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Abstract 

The intrinsic defense mechanisms of the body are critical in protecting tissues 

from injury in response to pathological stress. Heme oxygenase-1 (HO-1), a stress 

response protein, is induced in response to various pathological stimuli to serve a 

cytoprotective function. By degrading the oxidant heme and generating the antioxidant 

bilirubin and anti-inflammatory molecule carbon monoxide, HO-1 may protect cell from 

injury due to oxidative and pathological stress. Oxidative stress in the heart caused by 

ischemia and reperfusion leads to cardiomyocyte death and subsequent myocardial 

infarction. Vascular diseases including atherosclerosis, graft failure, and restenosis are 

all associated with reactive oxygen species-induced injury and inflammation. Given that 

cardiovascular disease is the leading cause of death worldwide, there is considerable 

interest in developing new strategies for preventing and treating cardiovascular disease. 

Because HO-1 is induced in the heart and blood vessels in response to various stresses 

a role of HO-1 has been implicated in cardiovascular homeostasis. Numerous studies 

using pharmacological method or genetic approach have since demonstrated the 

cardiovascular protective function of HO-1. Importantly, a number of studies have 

associated human HO-1 gene promoter polymorphisms with risk for vascular diseases. 

Taken together, HO-1 has a great therapeutic potential for cardiovascular disease. 
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Introduction 

In response to pathophysiological stress, the body elicits an endogenous 

adaptive mechanism to protect cells and tissues from injury. Heme oxygenase-1 (HO-1) 

upregulation is one such intrinsic defense system. HO-1 is a member of the heme 

oxygenase family of proteins, which include 3 isoforms, HO-1, HO-2, and HO-3. HO-1, 

also known as heat shock protein 32, is the inducible isoform, HO-2 is constitutively 

expressed, whereas HO-3 has lower enzymatic activity and is less well characterized. 

Heme oxygenase degrades the prooxidant heme to carbon monoxide (CO), biliverdin 

(subsequently reduced to bilirubin), and ferrous iron (56). By degrading the prooxidant 

heme and generates antioxidant bilirubin, HO-1 may protect cells against oxidative 

stress. CO is a gas molecule that increases intracellular levels of cGMP, which 

regulates vascular tone and smooth muscle cell (SMC) development. CO has recently 

been shown to have anti-proliferative and anti-inflammatory properties. Ferrous iron can 

induce ferritin expression for iron sequestration. By generating these biologically active 

molecules and its upregulation in response to stress conditions, HO-1 may thus protect 

cells and tissues from oxidative stress-induced injury. 

Cardiovascular disease is a leading cause of death worldwide. Vascular diseases 

including atherosclerosis, graft failure, and restenosis are all associated with reactive 

oxygen species-induced injury. In addition, oxidative stress in the heart caused by 

ischemia and reperfusion leads to cardiomyocyte death and subsequent myocardial 

infarction. Therefore, increased expression of antioxidant enzymes and stress proteins 

might protect against the development of cardiovascular diseases. Because HO-1 is 

induced in the heart and blood vessels in response to various stresses a role of HO-1 
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has been implicated in cardiovascular homeostasis. Numerous studies using 

pharmacological method or genetic approach have since demonstrated the 

cardiovascular protective function of HO-1. A number of studies have associated human 

HO-1 gene promoter polymorphisms with risk for vascular diseases (11,22,81,83). 

Importantly, the clinical significance of HO-1 in human cardiovascular disease has been 

highlighted in a child with HO-1 deficiency (45,92). 

 

HO-1 in the development of atherosclerosis 

Atherosclerosis is the leading cause of mortality and morbidity in the United 

States and many other countries. When low density lipoprotein (LDL) particles in 

individuals with hypercholesterolemia become trapped in an artery, they undergo 

oxidation and are then internalized by macrophages, resulting in foam cell formation 

(75). Removal and sequestration of oxidized LDL (oxLDL) are the initial, protective role 

of macrophages in the inflammatory response and minimize the damaging effects of 

modified LDL on endothelial and smooth muscle cells (SMCs). However, the 

inflammatory response may be further amplified and atherosclerotic lesions develop by 

accumulating macrophage-derived foam cells in the intima (32,75). Subsequent 

migration and proliferation of SMCs from media into intima lead to formation of 

advanced complicated lesions (76). Recognizing the important contribution of 

inflammation in atherogenesis, Ross has proposed that atherosclerosis is an 

inflammatory disease (76).  

The detection of HO-1 expression in endothelium, foam cells, and macrophages 

of advanced lesions from both humans and experimental apolipoprotein E-deficient 
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(apoE–/–) mice indicates a role of HO-1 in atherogenesis (89). Supporting a function of 

HO-1 in atherosclerosis, induction of HO-1 inhibits the monocyte transmigration induced 

by mildly oxidized LDL (38). Pharmacological inhibition of HO-1 activity by Sn-

protoporphyrin IX (SnPP) in Watanabe heritable hyperlipidemic rabbits significantly 

increases atherosclerotic lesions, suggesting HO-1 has anti-atherogenic properties in 

vivo (39). Similarly, HO-1 inhibition by SnPP in LDL-receptor knockout mice fed high-fat 

diets results in increased lesion size (40). Evaluation of plasma lipid levels shows that 

HO-1 inhibition increases plasma and tissue lipid peroxide levels without affecting 

plasma lipid composition, suggesting the anti-atherogenic properties of HO-1 might be 

conducted through the prevention of lipid peroxidation (39,40). 

 Since the effect of metalloporphrins might have nonselective effects on HO-1 

(31), to demonstrate unequivocally the role of HO-1 in atherosclerosis, we used a loss 

of function approach by first generating mice deficient in both HO-1 and apoE (HO-1–/–

apoE–/–) and then subjected mice to Western diet (93). In response to 

hypercholesterolemia, although total plasma cholesterol levels are similar between 

HO-1–/–apoE–/– and apoE–/– mice, HO-1–/–apoE–/– mice develop larger and more 

advanced lesions than mice deficient in apoE alone (93) (Fig. 1A and B). Furthermore, 

Sudan IV staining revealed greater lipid accumulation in mice deficient in both HO-1 and 

apoE (93) (Fig. 1C and D). Our genetic study clearly demonstrates that an absence of 

HO-1 exacerbates atherosclerotic lesion formation (93).  

Orozco et al explored whether HO-1 expression in macrophages contributes to 

the anti-atherogenic effect of HO-1 (66). Using peritoneal macrophages from wild type, 

HO-1 heterozygous, or HO-1–/– mice they found that HO-1 expression in macrophages 
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reduces inflammatory responses against oxLDL (66). Furthermore, HO-1–/– 

macrophages exhibit increased foam cell formation. Bone marrow transplantation 

experiments reveal that lack of HO-1 in the reconstituted bone marrow results in an 

increase in the inflammatory component of atherosclerotic lesions in LDL-receptor 

knockout mice. These results indicate that HO-1 expression in macrophages contributes 

to anti-atherogenic effect by decreasing the inflammatory component of atherosclerotic 

lesions (66). 

Given that lack of HO-1 exacerbates atherosclerosis, the next question is 

whether overexpression of HO-1 would attenuate atherosclerotic lesion formation. HO-1 

induction by chemical inducers (hemin or hemin and desferrioxamine) significantly 

attenuates atherosclerotic lesions in LDL-receptor knockout mice fed high-fat diets (40). 

Similarly, adenovirus-mediated HO-1 gene transfer attenuates the development of 

atherosclerosis in apoE–/– mice (42). Furthermore, the iron deposition as well as tissue 

iron content was much less in aortic tissue of mice treated with adenovirus expressing 

HO-1, indicating overexpression of HO-1 in vascular cells facilitates iron metabolism 

and attenuates development of atherosclerosis in apoE–/– mice (42). These gain of 

function experiments demonstrate a critical protective role of HO-1 in atherosclerosis. 

 

HO-1 and plaque stability 

As the atherosclerotic lesions progress, the lesions may become unstable and 

vulnerable with thinning of the fibrous cap and a large necrotic core with lipid 

accumulation, leading to plaque rupture, acute thrombus formation, and subsequent 

myocardial infarction. Accumulating evidence indicates that matrix metalloproteinases 
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(MMPs) and their inhibitors tissue inhibitor of metalloproteinase (TIMP) are important 

mediators in intimal thickening and atherosclerotic plaque rupture (19,63,64). Early 

studies show that increased expression and matrix degrading activity of MMPs in 

vulnerable regions of human atherosclerotic plaques might contribute to plaque rupture 

(27,35). On the other hand, expression of TIMPs, particularly TIMP-3, might counteract 

MMP activity in atheroma and increase plaque stability (23). Further, analysis of human 

carotid endarterectomy tissues revealed a differential distribution of MMPs and TIMPs 

over atherosclerotic plaques (15).  

Although it is well accepted that MMPs are critically involved in atherosclerotic 

plaque instability; however, the molecular mechanisms regulating plaque stability 

remain unclear. Recently, Cheng et al (13) explored the role of HO-1 in the progression 

of atherosclerotic lesions from stable toward vulnerable plaque. Analysis of atheretomy 

biopsy from patients with clinical carotid artery disease revealed that HO-1 expression 

levels correlate closely with features of vulnerable human atheromatous plaque, 

including increased thrombogenicity and increased expression levels of MMP-9, but 

inversely correlate with intraplaque vascular SMCs and collagen deposition (13). The 

increased MMP-9 expression is consistent with previous findings that MMP-9 is very 

abundant in segments of human carotid endarterectomy tissues with intraplaque 

hemorrhage (15). The correlation of HO-1 and MMP-9 levels suggested a role of HO-1 

in regulating MMP-9 expression. This idea is corroborated by recent findings that HO-1 

inhibits human breast carcinoma cell invasion and migration through suppressing MMP-

9 expression (49). Further supporting this notion, transplantation of HO-1-

overexpressing mesenchymal stem cells (MSCs) into rat hearts after myocardial 
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infarction significantly reduced MMP-9 expression in the infarcted myocardium when 

compared with transplantatios of MSCs expressing vector only (80). 

The upregulation of HO-1 in advanced atherosclerotic plaques with a vulnerable 

phenotype might be an adaptive endogenous defense mechanism. Thus, further 

induction of HO-1 expression could aid in the stabilization of the atheromatous plaque. 

This hypothesis was tested in an apoE–/– mouse model for vulnerable plaque formation. 

HO-1 inhibition by ZnPP augments lipid accumulation and increases necrotic core size. 

In contrast, HO-1 induction by CoPP or adenovirus-mediated gene transfer prevents 

plaque progression into vulnerable lesions by increasing fibrous cap thickness and 

intimal VSMC accumulation, whereas the necrotic core area and intraplaque lipid 

depostion is reduced (13).  Supporting these findings, HO-1 has been shown to protect 

VSMCs from oxidative stress-induced apoptosis/cell death (6,93). Taken together, it is 

conceivable that by suppressing MMP-9 expression and by preventing VSMC death in 

the lesion HO-1 may thus promote plaque stability. 

 

HO-1 in arterial injury 

The proliferation and migration of VSMCs from the media into the intima 

contribute to arterial intimal thickening (24,41). Interestingly, Morita et al (59) show that 

VSMC-derived CO, a product of HO-1, inhibits mitogen endothelin-1 (ET-1) and platelet-

derived growth factor-B (PDGF-B) expression of endothelial cells, which in turn inhibits 

VSMC proliferation. On the other hand, increasing CO production or exposing cells to 

exogenous CO leads to a markedly attenuated growth response of VSMCs (60), 

implicating HO-1 and its reaction product CO in the response to vascular injury. Indeed, 
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the in vivo protective role of HO-1 in vascular remodeling is demonstrated in a pig 

model of arterial injury (21). HO-1 gene transfer significantly reduced cellular 

proliferation in the intima and media. The decrease in cell proliferation in HO-1 

transduced arteries is associated with a significant reduction in intimal lesion formation, 

indicating HO-1 confers protection against vascular injury through its effects on 

proliferation (21). Further supporting this notion, in response to femoral artery wire injury 

HO-1–/– mice develop larger intimal lesions than wild type mice (21). Moreover, VSMCs 

from HO-1–/– mice display enhanced DNA synthesis and proliferation compared with 

wild type VSMCs (21). 

Following carotid artery balloon injury, wild-type Wistar rats (HsdBlu: GUNNJ/J) 

develop maximum neointimal hyperplasia with proliferating VSMC in the neointima (65). 

In contrast, the artery of hyperbilirubinemic Gunn rats (HsdBlu: GUNNj/j) shows very 

few proliferating cells and minimal neointimal hyperplasia compared with the control 

(65), suggesting bilirubin and its precursor biliverdin might have anti-proliferative effect 

during vascular remodeling. Supporting this notion, biliverdin is found to ameliorate 

neointimal hyperplasia associated with balloon injury and that bilirubin/biliverdin inhibits 

VSMC proliferation through cell cycle arrest (65). Thus, in addition to CO, 

bilirubin/biliverdin—another reaction product of HO-1—contributes to the reduction of 

neointima formation following arterial injury by its anti-proliferative effect on VSMCs. 

In addition to proliferation, SMC migration contributes to the development of 

neointima after injury (24,41,67). PDGF, by inducing VSMC chemotaxis, is one of the 

growth factors involved in this process (41). Interestingly, generation of H2O2 is required 

for PDGF signal transduction (82). Therefore, reactive oxygen species (ROS) and HO-1 
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might be involved in regulating VSMC migration following arterial injury. In a recent 

study, Rodriguez et al showed that overexpression of HO-1 by adenovirus or chemical 

inducer CoPP results in decreased VSMC migration (74). They further show that CO is 

responsible for the anti-migratory effects seen with increased HO-1 expression. Since 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source 

of ROS generation (84), it is not surprising that the effect of HO-1/CO on inhibiting 

PDGF-induced VSMC migration is mediated by inhibition of NADPH oxidase (74). 

 

HO-1 in in-stent restenosis and vein graft stenosis  

Percutaneous coronary angioplasty to restore blood flow is a routine procedure 

to treat coronary artery disease, however, recurrent stenosis remains a major drawback 

in percutaneous transluminal angioplasty. Although stenting provides additional benefit 

by decreasing reocclusion (25), an acute coronary syndrome presentation in patients 

with in-stent restenosis is associated with a higher incidence of recurrent adverse 

cardiovascular events and angiographic restenosis (3). Drug-eluting stents with 

antiproliferative drugs reduce the rates of restenosis and neointimal hyperplasia and 

associated clinical events (61,69). However, questions regarding the long-term safety of 

drug-eluting stents have been raised (33,44). To reduce in-stent restenosis without 

compromising re-endothelization, Hyvelin et al recently investigated the potential of HO-

1 induction in this respect (37). In rat and rabbit models of in-stent stenosis, treatment 

with hemin, a potent HO-1 inducer, reduces neointima growth without compromising re-

endotheliazation of the stented arteries (37). Hemin increases HO-1 expression and 

limits the early inflammatory, apoptotic, and proliferative cellular events that are 

Page 10 of 44

A
nt

io
xi

da
nt

s 
&

 R
ed

ox
 S

ig
na

lin
g

A
 C

en
tr

al
 R

ol
e 

of
 H

em
e 

O
xy

ge
na

se
-1

 in
 C

ar
di

ov
as

cu
la

r 
Pr

ot
ec

tio
n 

(d
oi

: 1
0.

10
89

/a
rs

.2
01

0.
37

26
)

T
hi

s 
ar

tic
le

 h
as

 b
ee

n 
pe

er
-r

ev
ie

w
ed

 a
nd

 a
cc

ep
te

d 
fo

r 
pu

bl
ic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 c
op

ye
di

tin
g 

an
d 

pr
oo

f 
co

rr
ec

tio
n.

 T
he

 f
in

al
 p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
if

fe
r 

fr
om

 th
is

 p
ro

of
.



11 

 11 

associated with in-stent stenosis (37). SnPP, an HO-1 inhibitor, abolished the benefical 

effect afforded by hemin. Furthermore, a CO donor also reduces in-stent stenosis in rat 

aorta, suggesting that CO might contribute to the protection. Their results suggest that 

HO-1 plays an important role in limiting in-stent stenosis and might serve as a novel 

target after endovascular therapies (37). This conclusion is supported by a previous 

report that patients with long (GT) repeat length polymorphism in the HO-1 promoter 

(see the session: HO-1 and microsatellite polymorphism in humans) have lower 

transcriptional activity and have a greater risk for angiographic restenosis as well as 

adverse cardiac events after coronary stenting (10).  

Although coronary artery stenting is increasingly being used to treat patients with 

obstructive atherosclerotic lesions, stenting is associated with a greater need for 

repeated procedures in comparison with coronary artery bypass graft surgery (CABG) 

(79). A recent study showed that for patients with multivessel disease, CABG continues 

to be associated with lower mortality rates than does treatment with drug-eluting stents 

and is also associated with lower rates of death or myocardial infarction and repeat 

revascularization (33). Therefore, CABG remains an important treatment for multivessel 

disease and autologous vein grafts provide important and convenient conduits for 

bypass graft surgery (1,70). However, vein graft occlusion does develop due to intimal 

thickening (73). Given that HO-1 is induced in the neointima of the vein grafts in a 

mouse jugular vein/carotid artery autograft model (93), which mimics the vein graft used 

in bypass surgery, we hypothesized that HO-1 may play a role in the adaptation of 

VSMCs to hemodynamic stress in vascular wall remodeling. Consistent with the notion 

that HO-1 and its product CO inhibit VSMC proliferation (60), in response to similar 
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hemodynamic stress 10 days after grafting, HO-1–/– mice have much larger neointima 

than wild type mice (93). Surprisingly, instead of developing even larger lesions 14 days 

after surgery, there is massive cell death in the neointima of HO-1–/– mice (93), 

suggesting that lack of HO-1 might render VSMCs more prone to oxidant (generated by 

hemodynamic stress)-induced cell death. Indeed, HO-1–/– VSMCs are more sensitive to 

H2O2-induced cell death, indicating that susceptibility to oxidative stress is one of the 

mechanisms leading to cell death in the absence of HO-1 (93). 

 

HO-1 in transplant arteriosclerosis 

Chronic allograft rejection is mainly manifested by progressive arteriosclerosis; 

thus reducing transplant arteriosclerosis would improve graft survival. Interestingly, in 

an aortic allotransplant model, Allotrap peptide RDP58 therapy markedly inhibits 

vascular intimal thickening, media necrosis, and adventitial cellular inflammation. The 

attenuation of arteriosclerosis is associated with the induction of HO-1 expression (48). 

Using a rat aorta chronic rejection model, Bouche et al show that specific HO-1 

overexpression following gene transfer of HO-1 inhibits chronic rejection by reducing 

leukocyte and VSMC infiltration of the aorta intima (5). In another study using rat aortic 

transplant model, adenoviral gene transfer of HO-1 results in a significant reduction in 

leukocyte infiltration and a decreased number of VSMCs in the intima, and significantly 

lower levels of NF-κB and fewer apoptotic cells in the aortas (20). The protective role of 

HO-1 in inhibiting graft arteriosclerosis seems to correlate with reduced levels of NF-κB 

and inhibition of apoptosis in the grafts (20). A study showed that donor HO-1 

expression has a direct influence on the recipient immune response. Endothelial cells 
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overexpressing HO-1 significantly inhibits proliferation and interferon-γ production in 

allogeneic CD8(+) T cells, both are important in chronic rejection (16). Their data 

suggest that donor HO-1 expression may be useful to augment other 

immunosuppressive therapies to prolong graft survival and inhibit intimal hyperplasia 

(16). Cheng et al (14) further demonstrated the important role of HO-1 in the regulation 

of vascular alloimmune response elicited by dendritic cells. In a murine model for 

transplantation arteriosclerosis, adoptive transfer of HO1–/– dendritic cells before 

allograft transplantation is associated with pronounced intragraft CD4(+) T cell 

infiltration and increased IgG deposition, suggestive of an accelerated development of 

vasculopathy toward the chronic phase (14). 

 

HO-1 in thrombosis 

Thrombosis is induced after vascular injury and leads to several cardiovascular 

diseases associated with stroke, myocardial infarction, and venous thromboembolic 

disorders (26). Thrombus formation involves the interaction of injured vessel and 

platelets. Tissue factors, von willebrand factor, and fibrinogen trigger platelets activation 

and aggregation. Several lines of evidence suggest a role of HO-1 in thrombosis. Using 

ex vivo blood clotting perfusion chamber, induction of HO-1 expression has been found 

to inhibit platelet-dependent thrombosis (71). In a mouse-to-rat cardiac transplant model, 

inhibition of HO-1 activity by SnPP causes graft rejection, which is associated with 

platelet aggregation and thrombosis of coronary arterioles (77). Exogenous CO 

reverses the SnPP effect, including inhibition of platelet aggregation and thrombosis, 

suggesting CO generated by HO-1 suppresses graft rejection by inhibiting platelet 
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aggregation and vascular thrombosis (77). HO-1 gene transfer into injured vessels of 

apoE–/– mice immediately after angioplasty results in earlier thrombolysis and 

restoration of blood flow (12). Furthermore, CO mediates this thrombolytic effect 

through inhibiting plasminogen activator inhibitor-1 expression and fibrin deposition (12). 

Bilirubin, another byproduct of HO-1, also contributes to the anti-thrombotic property of 

HO-1, because bilirubin was found as effective as HO-1 induction in delaying ferric 

chloride-induced thrombus formation (52). To investigate the direct function of HO-1 on 

thrombosis, True et al used photochemical-induced vascular injury in wild type and 

HO-1–/– mice. HO-1 deficiency leads to accelerated, occlusive arterial thrombus 

formation compared with wild type mice (87). In addition, inhaled CO and biliverdin 

administration rescue the prothrombotic phenotype in HO-1–/– mice (87). Confirming the 

role of HO-1/CO in protection against vascular arterial thrombosis, adoptive transfer of 

HO-1-expressing platelets rescues HO-1–/– mice from arterial thrombosis in allogeneic 

aortic transplantation (8). In addition to arterial thrombosis, HO-1 also has a role in 

venous thrombosis. In a model of stasis-induced thrombosis created by ligation of the 

inferior vena cava, HO-1 deficiency impairs thrombus resolution and exaggerates the 

inflammatory response to thrombus formation (86). The clinical relevance is 

demonstrated in a prospective cohort study that patients with long (GT) repeat alleles in 

HO-1 gene promoter have an increased risk of recurrent venous thromboembolism (62). 

 

HO-1 and microsatellite polymorphism in humans 

A number of studies associate human HO-1 gene promoter polymorphisms with 

risk for vascular diseases (11,22). A microsatellite DNA with dinucleotide (GT) repeat in 
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the promoter region of the HO-1 gene shows a length polymorphism that modulates the 

level of HO-1 gene transcription (11,22). Patients with short (<25 GT) dinucleotide 

repeats in the HO-1 gene promoter on either allele have higher expression levels of HO-

1 and significantly less often restenosis than patients with longer (≥25 GT) dinucleotide 

repeats (22) and coronary atherosclerosis (7). In a Hisayama cohort study, HO-1 

expression is found to be intimately associated with atherogenesis and may play an 

important role as an adaptive molecule in the inflammatory/repair process (81). The 

significance of (GT)n polymorphism in the HO-1 promoter was further demonstrated in a 

recent study that (GT)n allelic variants of the promoter directly modulate HO-1 

expression levels and the proangiogenic and antiinflammatory functions of HO-1 in 

human endothelium (83). Thus, the capacity to upregulate HO-1 expression may be 

genetically regulated and reduced ability to induce HO-1 may be involved in the 

mechanism of coronary atherosclerosis (7,11,22,83). 

 

HO-1 and hypoxia in the heart 

Reduced blood flow due to lumen narrowing from arterial thrombosis or 

atherosclerotic lesions leads to myocardial hypoxia. A potential function of HO-1 in 

cardiomyocytes was implicated when primary rat neonatal cardiomyocytes respond to 

hypoxia with increased expression levels of HO-1 mRNA and protein while under 

normal physiological conditions, HO-1 is expressed at low levels in cardiomyocytes (4). 

Hypoxia causes pulmonary hypertension and induces right ventricular hypertrophy. To 

gain insight into the role of HO-1 in cardiac adaptation to hypoxic stress, we generated 

HO-1–/– mice and subjected the mice to chronic hypoxia in an early study (94). Although 
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the myocardium in HO-1–/– mice appears to be normal under normoxic conditions, under 

hypoxic conditions, severe right ventricular dilatation and infarcts with mural thrombi 

develop in HO-1–/–, but not wild type mice, despite similar degree of pulmonary 

hypertension after hypoxia exposure (94) (Fig. 2). In addition to lipid peroxidation and 

oxidative damage in the right ventricular cardiomyocytes of HO-1–/– mice, we also 

detected apoptotic cardiomyocytes surrounding areas of infarcted myocardium. These 

data suggest that the absence of HO-1 in cardiomyocytes leads to an accumulation of 

ROS that cause cardiomyocyte death and the high percentage of right ventricular mural 

thrombi in HO-1–/– mice maybe due to increased platelet aggregation (94). 

 

HO-1 in cardiac ischemia and reperfusion injury 

The results from hypoxia studies led us to test the hypothesis that HO-1 may play 

a central role in cardiac homeostasis (95). For gain of function experiments, we 

generated cardiac-specific transgenic mice overexpressing different levels of HO-1 (95). 

To determine whether overexpression of HO-1 protects against postischemic injury and 

to exclude the involvement of inflammatory components on reperfusion, we used an 

isolated perfused heart preparation by subjecting hearts to 30 minutes of global 

ischemia, followed by 40 minutes of reperfusion (95). Compared with wild type hearts, 

postischemic recovery of cardiac function in all three lines of HO-1 transgenic hearts 

improved in an HO-1 dose-dependent manner (95) (Fig. 3). In a myocardial infarction 

model, in contrast to the large infarcts in wild type mouse hearts, HO-1 transgenic 

mouse hearts show small infarcts (95) (Fig. 4A and B). Despite a similar percentage of 

left ventricle at risk between wild type and transgenic mouse hearts, the infarct size is 
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significantly reduced in transgenic mice compared with wild type mice (95) (Fig. 4C). 

Our study clearly demonstrate that overexpression of HO-1 in the cardiomyocyte 

protects against ischemia and reperfusion injury, thus improving the recovery of cardiac 

function (95). 

To explore the therapeutic potential of HO-1 gene transfer in long-term 

myocardial protection, Luis et al took advantage of an adeno-associated virus (AAV)-

mediated delivery method (58). AAV-mediated transfer of the HO-1 gene into normal rat 

hearts 8 weeks before ischemia/reperfusion injury leads to a dramatic reduction in left 

ventricular myocardial infarction (58), supporting the findings of our transgenic studies 

(95). The HO-1-mediated protection from myocardial ischemia/reperfusion injury is 

associated with a decrease in oxidative stress and proapoptotic and proinflammatory 

protein levels (58). These findings demonstrate the therapeutic potential of AAV-

mediated HO-1 gene transfer for sustained cardiac protection from ischemic injury and 

introduce the concept of pre-event gene therapy in protection against future injury (58). 

After showing that predelivery of HO-1 by AAV to the heart can markedly reduce 

injury after acute myocardial infarction (58), Liu et al investigated the effect of HO-1 

gene delivery on postinfarction recovery in a follow-up study (53). Interestingly, AAV-

mediated HO-1 gene transfer normalizes postinfarction echocardiographic left 

ventricular function and chamber dimensions 3 months after myocardial infarction by 

preventing ventricular remodeling (53). When the effect of HO-1 gene delivery was 

assessed one year after acute myocardial infarction, mortality was markedly reduced in 

the HO-1-treated animals compared with the LacZ-treated animals (54). The therapeutic 

efficacy of preemptive AAV-HO-1 delivery is further demonstrated by the findings that 
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chronic recurrent myocardial ischemic injury is significantly attenuated by AAV-HO-1 

delivery (68). These results suggest that preemptive HO-1 gene delivery may be useful 

as a therapeutic strategy to reduce post-myocardial infarction left ventricular remodeling 

and heart failure. 

 

HO-1 in diabetic heart 

Myocardial infarction and heart disease is one of the chronic complications of 

diabetes. Given the cardioprotective role of HO-1 against ischemia/reperfusion injury, 

we tested the role of HO-1 in the settings of diabetes (55). Although an absence of HO-

1 significantly increases infarct size in normoglycemic mice, diabetes exacerbates 

myocardial infarction in the setting of HO-1 deficiency (55). In addition to exaggerated 

infarct size, mortality is 2-fold higher in diabetic HO-1–/– than wild type mice after 

ischemia/reperfusion injury. Interestingly, the mortality rate of diabetic patients suffering 

from myocardial infarction due to ischemia/reperfusion injury is 2-fold higher than that of 

nondiabetic patients.  Importantly, we observed 55% of diabetic HO-1–/– mice that 

survived ischemia/reperfusion developed left ventricular thrombi (55) (Fig. 5). 

Intriguingly, It has been suggested that increased mortality rate in diabetic patients is in 

part due to the tendency toward thrombosis (2). Corroborating our findings, HO-1 

inhibition in streptozotocin-induced diabetic rat further enhances infarct size during 

ischemia/reperfusion (18). It was found that hyperglycemia predisposed the heart to 

produce high levels of both the cytokines IL-1β and CXCL8 and subsequent 

ischemia/reperfusion further increases the cytokine production (18). 
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In humans, type 2 diabetic patients with longer (GT) repeats of the HO-1 gene 

promoter (with lower HO-1 inducibility) are shown to have higher oxidative stress and 

increased susceptibility to coronary artery disease (11). In a subsequent study, by 

measuring serum bilirubin and ferritin levels, Chen et al links HO-1 gene promoter 

polymorphism and the susceptibility to coronary artery disease in diabetic patients (9). 

Hisayama study examining HO-1 expression in coronary atherosclerotic lesions of 

Japanese autopsies reveals that HO-1 is intimately associated with intraplague in 

patients with diabetes (81). 

 

HO-1 in re-endothelialization, angiogenesis, and the heart 

Endothelial cell damage is an important pathophysiological step of 

atherosclerosis and restenosis after angioplasty and thus endothelial regeneration is 

critical in repairing injured vessels and protecting from the development of an intimal 

lesion (34). Increasing evidence suggest that endothelial progenitor cells (EPCs) 

derived from bone marrow augment neovascularization of tissue after ischemia and 

contribute to re-endothelialization after endothelial injury, thereby providing a novel 

therapeutic option (88).  

Since human HO-1 deficiency had elevated oxidative stress with severe 

endothelial cell damage (45,92), it is conceivable that HO-1 may affect mobilization and 

homing of circulating EPCs. As demonstrated by Lin et al (51), systemic overexpression 

of HO-1 with adenovirus in mice leads to an acceleration of re-endothelialization of 

denuded vessels due to enhanced EPC mobilization; conversely, lack of HO-1 in mice 

results in significant attenuation of EPC mobilization and re-endothelialization. 
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Additionally, exposing mice to CO prior to carotid injury is also able to increase EPC 

mobilization and enhance re-endothelialization (51). Using a rabbit model of aortic 

balloon injury and pharmacological induction of HO-1, another study came to the same 

conclusion that HO-1 contributes to vascular repair by increasing the number and 

maturation of circulating EPCs derived from the bone marrow (91). Consistent with 

these findings, bone marrow cells from HO-1–/– mice, compared with wild type mice, 

generate fewer endothelial colony-forming cells (91). 

In addition to a role in promoting re-endothelialization, overexpression of HO-1 in 

coronary microvessel endothelial cells enhances endothelial cell proliferation and 

capillary formation, linking HO-1 to angiogenesis (17). Given the role of HO-1 in 

cardioprotection and its angiogenic potential, HO-1 may enhance myocardial 

angiogenesis in ischemic myocardium. The role of HO-1 in improving myocardial 

angiogenesis was supported by a resveratrol study. Resveratrol, a polyphenolic 

compound, enhances angiogenesis in the infarcted rat myocardium by induction of 

vascular endothelial growth factor (VEGF), and the induction of VEGF is mediated by 

thioredoxin-1 and HO-1 (43). In a hypercholesterolemic myocardial infarction model, 

secoisolariciresinol diglucoside treatment, a compound isolated from omega-3 fatty 

acids-rich flaxseed, increases capillary and arteriolar density and improves left 

ventricular function (72). The cardiac functional improvement might be due to increased 

HO-1, VEGF and p-eNOS expression (72). These studies emphasize that HO-1 

mediates ischemic myocardial angiogenesis after myocardial infarction. Using 

heterozygous Flt-1 mice with reduced expression of Flt-1, Thirunavukkarasu et al found 

that reduced expression of Flt-1 results in less ventricular functional recovery compared 
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to the wild type mice. The reduced functional recovery paralleled with increased 

myocardial infarction and apoptosis (85). Interestingly, heterozygous Flt-1 mice have 

pronounced inhibition of the expression of HO-1, iNOS, p-AKT and p-eNOS following 

ischemia/reperfusion injury (85). 

HO-1 gene transfer has been shown to promote neovascularization and 

ventricular function in the ischemic heart of mice receiving HO-1, due to higher cardiac 

levels of VEGF and stromal cell-derived factor-1 (SDF-1) (50). Concomitant treatment 

with both VEGF and SDF-1 neutralizing antibodies attenuates the protective effect of 

HO-1 to a greater extent than treatment with either neutralizing antibody alone (50). 

This emphasizes the cooperative roles of these two factors in HO-1-mediated protection. 

Furthermore, increased recruitment of circulating c-kit+ stem/progenitor cells to the 

infarct area in mice receiving HO-1 gene transfer suggests that EPCs participate in the 

angiogenic effect (50). A follow up study showed that EPC mobilization and re-

endothelialization are significantly attenuated in HO-1–/– mice after vascular injury, 

which is rescued by exposing mice to CO prior to carotid injury (51). The role of CO in 

myocardial angiogenesis is further supported by that pretreatment of CO-donor 

increases accumulation of c-kit+ stem/progenitor cells in the infarct areas following 

myocardial infarction (46). These c-kit+ cells are able to differentiate into VSMCs and 

contribute to the formation of new coronary arteries in infarct areas. The induction of 

proangiogenic factors hypoxia inducible factor (HIF)-1α, SDF-1, and VEGF-B was 

evident in CO-donor pretreated hearts. Thus, HO-1 and CO promote neovascularization 

after myocardial infarction by modulating the expression of HIF-1α, SDF-1 and VEGF-B 

(46). Therapeutic angiogenesis is a novel strategy for treatment of patients with 
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ischemic heart disease. Since HO-1-mediated angiogenesis protects ischemic 

myocardium, HO-1 and its product, CO, could serves as targets for the treatment of 

heart disease. 

 

Therapeutic potential of HO-1 

Given the cardiovascular protective function of HO-1, HO-1 offers a great 

therapeutic potential for cardiovascular disease. Overexpression via gene delivery 

methods has proven the beneficial effects of HO-1 in many animal disease models; 

however, therapeutic gene delivery methods in humans are not readily available. 

Therefore, targeted induction of HO-1 by pharmacological means might be a more 

promising alternative. For example, in addition to the cholesterol-lowering effects, 

various statins, hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, 

also have antiinflammatory and antiproliferative effects. Intriguingly, these effects of 

statins are largely mediated through induced HO-1 expression in vascular cells 

(29,30,47). Furthermore, atorvastatin strongly induces angiogenesis likely via HO-1 

induction, indicating a potential for therapeutic angiogenesis in ischemic diseases (57). 

Other than statins, another cholesterol-lowering drug probucol reduces cardiovascular 

disease incidence in hypercholesterolemic patients (78) and interestingly, HO-1 is the 

molecular target of probucol (90). Moreover, induction of HO-1 by aspirin may be a 

novel mechanism by which aspirin prevents cellular injury under inflammatory 

conditions and in cardiovascular disease (28). An alternative for HO-1 induction is to 

inhibit its degradation by increasing mRNA stability. Indeed, simvastatin-dependent 

upregulation of HO-1 was found to be mediated by stabilization of HO-1 mRNA via a 
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PI3K/Akt-dependent signaling pathway (36). Taken together, pharmacological induction 

of HO-1 holds a promise as a therapeutic intervention for treating cardiovascular 

disease. For a more refined therapy, time-dependent and tissue-specific induction of 

HO-1 is needed and thus challenges remain for the development of time- and tissue-

specific pharmacological agents for HO-1 induction. 

 

Conclusion 

Collective evidence from the past two decades has demonstrated the central role 

of HO-1 in protection against disease. We have highlighted the protective function of 

HO-1 against cardiovascular diseases. Various stresses, including hypoxia, 

ischemia/reperfusion injury, diabetes, hypercholesterolemia, etc, lead to the production 

of ROS in the cardiovascular system (Fig. 6). Increased ROS in turn induces 

inflammation and apoptosis, among others. In the absence of HO-1, perhaps through 

the excessive accumulation of ROS, cardiovascular cells have a maladaptive response, 

resulting in cell death. In the presence of the buffering effect of HO-1, normal adaptive 

response provides protection to cardiovascular system (Fig. 6). As such, 

overexpression of HO-1 may protect against cardiovascular diseases caused by ROS. 

The clinical significance of HO-1 in human cardiovascular disease was highlighted in a 

child with HO-1 deficiency (45,92). Although the therapeutic potential of HO-1 is clear, 

developing HO-1 therapeutics would greatly benefit patients suffering from 

cardiovascular disease. 
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List of Abbreviations 

AAV = adeno-associated virus 

apoE–/– = apolipoprotein E-deficient  

CABG = coronary artery bypass graft surgery  

CO = carbon monoxide 

CoPP = Cobalt protoporphyrin 

EPCs = endothelial progenitor cells 

ET-1 = endothelin-1 

GT = guanosine thymidine dinucleotide 

HIF = hypoxia-inducible factor 

HMG-CoA = hydroxymethylglutaryl coenzyme A 

HO-1 = heme oxygenase-1 

LDL = low density lipoprotein  

MMPs = matrix metalloproteinases 

NADPH oxidase = nicotinamide adenine dinucleotide phosphate oxidase 

oxLDL = oxidized LDL  

PDGF-B = platelet-derived growth factor-B 

ROS = reactive oxygen species  
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SDF-1 = stromal cell-derived factor-1 

SMC = smooth muscle cell 

SnPP = Sn-protoporphyrin IX 

TIMP = tissue inhibitor of metalloproteinase 

VEGF = vascular endothelial growth factor 

VSMC = vascular smooth muscle cell 

ZnPP = Zinc protoporphyrin 
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Figure legends 

FIG. 1. Absence of HO-1 exacerbates lipid accumulation and lesion formation in 

arteries. HO-1+/+apoE–/– and HO-1–/–apoE–/– mice were fed Western diet starting at 4 

weeks for a total of 8 weeks. The aortic arch and its branches were then harvested and 

analyzed. Photographs of representative arteries from HO-1+/+apoE–/–  (A) or HO-1–/–

apoE–/– (B) mice. Lesions are shown as white areas and indicated by arrows. C and D, 

Sudan IV staining (red) of lipid in the arteries of HO-1+/+apoE–/– (C) or HO-1–/–apoE–/– (D) 

mice. Br, brachiocephalic artery; LCC, left common carotid artery; LSC, left subclavian 

artery; RCC, right common carotid artery; RSC, right subclavian artery. Original 

magnification x15 (A through D). Reproduced from Yet et al. (93) with permission. 

FIG. 2. Right ventricular dilatation and thrombus formation in HO-1–/– mice in 

response to hypoxia. Heart cross-sections (at the papillary muscle level) from wild-

type (+/+) and HO-1 null (–/–) mice were stained with hematoxylin and eosin (n = 5–6 in 

each group). Mice were exposed to normoxia (a, +/+; b, –/–), 5 wk of hypoxia (c, +/+; d, 

–/–), or 7 wk of hypoxia (e, +/+; f, –/–). RV, right ventricle; LV, left ventricle; T, thrombus. 

Original magnification, 15×. Reproduced from Yet et al. (94) with permission. 

FIG. 3. HO-1 dose-dependently improves postischemic cardiac performance in 

isolated perfused hearts. Hearts from mice were stabilized for 30 min, then subjected 
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to 30 min of global ischemia followed by 40 min of reperfusion. Cardiac contractile 

performance is shown during ischemia and reperfusion. Wild-type (WT): open triangles, 

n = 12; transgenic TG.L: filled diamonds, n = 12; TG.M: open circles, n = 5; TG.H: filled 

squares, n = 9. A, Left ventricular end diastolic pressure (LVEDP). LVEDP at the end of 

ischemia was 65 ± 2, 69 ± 2, 66 ± 3, and 63 ± 5 mmHg for WT, TG.L, TG.M, and TG.H, 

respectively. B, Left ventricular developed pressure (LVDevP). C, Rate pressure 

product (RPP). Error bars indicate standard errors. Reproduced from Yet et al. (95) with 

permission. 

FIG. 4. HO-1 protects against myocardial infarction in transgenic mice. Myocardial 

infarcts from (A) wild-type (WT, n = 6) and (B) TG.H transgenic (TG, n = 8) mice were 

assessed by Evans blue and TTC staining after 1 h ischemia and 24 h reperfusion. The 

Evans blue perfused area, which is not at risk, stained blue; viable myocardium stained 

red and infarcted myocardium appeared pale. Representative wild-type and transgenic 

heart sections were shown and oriented anterior side up in A and B, respectively. 

Original magnification: x15. C, Myocardial infarcts are reduced in HO-1 transgenic mice. 

Wild-type (open bars, n = 6) and TG.H transgenic (filled bars, n = 8) mice were 

subjected to 1 h ischemia and 24 h reperfusion as in A. Risk Area/LV, percentage of left 

ventricle (LV) at risk; Infarct/Risk Area, infarcted area as percentage of risk area. Error 

bars indicate standard errors. *P = 0.001 vs. Infarct/Risk Area of WT animals. 

Reproduced from Yet et al. (95) with permission. 

FIG. 5. Ischemia/reperfusion injury induces left ventricular mural thrombi 

formation in diabetic HO-1–/– mice. Heart cross sections at the papillary muscle level 
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after ischemia/reperfusion were stained with H&E. Sections from control (A) and 

diabetic (B) HO-1+/+ mouse hearts. (C) Ventricular section from control HO-1–/– mice. (D) 

Thrombus formation in the left ventricle of HO-1–/–diabetic mouse heart. RV, right 

ventricle; LV, left ventricle; T, thrombus. Original magnification: x15. 

FIG. 6. HO-1 in cardiovascular system. Various stresses lead to the production of 

reactive oxygen species in the cardiovascular system. In the absence of HO-1, perhaps 

through the excessive accumulation of reactive oxygen species, cardiovascular cells 

have a maladaptive response, resulting in cell death. In the presence of the buffering 

effect of HO-1, normal adaptive response provides protection to cardiovascular system. 

This implies that overexpression of HO-1 may play a protective role in cardiovascular 

diseases caused by reactive oxygen species. 
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