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Tumor and Stem Cell Biology

The Epithelial-Mesenchymal Transition Mediator S100A4
Maintains Cancer-Initiating Cells in Head and Neck Cancers

Jeng-Fan Lo1–3, Cheng-Chia Yu1,4, Shih-Hwa Chiou1,5, Chih-Yang Huang6–8, Chia-Ing Jan9,
Shu-Chun Lin1, Chung-Ji Liu10, Wen-Yuan Hu11, and Yau-Hua Yu1,2,5

Abstract
Cancer-initiating cells (CIC) comprise a rare subpopulation of cells in tumors that are proposed to be

responsible for tumor growth. Starting from CICs identified in head and neck squamous cell carcinomas
(HNSCC), termed head and neck cancer-initiating cells (HN-CIC), we determined as a candidate stemness-
maintaining molecule for HN-CICs the proinflammatory mediator S100A4, which is also known to be an inducer
of epithelial-mesenchymal transition. S100A4 knockdown in HN-CICs reduced their self-renewal capability and
their stemness and tumorigenic properties, both in vitro and in vivo. Conversely, S100A4 overexpression in
HNSCC cells enhanced their stem cell properties. Mechanistic investigations indicated that attenuation
of endogenous S100A4 levels in HNSCC cells caused downregulation of Notch2 and PI3K (phosphoinositide
3-kinase)/pAKT along with upregulation of PTEN, consistent with biological findings. Immunohistochemical
analysis of HNSCC clinical specimens showed that S100A4 expression was positively correlated with clinical
grading, stemness markers, and poorer patient survival. Together, our findings reveal a crucial role for S100A4
signaling pathways in maintaining the stemness properties and tumorigenicity of HN-CICs. Furthermore, our
findings suggest that targeting S100A4 signaling may offer a new targeted strategy for HNSCC treatment by
eliminating HN-CICs. Cancer Res; 71(5); 1912–23. �2010 AACR.

Introduction

Accumulating data support the hierarchical model of can-
cer-initiating cells (CIC) or cancer stem cells (CSC) in that
each tumor formation is governed by a rare subpopulation of
cells with self-renewal capacity (1, 2). CICs have been shown to
have capacities of promoting tumor growth, tumor regenera-
tion, metastatic progression, and contributing to radioresis-
tance and chemoresistance (3, 4). We previously enriched a
subpopulation of head and neck cancer-initiating cells (HN-
CIC) from head and neck squamous cell carcinoma cells
(HNSCC) by sphere formation assay (5). The enriched HN-

CICs possess the properties of both stemness and malignant
tumors. However, it is still elusive with regard to the molecular
mechanistic understanding, leading to the phenotypic proper-
ties of HN-CICs.

Epithelial-mesenchymal transition (EMT), a process by
which epithelial cells lose their polarity and later acquire a
migratory mesenchymal phenotype, is one of the crucial
processes that induce tumor invasion and metastasis (6).
Researchers have shown that EMT could promote stem cell
(SC) properties and further generate cells with the features of
breast CSCs (7–9). Therefore, the study of how modulators of
EMT processes operate or manifest the stem-like properties
and the tumorigenicity of HN-CICs is warranted to shed light
for future research.

S100A4, a member of calcium-binding proteins, is directly
controlled by Wnt/b-catenin signaling pathway as a master
mediator in EMT (10). Involved in a variety of biological effects
including cell motility, survival, differentiation, and cytoske-
letal organization (11–14), S100A4 was also shown to play an
important role in both stem cell and cancer biology. For
instance, S100A4 is considered to be a normal stemness
marker and plays a crucial role in the self-renewal of bulge
stem cells (11, 13, 14). Mice lacking S100A4 gene suppresses
the tumor development and metastasis (15). S100A4 is also
established as a regulator of metastasis, while it is ectopically
overexpressed in tumor cells where, consequently, it promotes
the metastatic phenotype (16, 17). In contrast, inhibition of
S100A4 expression reduces the metastatic capacity of tumor
cells (18). Recent data point out that S100A4 is highly
expressed in human embryonal carcinoma cells but not in
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human embryonic stem cells (ESC) by a comprehensive
quantitative proteomic analysis (19). In addition, S100A4 is
significantly upregulated in mouse glioma CSCs (20). Others
have shown the prognostic significance of S100A4 in many
solid tumors including breast cancer, colon cancer, and
bladder cancer (21–23). However, the role of S100A4 in HNSCC
has not been well characterized.
Herein, we show that alteration of S100A4 expression affects

CICs properties in HNSCCs. In addition, immunoactivity of
S100A4 on HNSCC tumor tissues correlates with clinical
grading, survivals, and stemness markers. Thus, our study
implicated that S100A4 played an important role in the
pathogenesis of HNSCC and S100A4 might be a potential
therapeutic target for HNSCC.

Materials and Methods

Cell lines cultivation and enrichment of HN-CICs from
HNSCCs
Two well-established HNSCC cell lines (SAS and OECM1)

and 1 primary HNSCC cell line, used in this research, were
derived from HNSCCs (5). In brief, originally, SAS and primary
HNSCC were grown in Dulbecco's modified Eagle's medium
(DMEM), and OECM1 was grown in RPMI supplemented with
10% FBS, respectively. For enrichment of HN-CICs, the above 3
cell lines were then cultured in tumor sphere medium con-
sisting of serum-free DMEM/F12 medium (GIBCO), N2 sup-
plement (GIBCO), 10 ng/mL human recombinant basic
fibroblast growth factor, and 10 ng/mL epidermal growth
factor (R&D Systems; ref. 24).

Microarray differential expression analysis
Gene profiling was done using Affymetrix Human Genome

U133plus2.0. All CEL files were preprocessed using "justRMA"
and standardized with mean ¼ 0 and SD ¼ 1. The fuzzy
c-mean (FCM) algorithms of "Mfuzz" package was used to
analyze temporal gene expression patterns of our SAS HN-
CICs (25). We focused the analysis on 63 EMT-related genes
(204 probe sets). Parameters in FCM were set as suggested
(m ¼ 1.25; c ¼ 6; ref. 25). Functional annotation of gene
clusters was carried out with the Web-based program of
DAVID (Database for Annotation Visualization and Integrated
Discovery; ref. 26). Modified t test of "limma" package (27) was
used for differential gene expression analysis between the
control- or S100A4-knockdown HN-CICs, controlled for false
discovery rate (FDR) < 0.05 (28). Two manually curated gene
sets were used: 1999 EMT and calcium signaling-related genes
(4,235 probe sets, EMT-Calcium; ref. 29) and, 3,939 stemness
genes (8,606 probe sets, ESC; refs. 30, 31).

Network analysis of human protein–protein
interactions
Perturbed genes after small hairpin RNA interference

(shRNAi)–mediated knockdown of S100A4 were mapped in
the protein–protein interactions downloaded from the
Human Protein Reference Database (32). Interactions would
bemapped only when both of the interacting genes were listed
in the EMT-Calcium or ESC sets. Topological characteristics

were examined among the first- and second-order connecting
neighbors of the mapped genes, that is, subnetworks of the
shortest path of a maximum of 3 between any pair of these
significantly perturbed genes (29). Analytical analyses were
done in R environment (33) and displayed by Cytoscape (34).

Aldehyde dehydrogenase activity analysis
Aldehyde dehydrogenase activity was examined with ALDE-

FLUOR kit (Stem cell Technologies) and was done according
to manufacturer's guidelines (35).

Side population analysis
Cells were resuspended at 1 � 106/mL in prewarmed

DMEM with 2% FCS. Hoechst 33342 dye was added at a final
concentration of 5 mg/mL in the presence or absence of
verapamil (50 mmol/L; Sigma) and was incubated at 37�C
for 90 minutes. The cells were then washed with ice-cold HBSS
with 2% FCS. Propidium iodide at a final concentration of
2 mg/mL was added to the cells to gate viable cells. The
Hoechst 33342 dye was excited at 357 nm and its fluorescence
was dual-wavelength analyzed (blue, 402–446 nm; red, 650–
670 nm). Analyses were done on a FACSVantage system (BD
Biosciences).

Subcutaneous xenografts in nude mice
All the animal practices in this study were in accordance

with the institutional animal welfare guideline of Taipei
Veterans General Hospital (VGH), Taiwan. Cells were injected
subcutaneously into BALB/c nude mice (6–8 weeks). Tumor
volume (TV) was calculated using the following formula: TV
(mm3)¼ (Length�Width2)/2 and then analyzed using Image
Pro-Plus software.

Patient subjects and immunohistochemistry
Between 1994 and 1997, 102 patients with operable head and

neck cancer, without histories of radiation or chemotherapy,
underwent surgery at theDepartment of Oral andMaxillofacial
Surgery, Mackay Memorial Hospital. This research follows the
tenets of the Declaration of Helsinki, and all samples were
obtained after informed consent from the patients. Patients’
tissue sampleswith different stages of oral cancer were spotted
on glass slides for immunohistochemical staining (Supplemen-
tary Table S1). After deparaffinization and rehydration, antigen
retrieval was processed within 1X-Trilogy buffer (Biogenics).
The slides were immersed in 3% H2O2 for 10 minutes, washed,
and then blocked with serum (Vestastain Elite ABC kit; Vector
Laboratories), followed by incubation with the primary anti-
S100A4 antibody (code no. A5114; Dako; refs. 36–38). Tissue
slides were then stained with biotin-labeled secondary anti-
body and incubated with streptavidin–horse radish peroxidase
conjugates. Afterward, the tissue sections were immersed with
chromogen 3,30-diaminobenzidine plus H2O2 substrate solu-
tion (Vector DBA/Ni substrate kit, SK-4100; Vector Labora-
tories). Hematoxylin was applied for counterstaining (Sigma
Chemical Co). Pathologists scoring the immunohistochemistry
(IHC) were blinded to the clinical data. The interpretation was
done in 5 high-power views for each slide, and 100 cells per view
were counted for analysis.

S100A4 Modulates Head and Neck Cancer–Initiating Cells

www.aacrjournals.org Cancer Res; 71(5) March 1, 2011 1913

 American Association for Cancer Research Copyright © 2011 
 on March 23, 2011cancerres.aacrjournals.orgDownloaded from 

Published OnlineFirst December 17, 2010; DOI:10.1158/0008-5472.CAN-10-2350

http://cancerres.aacrjournals.org/
http://www.aacr.org/


Statistical analysis
Statistical package of social sciences software (version

13.0; SPSS Inc.) was used for statistical analysis. The inde-
pendent Student's t test or ANOVA was used to compare
the continuous variables between groups, whereas the
c2 test was applied for the comparison of dichotomous
variable. The Kaplan–Meier estimate was used for survival
analysis, and the log-rank test was selected to compare the
cumulative survival durations in different patient groups.
The level of statistical significance was set at 0.05 for all
tests.

Results

Elevated expression of S100A4 in HN-CICs
Cells undergoing EMT processes promote the gain of

stem-like properties in breast carcinoma cells (8, 9). There-
fore, we were interested in knowing whether EMT-related
genes were differentially expressed in the enriched HN-
CICs from SAS cells under 2, 3, 5, and 9 weeks of cultivation
within defined serum-free selection medium. We observed
a clear separation of EMT-related gene expression patterns
in 6 clusters without redundancy (Fig. 1A and B and
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Figure 1. Expression profiles of EMT-related genes in enriched HN-CICs. The differential transcriptome profiles between SAS cells and SAS-derived
HN-CICs under 2, 3, 5, or 9 weeks of cultivation with defined serum-free selection medium were collected and analyzed. A, cluster 4 differential gene
expression profile. B, the heat maps of the cluster 4 transcripts. Red and blue indicate high and low expression levels, respectively. C, the expression of
S100A4 transcript in parental HNSCCs (SAS and OECM1) or derived HN-CICs was detected by real-time RT-PCR analysis (data are means � SD of triplicate
samples from 3 experiments; left). Protein level of S100A4 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in parental HNSCC or HN-CIC cells
were analyzed by immunoblotting (middle). Intracellular localization of S100A4 of enriched HN-CICs was examined by immunofluorescence. Magnification,
�200 (right).
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Supplementary Figs. S1A and S2A). Cluster 4 showed a
significant increasing trend of gene activities (Fig. 1A).
S100A4, a well-known player in the EMT and metastasis
processes, was identified in cluster 4 showing induced
activities in HN-CICs (Fig. 1A and B). Functional annotation
of cluster 4 showed enrichment in EMT, mesenchymal cell
differentiation, and cell development (Table 1). Empirically,
the amount of S100A4 transcripts of enriched HN-CICs
derived from both SAS and OECM1 HNSCCs were signifi-
cantly increased in comparison with that of the parental
HNSCCs, by either real-time PCR (Fig. 1C, left panel) or
reverse transcriptase PCR (RT-PCR) analysis (Supple-
mentary Fig. S1B). Accordingly, the Western blotting
data showed that the protein levels of S100A4 in enriched
HN-CICs were also upregulated (Fig. 1C, middle panel).
Furthermore, immunofluorescent staining displayed that
the intracellular levels of S100A4 in the tumor spheres
derived from SAS cells were dramatically increased
(Fig. 1C, right panel).

Effect of S100A4 knockdown on HNSCC and HN-CICs
To further investigate the crucial role of S100A4 upregula-

tion in maintaining the biological properties of HN-CICs, we
conducted loss-of-function approach by shRNAi-mediated
knockdown of S100A4 in HNSCCs. Stable S100A4 knockdown
in SAS, primary HNSCC, and OECM1 cells was achieved by
transduction with lentivirus-expressing shRNA targeting
S100A4 (Sh-S100A4-1 and Sh-S100A4-2), and lentivirus-expres-
sing shRNA against luciferase (Sh-Luc) was used as a control.
The amount of S100A4 transcript was significantly decreased
in stable S100A4-knockdown HNSCCs by real-time PCR
analyses (Supplementary Fig. S3A, left panels). Western blot
analysis further confirmed that both Sh-S100A4-1 and
Sh-S100A4-2 markedly reduced S100A4 protein expression
in both HNSCCs (SAS and primary HNSCC cells; Fig. 2A, left
panels).
As successful sphere formation of CSCs under serial pas-

sages is a key behavior of normal SCs and CSCs for evaluating
in vitro self-renewal property (39), we then determined the
sphere formation capacity of HNSCCs with stable S100A4
knockdown. Knockdown of S100A4 markedly decreased the
ability of HNSCCs to form tumor spheres (Supplementary
Fig. S3A, right panels) and was indicated by the reduction in

sphere formation efficiency after serial passages (Fig. 2A, right
panels). In addition, the enzymatic activity of aldehyde dehy-
drogenase (ALDH), which has been identified as a CSC marker
(35), was also significantly reduced in HNSCCs with S100A4
downregulation (Fig. 2B, left panels). It has been shown that
tumor-derived side population (SP) cells display the charac-
teristics of cancer stem cells (40). Here, we showed that
S100A4 depletion significantly decreased the SP in primary
HNSCC and OECM1 cells (Fig. 2B, middle and right panels;
Supplementary Fig. S3B, left panels). Furthermore, stable
S100A4 knockdown also decreased ABCG2-positive cells in
which high expression of ABCG2 possibly contributes to SP
phenotype and drug resistance in many cancers (Supplemen-
tary Fig. S3B, right panels; ref. 41). In addition, stable S100A4-
knockdown HNSCCs also dramatically decreased "cancer
stemness" genes (Oct-4 and Nanog) expression (Supplemen-
tary Fig. S3C).

To further investigate whether S100A4 expression plays a
role in maintaining self-renewal or cancer stem-like properties
of HN-CICs directly, the SAS or primary HNSCC-derived tumor
spheres, afterward, transduced with Sh-S100A4 lentivirus, did
not maintain floating spheres but showed more attached
epithelial-like cells (Fig. 2C). Instead, tumor spheres after
Sh-S100A4 lentiviruses infection displayed enhanced expres-
sion of epithelial differentiationmarker, CK18 (Fig. 2D, left and
middle panels), and also decreased "cancer stemness" genes
(Oct-4 and Nanog) expression (Supplementary Fig. S3D). To
determine whether the reduction in tumor sphere formation
efficiency with S100A4 downregulation is due to decreased
HN-CIC survival, we determined the percentage of apoptotic
cells by Annexin V staining. Primary HNSCC or SAS-derived
HN-CICs transduced with Sh-S100A4 lentivirus significantly
increased the percentage of Annexin V–positive cells (Fig. 2D,
right panel; data not shown). Together, these data further
support that the depletion of S100A4 resulted in a reduction of
CICs population in HNSCCs.

The cell migratory/invasion/colony formation abilities of
HNSCCs (SAS and OECM1) with stable S100A4 knockdown
were also significantly reduced (Supplementary Fig. S4A–C).
Furthermore, stable S100A4 knockdown abrogated EMT sig-
natures with upregulation of E-cadherin and downregulation
of vimentin by immunoblotting analyses (Supplementary
Fig. S4D).

Table 1. Functional annotation of cluster 4

Cluster Number of
probes

Functional annotation Geometric mean
of P-values

Modified fisher
exact P-value

4 25 GO:0001837�epithelial to 3.45E-4 6.02E-09
mesenchymal transition

GO:0048762�mesenchymal 7.42E-08
cell differentiation

GO:0014031�mesenchymal 7.42E-08
cell development

GO:0048468�cel development 0.002571
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Figure 2. Depletion of S100A4 impairs self-renewal and stemness properties but enhances cell differentiation and apoptosis of HN-CICs. A, protein
level of S100A4 in stable S100A4-knockdown (Sh-S100A4-1 or Sh-S100A4-2) HNSCCs (SAS and primary HNSCC) was detected byWestern blotting (left, top
and bottom). Stable S100A4-knockdown HNSCCs were grown under defined serum-free selection medium for primary spheres formation and then serial
passage spheres, including secondary sphere and tertiary sphere established from primary sphere after every 3 weeks of incubation, were generated. The
numbers of primary spheres, secondary spheres, and tertiary spheres of SAS or primary HNSCC cells with stable S100A4 knockdown were calculated,
respectively (right top and bottom).*, P < 0.05; **, P < 0.01. B, the ALDH enzymatic activity of Sh-S100A4 and control (Sh-Luc) HNSCCs (SAS and primary
HNSCC) were examined. SP cells of primary HNSCC (middle) or OECM1 (right) in Sh-S100A4 and control OECM1 cells were examined, respectively.*,
P < 0.05; **, P < 0.01. C, SAS or primary HNSCC-derived HN-CICs infected with Sh-S100A4-1, Sh-S100A4-2, or Sh-Luc lentivirus were further cultivated under
the serum-free defined selection medium, and the cellular morphology of virus infected cells were observed. Arrows indicate the attached epithelial-like cells.
D, representative expression profile of CK18 in HN-CIC cells [SAS (left) and primary HNSCC (middle)] infected with Sh-Luc or Sh-S100A4-1 lentivirus was
assessed by fluorescence activated cell sorting. Single cell from primary HNSCC cells was stained with Annexin V (right). Results are means� SD of triplicate
samples from 3 experiments. *, P < 0.05; **, P < 0.01.
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Downregulation of S100A4 attenuates tumorigenicity of
HNSCCs in vivo
We next sought to determine whether downregulation of

S100A4 expression reduces the tumor-forming ability of
HNSCCs in vivo. As shown in Table 2, SAS control cells
generated tumor when 2.5 � 105 cells were injected into
nude mice (6/6 mice); however, stable S100A4-knockdown
SAS cells inefficiently gave rise to a new tumor at the injection
of 5 � 105 cells in 1 of 6 mice. In addition, knockdown of
S100A4 in SAS cells significantly reduced the tumor volumes
(Fig. 3A, top and middle panels; *P < 0.05) and prolonged
the survival of nude mice (Fig. 3A, bottom panel; **P < 0.01).
Our data indicate that downregulation of S100A4 diminished
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Table 2. Tumorigenicity of SAS-Sh-Luc and
SAS-Sh-S100A4 Cells in Nude Xenotransplant
Assay

Cell Numbers for Injection

2�106 1�106 5�105 2.5�105

SAS-Sh-Luc 6/6 6/6 6/6 6/6
SAS-Sh-S100A4-1 2/6 2/6 1/6 0/6

Summary of the in vivo tumor growth ability of stable
S100A4-knockdown and Sh-Luc SAS cells examined by
xenotransplantation
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the tumorigenicity of HNSCCs. Next, we addressed whether
targeting S100A4 could represent a potential therapeutic
treatment. We first injected parental SAS cells into nude mice
and then allowed the tumors to be established for 12 days.
Tumor-bearing mice were then injected intratumorally with
lentivirus-expressing either Sh-Luc as a control or Sh-S100A4
as a therapeutic treatment target. Apparently, tumor-bearing
mice receiving lentivirus-expressing Sh-S100A4 displayed
retarded tumor growth (Fig. 3B, top panel and middle panels;
*P < 0.05) and prolonged lifespan (Fig. 3B, bottom panel; **P <
0.01).

Overexpression of S100A4 in HNSCCs enhances
stemness properties and tumorigenic potentials

To evaluate whether overexpression of S100A4 could
enhance the stemness and tumorigenic properties of HNSCCs,
we generated stable S100A4-overexpressing HNSCCs through
lentiviral-mediated transduction. Total proteins from S100A4-
overexpressing HNSCCs displayed elevated expression of
S100A4 and vimentin but decreased expression of E-cadherin
(Fig. 4A, left panel). The S100A4-overexpressing HNSCCs also
showed significantly enhanced tumor sphere-forming capa-
city, both in size and in number, within 2 weeks of cultivation
under defined serum-free medium (Fig. 4B and Supplemen-
tary Fig. S5A). Moreover, S100A4-overexpressing HNSCCs,
under cultivation with defined serum-free medium for 2

weeks, displayed increased protein level of Oct-4 and Nanog
(Fig. 4C). The S100A4-overexpressing HNSCCs also displayed
significantly increased SP cells (Fig. 4D and Supplementary
Fig. S5B). Furthermore, we showed that S100A4 overexpres-
sion also resulted in increased ability on in vitro cell migration
(Supplementary Fig. S5C) and cell invasion (Supplementary
Fig. S5D). Collectively, these results suggest that S100A4 over-
expression promotes stemness properties and in vitro tumor-
igenicity of HNSCCs.

S100A4 IHC study in HNSCC patients
The expression profile of S100A4 in oral squamous cell

carcinoma (OSCC) has been evaluated with controversial
results (42, 43). The mRNA level of S100A4 is significantly
downregulated in 27 cases of OSCCs/their pairwise normal
controls obtained from Sudanese patients (43). However,
Moriyama-Kita and colleagues showed the positive correla-
tion of S100A4 expression with invasion and metastasis in 41
primary OSCC tissues of Japan patients (42). The controversy
could be the result of different patient populations or sample
sizes.

To thoroughly investigate the expression profile of S100A4
during the development of head and neck cancers in
HNSCC patients, we established the ontogeny of S100A4
expression by tissue immunohistochemical staining with
a panel of specimen array of 102 HNSCC patients. The
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clinicopathologic features of the subjects are summarized in
Supplementary Table 1. We observed that elevated expres-
sion of S100A4 was highly correlated with medium to poor
differentiation (P < 0.0001), tumor stage (P < 0.0001), lymph
node metastasis (P < 0.0001), and advanced staging (P <
0.0001) of head and neck cancers (Fig. 5A and Table 3). In
addition, we found more nuclear and cytoplasmic staining of
S100A4 in the moderately to poorly differentiated HNSCC
tissues than those of well-differentiated HNSCC tissues
(Fig. 5A).

Poor overall survival rate and high recurrence of
HNSCC patients were positively associated with S100A4
expression
To determine the prognostic significance of S100A4

expression in patients with HNSCC, Kaplan–Meier survival
analyses were carried out. These analyses showed that an
overall worse survival rate was associated with the S100A4
IHC-positive patients in comparison with the negative ones

(Fig. 5B, left panel). In addition, HNSCC patients with
intense S100A4 expression were also associated with greater
recurrence status (Fig. 5B, right panel). Together, these
results show a significantly positive correlation between
higher expression of S100A4 and tumor progression in
HNSCC.

Coexpression profile between S100A4 and stemness
markers, Nanog, Oct-4, and CD133, of HNSCC

Furthermore, we wanted to understand the expression
relationship between S100A4 and the known stemness mar-
kers (Nanog, Oct-4, and CD133) from our previous findings on
HNSCC (5). Of the 34 HNSCC patients’ tumorous tissues,
which were previously immunohistochemically stained with
Nanog, Oct-4, or CD133, respectively (5), we observed
the significant coexpression between S100A4 and Nanog
(P < 0.001; Table 4) and S100A4 and Oct-4 (Table 4, P <
0.05) but not in S100A4 and CD133 (Table 4, P ¼ 0.138), with
further staining against S100A4 antibodies.
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S100A4 knockdown causes significant changes of
calcium signaling, EMT, ESC, and developmental
(Notch2) and cell survival (PTEN/PI3K/Akt)-related
transcriptomes

By examining transcriptomic changes after shRNAi-
mediated knockdown of S100A4 in HNSCCs, 35 genes in
EMT-Calcium (Supplementary Fig. S6A) and 78 genes in ESC
gene sets (Supplementary Fig. S6B) were perturbed. Inter-
relationships among the perturbed genes were mapped in
the human protein-protein interactions (Fig. 6A). S100A4,

with 14 neighbors in the EMT-Calcium networks, was the
only connecting hub for MYH4, SEPT, and PPFIBP1 (Fig. 6A,
inset). ACTA1, TPM3, and TP53 were also highly connected
(Fig. 6A, inset). Network topological analysis among the first-
and second-order neighbors of the mapped perturbed genes
highlighted important hubs in the major subnetwork show-
ing that EMT-Calcium processes might be "interregulated"
with the stemness behaviors. First, a significant overlap
among the EMT-Calcium and ESC gene sets was noticed
(Fig. 6A and Supplementary Fig. S6A and B). Second, some of
the perturbed genes such as CD47, Notch2, TPM3, and NFYB
resided as significant hubs linking the EMT-Calcium and
ESC interactions. However, despite the genes such as ACTA1,
CAV, CASP3, ESR1, EGFR, SP1, and TP53 were likewise
connecting other intermodular hubs, we did not find sig-
nificant changes of gene activity. To further study the
possible mechanisms involved in S100A4-mediated stem-
ness and tumorigenic properties, we showed that knock-
down of S100A4 decreased Notch2 and PI3K/pAkt expression
and increased PTEN expression in HNSCCs (Fig. 6B and
Supplementary Fig. S6A and B). These results suggested that
Notch and PTEN/PI3K/Akt signaling played a significant role
in mediating CIC characteristics; moreover, S100A4 might
interregulate to modulate such HN-CIC behaviors.

Discussion

In the present study, we directly evaluated the role of
S100A4 in the maintenance of stemness characteristics and
tumorigenic potential of HNSCCs by lentiviral shRNAi-
mediated knockdown and lentiviral-mediated overexpression
of S100A4 (Figs. 2–4). Depletion of S100A4 decreased the
stemness properties of HNSCCs and HN-CICs, both in vitro

Table 3. Table of S100A4 expression and clinicopathologic variables in 102 HNSCC patients

Variables (n ¼ 102) � (%) þ (%) þþ (%) P

Age
� 54 38 9 (24) 18 (47) 11 (29) 0.472
< 54 64 21 (33) 23 (36) 20 (31)

Differentiation
Well 39 18 (46) 19 (49) 2 (5)
Moderate to Poor 63 12 (19) 22 (35) 29 (46) ****P < 0.001

T-stage
Precancer-II 29 18 (62) 6 (21) 5 (17)
T3-T4 73 12 (16) 35 (48) 26 (36) ****P < 0.001

Lymph node Metastasis
N ¼ 0 57 29 (51) 28 (49) 0 (0)
N � 1 45 1 (2) 13 (29) 31 (69) ****P < 0.001

Stage
Precancer-II 20 16 (80) 4 (20) 0 (0)
III-IV 82 14 (17) 37 (45) 31 (38) ****P < 0.001

Note: Chi-Square test. (�, 0–10% positive cells; þ, 10–50% positive cells; more than 50% positive cells).

Table 4. Coexpression profiles between
S100A4 and Nanog, Oct-4, or CD133 of
34 HNSCC patients was examined
immunohistochemically

S100A4

Negative Positive

Nanoga Negative 23% (8/34) 9% (3/34)
Positive 9% (3/34) 59% (20/34)

Oct-4b Negative 23% (8/34) 9% (3/34)
Positive 12% (4/34) 56% (19/34)

CD133c Negative 21% (7/34) 15% (5/34)
Positive 18% (6/34) 46% (16/34)

a P < 0.001 Fisher extract test.
b P < 0.005 Fisher extract test.
c P ¼ 0.138 Fisher extract test.
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and in vivo (Figs. 2 and 3). In contrast to S100A4-knockdown
experiments, overexpression of S100A4 enhances tumor
sphere-forming capability, increases the number of SP cells,
and promotes migration/invasion ability of HNSCCs (Fig. 4).
Furthermore, analysis of the cell survival and differentiation
ability of isolated HN-CICs revealed that loss of S100A4 caused
a reduction in the CIC subpopulation and an increase in the
apoptotic and differentiated cells in HN-CICs (Fig. 2). Knock-
down of S100A4 also lessened tumor-initiating activity (Fig. 3).

These results indicate that S100A4 directly contributes to the
self-renewal and survival of HN-CICs. In addition, our clinical
data indicate that higher S100A4 expression correlates with
HNSCC tumor progression and lymph node metastasis and
contributes to patient mortality and relapse (Fig. 6). Of note,
the expression profile of S100A4 is significantly correlated with
stemness marker such as Nanog and Oct-4 but not CD133
(Table 4) in HNSCC. All of these suggest that stemness
properties mediated by S100A4 indeed play instrumental roles
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Figure 6. S100A4 knockdown affects molecular mechanisms involved in developmental (Notch2) and cell survival (PTEN/PI3K/Akt) signaling pathways. A,
major subnetwork of first- and second-order neighbors of significantly perturbed genes after shRNAi-mediated knockdown of S100A4. Node coloring
indicates gene activities. Red, induced; green, suppressed; node size, number of neighbor genes; node border and edge coloring, gene sets—pink, ESC; blue,
EMT-Calcium; and orange, both. Neighbor genes of S100A4 are illustrated in the inset. B, total proteins from Sh-Luc- and Sh-S100A4–expressing HNSCCs
were prepared and analyzed by immunoblotted with anti-Notch2, anti-PTEN, anti-pAKT, anti-PI3K, or anti-GAPDH antibodies as indicated.
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in the tumorigenicity of HNSCC. Finally, through transcrip-
tome-profiling analysis again, we discovered that knockdown
of S100A4 affected EMT-Calcium-ESC related genes such as
TP53, Notch2, PTEN, and PI3K (Fig. 6). The Notch and PTEN/
PI3K/Akt signaling pathways have been shown for regulating
self-renewal and tumorigenicity of SCs/CSCs. Although the
precise role of S100A4 in Notch2, and PTEN/PI3K/Akt signaling
within cancer cells, remains to be elucidated, we are the first
group to show that S100A4 regulates Notch2 and PTEN/PI3K/
Akt expression. We further extended findings by Harris and
colleagues that S100A4 is significantly upregulated not only in
glioma CSCs cells (20) but also in HN-CICs. Together, all these
findings highlight the importance of aberrant expression of
S100A4 in neoplastic process and upregulation of S100A4
plays an important role in CSC theory.

We found more nuclear and cytoplasmic staining of S100A4
in the moderately to poorly differentiated HNSCC tissues
(Fig. 5A). Grigorian and colleagues and Fernandez-Fernandez
and colleagues have shown that S100A4 directly interacts with
P53 after Ca2þ binding (44, 45). Lin and colleagues report that
P53 negatively regulates the transcriptional activity of stem
cell marker, Nanog (46). We also found that the S100A4
promoter was most hypermethylated in HNSCCs but hypo-
methylated in our enriched HN-CICs (data not shown). There-
fore, our current hypothesis is that epigenetic modifications of
the promoter region of S100A4 gene regulates S100A4 expres-
sion; consequently, S100A4 plus Ca2þ abrogates the negative
regulation of P53 on Nanog to enhance the expression of
Nanog. Overall, future research delineates the details of how
S100A4 regulates its downstream targets, and how these
interactions influence the stemness properties of CSC remains
to be determined.

As being a known CIC markers of HNSCC (47), it was also
important to acknowledge the relative position of CD44 in the
EMT-Calcium-ESC networks. CD44, ranked as the 104th cut-

node (out of 208) in the Ca2þ-EMT networks, was connected
with the EGFR, MMP1, and VCAN in the first- and second-
order connecting subnetworks. However, we did not find
significant changes of CD44 after S100A4 knockdown. We
speculated that inconsistent trends between different splice
variants of CD44 (48) or alternative routing in calcium signal-
ing pathways, different from S100A4, might be possible expla-
nations (49). Further research effort is needed in this area.

Together, our present research showed that the S100A4
signaling pathways play a major role in the maintenance of
HN-CICs population and targeting S100A4 signaling might be
a potential therapeutic target for HNSCC by eliminating CICs.
In addition, expression of S100A4 should be a useful prog-
nostic factor for HNSCC patients.
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