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ABSTRACT 

Stem cells have two features: the ability to differentiate along different lineages and the ability of 

self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and 

adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst 

and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal 

considerations. The use of adult mesenchymal stem cells is less problematic with regard to these 

issues. Mesenchymal stem cells (MSCs) are stromal cells which have the ability to self-renew and 

also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as 

umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, and so on. This is 

because the ease of harvest and quantity obtained make these sources most practical for experimental 

and possible clinical applications. Recently, MSCs have been found in new sources, such as 

menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, 

and MSCs may be a good candidate for future experimental or clinical applications. One of the 

major challenges is to elucidate the mechanisms of differentiation, mobilization and homing of 

MSCs, which are highly complex. The multipotent properties of mesenchymal stem cells make them 

an attractive choice for possible development of clinical applications. Future studies should explore 

the role of MSCs in differentiation, transplantation and immune response in various diseases. 
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INTRODUCTON 

   Stem cells have two features: the ability to differente along different lineages and the ability to 

self-renew (68). Two major types of stem cells have been described, namely, embryonic stem cells 

(ESC) and adult stem cells.  ESCs are obtained from the inner cell mass of the blastocyst and are 

associated with tumorigenesis (6,7,89). The use of human ESCs involve legal and ethical 

considerations (36) . These problems are less severe in adult stem cells. Adult stem cells have 

multipotency which make them an attractive choice for clinical applications. This revew focus on 

new origin of mesenchymal stem cells and signaling pathway on differentiation.  

 

MESENCHYMAL STEM CELLS  

   Mesenchymal stem cells (MSCs) are stromal cells which possess the capacity to self-renew and 

also exibit multilineage differentiation (17,80). MSCs can be isolated from a variety of tissues, such 

as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, and so on. (Fig 1) 

(22,23). This is because the ease of harvest and quantity obtained make these sources most practical 

for experimental and possible clinical applications. Recently, many MSCs have been derived from 

new sources, such as menstrual blood and endometrium.  

MSCs from MENSTRUATION  

   About 400 cycles of menstruation take place in a woman’s reproductive years. Usually, the 

menstrual blood is discarded. Recently, MSCs from menstrual blood were discovered (40,63,81,84). 

This represents a new, non-invasive, and potent source of human MSCs for regenerative medicine. 

Most MSCs from menstrual blood have the ability to differentiate to muscle, especially cardiac 

muscle cells (40,81). These cells have been shown to possess a remarkable myogenic capability 

enabling the rescue of dystrophied myocyte of Duchenne muscular dystrophy or cardiac myocardial 

infarction models (40,81). MSCs from menstrual blood could therefore have potential as a novel, 

easily accessible source of materials for myogenic stem cell-based therapy. Recently, Sanberg 
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showed menstrual blood-derived stem cells can be used for brain repair (70). Menstruation-derived 

MSCs can differentiate into neuron in vitro. These cells were used to treat stroke animal model and 

improvement by a mechanism that does not appear to involve cell replacement was observed. This 

finding raises hope that menstrual-derived stem cells are not only myogenic but also neurogenic and 

may have potential for use in stroke therapy in the future.  

 

MSCs from ENDOMETRIUM 

Endometrium from human uterus is a highly regenerative tissue undergoing more than 400 cycles of 

shedding, growth and differentiation during a woman’s reproductive years. Stem or progenitor cells 

may play a major role in endometrial regeneration. Gargett et al. found that human endometrium 

contains a small population of MSC-like cells which may be responsible for its cyclical growth 

(33,34,71). They found CD146 is a good marker to identify these cells, which may provide a new 

source of MSCs for tissue engineering applications. Meng et al. also found endometrial regenerative 

cells were able to differentiate into 9 lineages: cardiomyocytic, respiratory epithelial, neurocytic, 

myocytic, endothelial, pancreatic, hepatic, adipocystic and osteogenic cells (61). They also found 

these cells can produce MMP3, MMP10, GM-CSF, angiopoietin-2, and PDGF-BB (61). In addition, 

they found these cells possess the ability to inhibit intracranial glioma growth (39). Tsuji et al. found 

that side population cells in human endometrium contributed to genesis of human endometrium (83). 

They conclude that human endometrial side population cells may contain putative stem cells.  

 

MSCs from ENDOMETRIAL POLYPS 

Endometrial polyps are localized hyperplastic overgrowths of endometrial glands and stroma 

around a vascular core that form a sessile or pedunculated projection from the surface of the 

endometrium. Endometrial polyp causes intermenstrual bleeding, irregular bleeding and 

menorrhagia, and can be discovered by hysteroscopy (41). As endometrial polyps are benign 
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overgrowths of endometrial tissue, they may be a rich source of MSCs. We have derived MSCs from 

endometrial polyps (Fig 2A) which showed traditional MSC surface marker (Fig 2B). MSCs can 

also differentiate into adipocytic, osteogenic and neurogenic lineages (Fig 2C, D). They also 

proliferate faster than endometrial stromal cells and bone marrow stromal cells. Our results indicate 

that endometrial polyps may have potential as a novel source of MSCs.  

 

MSCs from FALLOPIAN TUBES 

    The human fallopian tubes share the same embryologic origin as the uterus. They have the 

capacity to undergo dynamic endocrine-induced changes during the menstrual cycle, including cell 

growth and regeneration, in order to provide the unique environment required for the maintenance of 

male and female gamete viability, fertilization, and early embryo development as well as transport to 

the uterus (58). Jazedje et al. recently found MSCs derived from human fallopian tubes. These cells 

can differentiate into adipogenic, chondrogenic, oestogenic and myogenic lineages (49). They 

conclude human tubal MSCs can be easily isolated and expanded. Furthermore, they present a 

mesenchymal profile and are able to differentiate.  

 

MSCs from HUMAN CRUCIATE LIGAMENTS 

   Cheng et al. found MSCs from human anterior and posterior cruciate ligaments (ACL, PCL) and 

found these cells can differentiate into chondrocytes, adipocytes and osteocytes. These ligaments can 

be easily obtained from patients following total knee or cruciate ligament reconstructive surgery. 

They conclude that human MSCs can be isolated and expanded from ACL and PCL and could be a 

viable alternative source for use in regenerative medicine (13).  

 

MSCs from UMBILICAL CORD MATRIX   

Recently, stem cells have also been derived from the umbilical cord matrix (31,62,87). Mitchell 
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et al. proved that mesenchymal stem cells from Wharton’s jelly (WJC) can differentiate into 

neuronal and glial cells in vitro and proved that umbilical cord Wharton’s jelly could be a rich source 

of primitive cells (62). Fu et al. also used the same kind of cells in a neuron-conditioned medium 

with the addition of sonic hedgehog (Shh) and fibroblast growth factor 8 (FGF8), and found that 

these cells differentiated into dopaminergic neurons which could help recover the function of 

6-OHDA-treated rats (31). We have also found that stem cells derived from Wharton’s jelly of the 

human umbilical cord can migrate to the site of injury and differentiate to neuronal and glial cells in 

stroke rats (21). Behavioral and functional tests showed improvement in the treated group (21). In 

contrast to BMSCs, WJCs have greater expansion capability, faster growth in vitro, and may 

synthesize different cytokines and as therapeutic cells in several preclinical models, such as 

neurodegenerative disease, cancer, heart disease, and so on (9,82). WJCs are considered an 

alternative source of MSCs and deserve to be examined in long-term clinical trials (9).  

 

CHARACTERIZATON of MSCs 

   Surface CD marker is often used to distinguish MSC from hematopoietic cells by their lack of 

CD34, CD45, CD14 and HLA-DR. Stro-1 is specific for clonogenic MSCs (67,74,77). These cells 

can differentiate to form cells with the characteristics of adipose, cartilage and bone cells in vitro, 

and form human bone tissue after transplantation into immunodeficient SCID mice (37,38). The 

profile of adhesion molecules is also different from donor to donor and is influenced by the serum 

used in the culture (80). Vimentin, laminin, fibronectin and osteopontin can be synthesized by 

BMSCs (18). MSCs also express some markers, such as myofibroblasts (alpha-smooth muscle actin, 

smooth muscle myosin heavy chain), neurons (nestin, Tuj-1) and endothelial cells (CD146, CD105,) 

transforming growth factor beta (TGF-beta) receptor and various forms of integrin 

(14,27,44,45,59,60,78).  

   Fibroblast colony forming units (CFU-F) were discovered by Friedenstein et al. They isolated 
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adherent cells that were colonogenic and able to form colonies from bone marrow stroma and 

newborn rodents (30). Some mitogenic factors (platelet-derived growth factor, epidermal growth 

factor, basic fibroblast growth factor, TGF-beta and insulin growth factor) can regulate the 

proliferation of CFU-F (42,57,75). Most MSCs have the capacity to adhere to a plastic support. 

MSCs enrichment could be realized with relatively deprived medium only containing serum. CFU-F 

assays also show that the fraction is heterogenous with different colony sizes, cell morphologies and 

differentiation potentials (29,52).  

 

DIFFERENTIATION PATHWAYS 

     MSCs can differentiate into various lineages of mesodermal, ectodermal and endoderm such 

as bone, fat, chondrocyte, muscle, neuron, islet cells and liver cells under specific in vitro conditions. 

Differentiation is also regulated by genetic events, involving transcription factors. Differentiation to 

a particular phenotype pathway (Fig 3) can controlled by some regulatory genes which can induce 

progenitor cells differentiation to a specific lineage (17). Besides growth factors and induction 

chemicals, a microenvironment built with biomaterial scaffolds can also provide MSCs with 

appropriate proliferation and differentiation conditions (85).  

 

Mesoderm differentiation 

    Theoretically, mesodermal differentiation is easily attainable for MSCs because they are the 

same embryonic origin. In osteogenic differentiation, mixture of dexamethasone (Dex), 

beta-glycerophosphate (beta-GP) and ascorbic acid phosphate (aP) have been widely used for 

induction and showed by calcium accumulation and alkaline activity (64). In adipogenesis 

differentiation, Dex and isobutyl-methylxanthine (IBMX) and indomethacin (IM) are used for 

induction and showed by lipid droplets in cells stained by Oil Red O solution (44,72). In 

chondrogenesis differentiation, TGF-beta2 and TGF-beta 1 are involved in differentiation (43). 
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PPAR-gamma2, C/EBP, and retinoic C receptor are involved in adipogenesis (26,79). PLZF and 

CBFA-1 induce osteogenesis (25,47,50). Lastly, Smad3, CBP/p300, SOX9 induce chondrogenesis 

(32). Furthermore, lineage repression can also lead to differentiation. Overexpression of the 

PPAR-gamma 2 gene encoding adipogenic factor also repress Cbfa-1 gene expression in osteogenic 

cells (53). 

 

Ectoderm differentiation  

    In neuron differentiation, DMSO, BHA, KCL, forskolin and hydrocortisone were used for 

induction (69). In our previous study, we used a three-stage induction protocol (24) with addition of 

bFGF, beta-mercaptoethanol (beta-ME), NT-3, NGF and BDNF. Tuj-1, neurofilament 200, MAP-2, 

synaptophysin and gamma-aminobutyric acid (GAGA) and GFAP were used to assess the capacity 

of neuronal differentiation (21). Notch-1 and protein kinase A (PKA) pathway are involved in neuron 

differentiation (15,88,90). 

 

Endoderm differentiation 

     In pancreatic islet beta-cell differentiation, nicotinamide and beta-ME were used for induction 

and expressed properties including morphology, high insulin-1 mRNA content and synthesized 

insulin and nestin (12). In liver differentiation, hepatocyte growth factor and oncostatin M were used 

for induction and obtained cuboid cells which expressed appropriate markers (alpha-fetoprotein, 

glucose 6-phosphatase, tyrosine aminotransferase and cytokeratin-18) and albumin production in 

vitro (54). Recently, murine mesenchymal stem cells can differentiate to endoderm islet cells with 

high efficiency. Firstly, MSCs differentiated to endoderm (expressing Sox17, Foxa2, GATA-4, and 

CK-19), then to pancreatic endoderm (PDX1, Ngn2, NeuroD, PAX4, and Glut-2), finally to 

pancreatic hormone-expressing (insulin, glucagon and somatostatin) cells (10). In liver maturation, 

meso-endodermal phenotype was genetically regulated through cytokine signaling, including 
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TGF-beta, bone morphogenetic protein, fibroblast growth factor and other signaling pathways (48).  

 

MOBILIZATION of MSCs 

  Several growth factors, cytokines and chemokines have been found to mediate mobilization of 

MSCs. In both animal and human studies, growth factors VEGF, stromal-derived factor-1 (SDF-1), 

granulocyte colony-stimulating factor (GCSF), granulocyte colony-stimulating factor (G-CSF), 

granulocyte macrophage colony-stimulating factor (GM-CSF), erythropoietin (EPO), angiopoietin-2, 

fibroblast growth factor, placental growth factor (PlGF), platelet-derived growth factor-CC, stem cell 

factor (SCF), interleukin (IL)-2, IL-3, IL-6, IL-8, and IL-1β are all known to stimulate and mobilize 

MSCs (5,56). During the process of angiogenesis and vasculogenesis, hematopoietic stem cells 

(HSC) and endothelial progenitor cells (EPC) from bone marrow may show concomitant 

mobilization due to the physiological need of synergistic interactions (46). In this respect, it is 

thought that VEGF-A, PlGF, and SDF-1, released by blood platelets and monocytes, activate 

metalloproteinase-9 (MMP-9), which mediates a joint mobilization of HSCs, EPCs, and MSCs. The 

interactions between these cells may contribute to the revascularization process (23).  

 

HOMING of MSCs 

    Recent studies have revealed that stem cells are highly migratory and seem to be attracted to 

areas of brain pathology, such as ischemic regions (1,11). Human MSCs transplanted into fetal sheep 

will be embedded into various tissues (bone marrow, spleen, thymus, liver) (3). Circulating 

hematopoietic cell will actively cross the endothelial vasculature of different organs and into their 

bone marrow niches. Homing is also a part of host defense and repair (65). Growth factors, 

chemokines and adhesion molecules are signals for the direct homing effect (16,51). MSCs can 

migrate and home to tissues and organs (2,19,20,28). Chemokine receptors and their chemokine 

ligands are essential components involved in the migration of leukocytes into sites of inflammation 
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(76). CXCL12 (stromal cell–derived factor-1 (SDF-1)) and its receptor CXCR4 are crucial for bone 

marrow retention, mobilization, and homing of hematopoietic stem cells (55,66). MSCs can express 

a variety of chemokine receptors, which suggests homing affinity may vary depending on the type of 

tissue (86). Granulocyte colony-stimulating factor causes enhanced stem cell migration towards 

SDF-1, which is a potential advantage in directing and amplifying the homing of endogenous stem 

cells (8).  

 

IMMUNE MODULATION of MSCs 

   In addition to multilineage differentiation, MSCs also have powerful immunomodulatory effects, 

which include inhibition of proliferation and function of T cells, B cells and natural killer cells (35). 

Underlying the MSC-mediated immunomodulatory mechanisms is a nonspecific antiproliferative 

effect, which is the consequence of cyclin D2 inhibition (73). Prostaglandin E2, nitric oxide, 

histocompatibility locus antigen-G, insulin-like growth factor-binding proteins, and tolerogenic 

antigen-presenting cells and indoleamine 2,3-dioxygenase have been reported to play a role in this 

mechanism (73). Although the physiologic significance of immunosuppression is unclear, the 

underlying mechanism could involve stromal function. It appears to exert its influence by increasing 

the survival and renewal of parenchymal stem cells. Understanding these mechanisms and the 

precise roles of the molecules involved will be of enormous help in the development of future 

clinical applications, such as transplantation of stem cells or experimental applications.  

     

FUTURE PROSPECTS 

The search for novel MSC sources 

   Besides bone marrow, MSCs can be isolated from various tissues in the human body. Adipose 

stem cells could be a promising source of MSCs because it is present throughout the human body. 

However, MSCs from fetal origin, such as umbilical cord and blood, would be a good source that 
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does not involve ethical considerations because they are discarded after the baby has been delivered. 

Menstruation blood and endometrial stem cells are other promising sources of MSCs because they 

are usually discarded after menstruation or surgery. There are numerous kinds of tissues in the 

human body which may be explored as potential sources of MSCs.  

 

Study of differentiation pathway and immune modulation 

  Once a novel source of MSCs has been discovered, the challenge is to determine how to 

differentiate them so that they can be used in clinical applications. The factors which influence 

differentiation are of particular importance to ensure that they are safe for human use. The better the 

pathways are understood, the greater the possibility that MSCs can be manipulated into the required 

type of cells. Immune modulation is another important issue in MSC transplantation. As the 

mechanism is still unclear, it is worth elucidating the roles of molecules in the immune response 

which may dictate whether an engraftment is successful or not.  

 

Future research on MSC mobilization and homing 

     Currently, there are no available data from long-term clinical studies examining drug-mediated 

mobilization and functional modification of endogenous stem cells. One focus of future research 

should be the elucidation of the molecular pathways regulating stem cell levels and the function and 

genetic modification of stem cells leading to improved functional capacity. The development of 

pharmacological and genetic strategies for targeting endothelial progenitor cells will be necessary in 

the future (4,23). 

CONCLUSION 

   There are likely numerous sources of human MSCs awaiting discovery. They may be good 

candidates for future experimental or clinical applications. The mechanisms of differentiation, 

mobilization and homing of MSCs are complex. The multipotency of mesenchymal stem cells make 
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them an attractive choice for clinical applications. Future studies should explore the role of MSCs in 

differentiation, transplantation and immune response in various diseases.  
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Figure legends 
 

Figure 1. Various new sources of MSCs. Cells are isolated and cultured and can differentiate to three 

germ layers for transplantation purpose.  

 

Figure 2. MSCs derived from human endometrial polyps (EPMSCs). (A) Representative 

photographs of endometrial polyp stem cells grown in proliferation medium. (B) Flow cytometry of 

endometrial polyp stem cells which express CD13, CD29, CD44 and CD90. (C) Adipogenic 

differentiation shows morphological changes in the formation of neutral lipid vacuoles, with almost 

all cells containing numerous Oil Red-O positive lipid droplets. Osteogenic differentiation shows 

numerous differentiated cells containing mineralized matrices, which were strongly stained by 

Alizarin Red-S. (D) In neuro-glial differentiation, morphologies of refractile cell bodies with 

extended neurite-like structures were arranged into a network. EPMSCs-derived neuroglial cells 

were identified by immunostaining against Nestin, Tuj-1, GFAP and NF200. Scale bar=50μm (A,B), 

100μm (C,D). 

 

Figure 3. Effects of various pathways on MSCs differentiation. MSCs can differentiate to form 

various lineages through different cytokines and pathways. TGF: transforming growth factor; BMP: 

bone morphogenetic protein; FGF: fibroblast growth factor.  
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