B; hemotoxylin and
eosin) and in situ cell death assay (Figure 5B; terminal
deoxynucleotidyl transferase dUTP nick end labeling)
showed a moderate apoptosis-induced tumor lysis after
Ad-hOC-E1/vitamin D3 treatment. A robust apoptotic
response occurred within tumors of animals treated
with either vitamin C alone or with triple combination
therapy. Taken together, these results demonstrate a
synergistic/additive antitumor effect of vitamin C and

conditional oncolytic Ad-hOC-E1/vitamin D3 combination
therapy.

Discussion

Metastatic RCC is particularly resistant to classic cyto-
toxic chemotherapy and hormone therapy [38], and the
poor outcomes with cytokine-based therapies leave these
patients with an unmet clinical need for alternative thera-
peutic options. Targeted therapies have been developed to
interfere with intracellular signaling involved in cell pro-
liferation, differentiation and angiogenesis [39], thereby
inhibiting RCC tumor growth. Sorafenib and sunitinib,
the anti-angiogenic tyrosin kinase inhibitors, that target
vascular endothelial growth factor and platelet-derived
growth factor receptor pathways, have recently been
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Figure 3. Vitamin C induced RCC cells undergoing apoptosis. RCC42 cells were treated with the indicated concentration of vitamin
C for 24 h and then subjected to Annexin V-FITC and PI staining. Apoptotic cells were determined by flow cytometry. Data
were presented in the diagrams of Annexin V-FITC (x-axis) and PI (Y-axis) fluorescence intensity in a representative experiment.
Cells in the lower right quadrant indicate annexin-positive, early apoptotic cells. The cells in the upper right quadrant indicate
annexin-positive/PI-positive, late apoptotic cells

approved for use as orally administrated agents for the
treatment of metastatic RCC [40] and patients with refrac-
tory of cytokine therapy [41], respectively. Owing to the
pivotal role of mammalian target of rapamycin (mTOR), a
serine/threonine kinase in coupling growth stimuli to cell
cycle progression [42], two rapamycin derivatives, tem-
sirolimus and everolimus that bind to the FK-506 binding
protein-12 and forming a complex specifically with the
mTOR complex 1 have undergone clinical evaluation
as advanced RCC therapeutics [43,44]. First-line tem-
sirolimus administered to metastatic, poor-prognosis RCC
patients significantly prolonged overall and progression-
free survival compared to interferon-α [45]. Oral admin-
istrated everolimus prolongs progression-free survival in
metastatic RCC patients whose disease progressed on
or after treatment with sorafenib and sunitinib [46,47].

Beyond the clinical studies demonstrating efficacy, resis-
tance to currently used mTOR inhibitors may potentially
arise from positive feedback signaling through rapamycin-
insensitive mTOR complex 2 or an mTOR-independent
mechanism leading to the downstream PI3K/Akt activa-
tion [44]. Adenoviral-based gene therapy that lack of
cross-resistance with other treatment options, divergent
anti-tumor mechanism and frequently synergistic effects
[48] may thus become a promising new adjuvant modality
for patients refractory to mTOR inhibitor therapy.

Cancer-specific promoters are useful tools for accom-
plishing targeted expression: high levels of gene expres-
sion in cancer cells are needed to achieve therapeutic
efficacy and low expression levels in normal tissues of the
liver, lung and kidney are needed to minimize damage
that can jeopardize survival of the host. In the present
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Figure 4. Vitamin C synergized with hOC promoter-based adenoviral vectors to induce RCC cytotoxicity in vitro. RCC42 cells infected
with (A) conditional replication-competent Ad-hOC-E1 and (B) Ad-hOC-TK at the indicated MOI were cultured in media containing
either vitamin D3 (5 nM) or vitamin C (0.15 mM), or both, for 7 days. An additional 100 µg/ml ganciclovir (GCV) was used as the
prodrug for Ad-hOC-TK-infected cells. Cytotoxicity was determined by crystal violent staining (left panel). The relative cell number
was assessed by absorbance at 590 nm after staining (right panel). ∗∗p < 0.005; ∗∗∗p < 0.001

study, we characterized the hOC promoter-based expres-
sion vector plus vitamins C and D3 as a regulatable system
that is not only capable of finely modulating the expres-
sion of gene product to reach the therapeutic range in
renal cancer cells, but also maintaining therapeutic gene
silence in normal kidney cells to avoid harmful side-
effects. The advantages of using vitamins and hOC pro-
moter as a pharmacologically regulated system in human
gene therapy are: (i) the ligand activated rather than
silenced OC transcription which leads to a rapid induc-
tion kinetics; (ii) vitamins can be orally supplemented and
they easily penetrate the target tissue; (iii) the vitamin C
(L-ascorbic acid) and vitamin D3 (1α,25-dihydroxyvitamin
D3) are the active metabolic products, which allow a
precise calculation of the dosage for effective therapeu-
tic gene expression; and (iv) vitamins have exhibited no

potential immunogenicity in humans. The preclinical pro-
tocol of the present study has provided a set of conditions
that reflects the potential and safe clinical use of the
system.

Our quantitative real-time PCR results showed that vita-
min D3 stimulated the basal promoter activity of OC in
human RCC but not in normal HRE cells, and this vitamin
D3-dependent OC expression can be further enhanced
by vitamin C. The precise mechanisms that cause the
differential functions of vitamin D3 in the normal and
malignant renal cells are not fully understood. It has pre-
viously been suggested that vitamin D plays an important
role in RCC etiology because kidney is a major organ for
vitamin D metabolism, activity and calcium homeosta-
sis. Recent studies revealed an association between the
genetic variation of vitamin D pathway genes and the
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Figure 5. Vitamin C enhanced antitumor efficacy of Ad-hOC-E1 plus vitamin D3 therapy on RCC42 tumor xenografts in nude mice.
(A) Anti-tumor efficacy of oral vitamin C (15 g/l) and systemic AdhOC-E1 (2 × 109 pfu, i.v.) plus vitamin D3 (4 ng/dose i.p.) therapy,
alone or in combination, on human RCC xenografts grown subcutaneously in nude mice. Tumor volume was measured weekly.
∗p < 0.05 indicates significant differences from the PBS control group, n = 8 in all groups. ‡p < 0.05 vs. Ad-hOC-E1 + vitamin
D3 + vitamin C group. (B) Pathological analysis of cytopathic effects (hemotoxylin and eosin staining, upper panel) and detection
of apoptosis with a terminal deoxynucleotidyl transferase dUTP nick end labeling assay in tumor tissues of tumor-bearing nude
mice in different treated groups at the end time point (6 weeks after treatment). Magnification, ×200

increased risk of RCC [49,50]. As a potential mechanism,
common variants in VDR and/or RXR genes that are asso-
ciated with RCC alter the affinity of VDR/RXR complex
binding to the regulatory sequences, VDRE, in the pro-
moter of OC, and modulate gene expression. In RCC42
cells, we observed a weak induction in VDR mRNA upon
vitamin D treatment, which could serve as a means of
signal amplification (see Supporting information, Figure
S1). Unlike OC gene, human VDR promoter contains no
consensus VDRE [51], suggesting that vitamin D does
not directly activate expression of its receptor though tra-
ditional steroid hormone receptor-mediated pathways. It
has been shown that rapid activation of protein kinase C by
vitamin D3 caused an increase in VDR mRNA expression in
rat chondrocytes [52], providing an alternate method for
the vitamin D to modulate gene expression. In osteoblastic
cells, Runx2 plays a key role in the vitamin D3-dependent
stimulation of the OC gene promoter by recruiting the
transcriptional co-activator p300 to the OC promoter and
facilitating the subsequent interaction of p300 with VDR

upon ligand stimulation [53]. Likewise, vitamin C syn-
ergized with vitamin D3 to activate hOC expression in
RCC cells and appeared to involve the upregulated Runx2
that previously has stabilized the binding of the VDR to
the VDRE. This tight functional relationship between VDR
and Runx2 transcriptional factors in the up-regulation of
hOC gene expression strengthens the differentiation of
our inducible RCC tumor targeting strategy using triple
agents of hOC promoter-based adenoviral vectors with
vitamin C and vitamin D3.

Mechanisms of vitamin C-mediated apoptosis in
numerous tumor types have included the down-regulation
of iron uptake in neuroblastoma and melanoma cells
[54,55], induction of cell cycle arrest in melanoma
cells [56], interference with intracellular Ca2+ release
in hepatoma cells [57], activation of the apoptosis-
inducing factor factor in human breast cancer cells
[58] and an induction of autophagy in pancreatic
cancer cells [59]. The most common theory of vitamin
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C-dependent tumor toxicity relates to its oxidation-
reduction properties. In the present study, we showed
a growth-promoting effect of vitamin C in normal renal
epithelial cells (HRE), in which its antioxidant function
may protect cells from oxidative stress. On the other
hand, vitamin C also possesses prooxidant activity, which
leads to H2O2-dependent cytotoxicity that significantly
inhibited growth of cultured RCC cells and aggressive
RCC xenografts in mice. The mechanism(s) of vita-
min C production of H2O2 that induce preferential cell
death in human RCC cells but not normal renal cells is
unclear. One possible clue is that the lower expression
of antioxidant enzymes, catalase, superoxide dismutase
and glutathione peroxidase in tumor cells results in reac-
tive oxygen species-induced tumorigenesis and sustained
tumor progression [60]. However, although vitamin C-
mediated RCC cytotoxicity can be abolished by exogenous
catalase, the intracellular H2O2 production was decreased
rather than increased over time following vitamin C expo-
sure, as assessed by flow cytometric analysis using a
probe of fichlorofluorescein diacetate (data not shown).
Our data indicated that accumulation of intracellular
H2O2 that causes DNA damage is not likely the mech-
anism by which vitamin C kills RCC cells. A recent study
[61] demonstrated that vitamin C-mediated pancreatic
cancer cell death was dependent on extracellular H2O2

formation with ascorbate radical as the electron donor.
A second possible mechanism is that vitamin C gener-
ates extracellular H2O2 that targets membrane lipids, and
forms hydroperoxides or reactive intermediates that are
quenched or repaired in normal renal cells but not in
sensitive RCC cells. New insights may follow from future
studies of molecular profiling analysis of resistant and sen-
sitive cells in regards to redox gene expression or signal
transduction.

We have previously compared the in vivo activities
between basal and vitamin D3-induced Ad-hOC-E1 [29],
and observed the lower degree of therapeutic efficacy
by Ad-hOC-E1 in the absence of vitamin D3. In the
present study, we found that, although both Ad-hOC-
E1/vitamin D3 and vitamin C alone effectively slow
down the progression of RCC tumors by 55% and 70%,
respectively, complete tumor regression was observed
by a combination of these three agents in three out of
eight tumors (37.5%) treated. In addition, the remaining
tumors receiving triple-agent therapy were also signif-
icant smaller than that treated with the other two
protocols. It has been reported that, other than direct
cytotoxicity towards cancer cells, vitamin C can affect
cell migration and tube vessel formation of endothe-
lial cells and thereby can inhibit angiogenesis [62].
The triple-pronged action of vitamin C in transcrip-
tional activation of hOC promoter, apoptosis induction

and anti-angiogenesis may account for the massive tumor
regression in our experimental animal model of combina-
tion therapy.

In summary, the present study has provided the first
demonstration that the human OC promoter was suit-
able for transcriptional targeting of RCC when com-
bined with its transactivators vitamins C and D3. Osteo-
calcin promoter-directed gene therapy using adenovi-
ral vectors is undergoing clinical trials for targeting
metastatic prostate cancer [24,26,63]. Both vitamin C
[64–66] and vitamin D3 [67,68] are also Food and
Drug Administration-approved nutritional supplements
used for cancer prevention and treatment. Our thera-
peutic strategy therefore could move rapidly from the
preclinical development to the clinic by using agents
that have been approved for clinical trials of tumors
other than renal cancer and that may have benefits in
RCC patients with poor prognosis and limited therapeutic
options.
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Supporting information

Figure S1. Attenuation of vitamin D3-induced OC expres-
sion in RCC cells by VDR-specific targeting siRNA. A
representative RCC cell line (RCC42) transfected with
VDR-specific targeting siRNA or nontargeting siRNA con-
trol (Ctr) was cultured in the presence or absence of 5
nM vitamin D3 for 48 h and then subjected to RT-PCR
analyses. MG63 treated with vitamin D3 was used as the
positive control for VDR and OC expression, and GAPDH
was used as the RNA loading control.

Figure S2. Combination of hOC promoter-based aden-
oviral vectors and vitamins had no effect on the sur-
vival of normal renal epithelial cells in vitro. Normal
renal epithelial cells (HRE) infected with (A) conditional
replication-competent Ad-hOC-E1 and (B) Ad-hOC-TK at
the indicated MOI were cultured in media containing
either vitamin D3 (5 nM) or vitamin C (0.15 mM), or
both for 7 days. Additional 100 ı̀g/ml ganciclovir (GCV)
was used as the prodrug for Ad-hOC-TKinfected cells.
Cytotoxicity was determined by crystal violent staining.
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