
                             Editorial Manager(tm) for PLoS ONE 
                                  Manuscript Draft 
 
 
Manuscript Number:  
 
Title: Identification of Antifreeze Proteins and Their Functional Residues by Support Vector Machine 
and Genetic Algorithms based on n-Peptide Compositions 
 
Short Title: Identify AFPs and Their Functional Residues 
 
Article Type: Research Article 
 
Section/Category: Other 
 
Keywords: support vector machines; genetic algorithm; n-peptide composition; antifreeze protein; AFP 
 
Corresponding Author: Chin Sheng Yu, Ph.D. 
 
Corresponding Author's Institution: Feng Chia University 
 
First Author: Chin Sheng Yu, Ph.D. 
 
Order of Authors: Chin Sheng Yu, Ph.D.;Chih Hao Lu 
 
Abstract: For the first time, multiple sets of global n-peptide compositions from antifreeze protein (AFP) 
sequences of certain cold-adapted fish and insects were analyzed using support vector machine and 
genetic algorithms. The identification of AFPs is difficult because they exist as evolutionarily divergent 
types, and because their sequences and structures are present in limited numbers in currently 
available databases. Our results reveal that it is feasible to identify the shared sequential features 
among the various structural types of AFPs. Moreover, we were able to identify residues involved in ice 
binding without referring to three-dimensional structures of AFPs. This approach should be useful for 
genomic and proteomic studies involving cold-adapted organisms. 
 
Suggested Reviewers: Peter L. Davies 
Queen's University 
peter.davies@queensu.ca 
expert of antifreeze protein 
 
Brendan J  J McConkey 
University of Waterloo 
mcconkey@uwaterloo.ca 
expert of antifreeze protein recognition  
 
 
Opposed Reviewers:  
 
 



Dear Prof., 

Here within enclosed is our paper for consideration to be published on PloS ONE. 
The further information about the paper is in the following:  

  

   The Title:     Identification of antifreeze proteins and their important residues 
by using support vector machines based on n-peptide 
compositions 

   The Authors:   Chin-Sheng Yu and Chih-Hao Lu 

  

It is first discussed that the antifreeze proteins and their functional important residues 
can be identified from protein sequences analysis. The common characters in 
antifreeze sequence still lack due to the poor homologs and radical different type in 
current database. Our approach not only provides excellent results for discriminating 
them without using the 3D structural information, but the most important, it is 
allowed a further investigation the rule of potential key residues in ice-binding 
interface. 

The authors claim that none of the material in the paper has been published or is 
under consideration for publication elsewhere. 

   I am the corresponding author and my address and other information is as follows, 

               
               Address:   Department of Information Engineering and Computer Science,   

Feng Chia University, Taichung, 40724, Taiwan 

               E-mail:     yucs@fcu.edu.tw 

                Tel:       886-4-24517250 ext. 3742 

                Fax:       886-4-24516101 

  Thank you very much for consideration! 

 

Cover Letter



Identification of AFPs and Their Functional Residues 

1 
 

Identification of Antifreeze Proteins and Their Functional Residues by Support Vector Machine 
and Genetic Algorithms based on n-Peptide Compositions 

Chin-Sheng Yu1,2* and Chih-Hao Lu3  
From the 1Department of Information Engineering and Computer Science, 2Master’s Program in 

Biomedical Informatics and Biomedical Engineering, Feng Chia University, Taichung 40724, Taiwan 
and the 3Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung 

40402, Taiwan 

*Correspond to: Chin-Sheng Yu, Department of Information Engineering and Computer Science, 
Feng Chia University, Taichung 40724, Taiwan. FAX: +886-4-2451-6101. Phone: +886-4-2451-7250, 
ext. 3742. E-mail: yucs@fcu.edu.tw. 

Abstract  1 

For the first time, multiple sets of global n-peptide compositions from antifreeze protein (AFP) 2 
sequences of certain cold-adapted fish and insects were analyzed using support vector machine and 3 
genetic algorithms. The identification of AFPs is difficult because they exist as evolutionarily 4 
divergent types, and because their sequences and structures are present in limited numbers in currently 5 
available databases. Our results reveal that it is feasible to identify the shared sequential features 6 
among the various structural types of AFPs. Moreover, we were able to identify residues involved in 7 
ice binding without referring to three-dimensional structures of AFPs. This approach should be useful 8 
for genomic and proteomic studies involving cold-adapted organisms.  9 
Keywords: support vector machines; genetic algorithm; n–peptide composition; antifreeze protein; 10 
AFP 11 

INTRODUCTION 12 

Antifreeze proteins (AFPs) in cold-adapted organisms prevent macroscopic ice build-up by binding to 13 
ice and thereby forestalling additional crystallization [1]. By doing so, AFPs allow organisms to 14 
survive below 0°C. It is of great interest to harness this singular property—non-antifreeze proteins 15 
cannot bind ice—for applications related to the agriculture and food industries [2,3,4,5] and to the 16 
rational design of new AFPs. However, first it is necessary to understand how AFPs and ice interact. 17 
Accurately identifying AFPs from evolutionarily divergent organisms is difficult because their 18 
sequences and structures differ radically [6,7]. To complicate matters further, for closely related 19 
species, the sequences, and consequently the structures, of their AFPs may also differ substantially if 20 
they have been geographically isolated [8]. Additionally, searching for homologous sequences within 21 
databases has not been a fruitful approach given the disparity among AFP sequences. Directly 22 
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studying AFP-ice interactions is also difficult, and a definitive picture of such interactions is not 23 
currently available [7]. Therefore, because many AFPs do not have structural or sequential features in 24 
common, it is challenging to correlate the relationships among their sequences, structures, and 25 
function.  26 
A large number of biochemical and structural studies [9,10,11] have been performed in an attempt to 27 
understand how AFPs interact with ice on the molecular level, including site-directed mutagenesis 28 
[12,13,14] and computational experiments [15]. An ice-binding model that incorporates surface 29 
complementarity is generally accepted [16]. Recently, Doxey and colleagues [9] successfully 30 
identified AFPs, for which three-dimensional (3D) crystallographic structures were available, on the 31 
basis of their highly ordered and planar ice-binding surfaces, but their algorithm could not identify an 32 
AFP when only its NMR solution structure was available because the coordinates for the atoms at and 33 
near its surface were not well defined. [9,17]. Additionally, their algorithm requires the use of a 34 
three-dimensional (3D) structure, which is not always available for a given AFP.  35 
It is obvious, therefore, that AFPs cannot be easily distinguished from other types of proteins. 36 
Additional information is needed to understand how AFPs and ice interact on a fundamental 37 
physicochemical level before such interactions can be applied to cold-adapted mechanisms. Although 38 
the types of amino acids present are closely coupled to the ice-binding properties of AFPs [10,13], 39 
current models usually rely on only 3D structures. To make additional use of the knowledge that has 40 
accumulated over the decades, e.g., identification of the ”hydrophobic surface” effect [7,11], the 41 
spatial regularity of an AFP solvent accessible surface, the presence of nonpolar residues, and other 42 
properties directly related to the binding properties of AFPs, an algorithm that can discern these 43 
properties is necessary. Therefore, for this report, we developed an integrated approach to rapidly 44 
identify AFPs from their amino acid sequences. Our statistically based, support vector machine (SVM) 45 
algorithm has been used to identify certain inherent protein traits e.g., protein disulfide connectivities 46 
[18], subcellular localizations [19,20], and protein folds [21], when given a query sequence, and it 47 
does not require a computational mechanical model or structure comparison. For this report, during 48 
the training and testing of this algorithm for different classifiers associated with AFPs, multiple 49 
feature schemes based on n-peptide compositions extracted from the sequences were used. Then, a 50 
genetic algorithm (GA) was used iteratively for key-feature selection and to improve the identification 51 
accuracy. This integrated approach enabled the recognition of AFPs on the basis of preferred short 52 
peptide sequences, rather than on structural comparisons. The identified AFP sequence features have 53 
not been reported previously, yet they correlate well with the properties of the ice-binding interfaces. 54 
This approach is suitable for the further identification of the ice-binding surfaces of AFPs. 55 

METHODS 56 

The Validation Dataset that Contained AFPs and non-AFPs with Known 3D Structures—  57 
To assess our approach without bias, we tested it using a sequence validation dataset that did not 58 
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contain homologous proteins, and to examine the effects of key residues on function, we included 59 
only AFPs that had solved structures. This set contained 3762 nonredundant non-AFPs and 44 AFPs, 60 
which had been collected from the PISCES server [22] and the Protein Data Bank (PDB) [23], 61 
respectively. To include as many representative structures as possible, the non-AFPs had <25% 62 
pairwise sequence identity (SI), R-factors of 0.25 and a crystallographic resolution of at least 2 Å. The 63 
AFP sequences were separated into eight subsets on the basis of sequence identity by ClustalW2 [24]. 64 
Table 1 lists the PDB IDs of the AFPs in each subset. For a given subset, the associated AFP(s) had a 65 
sequence(s) that was not homologous to any of the AFPs in the other subsets. The non-AFPs were 66 
randomly divided among the eight subsets to cross test the performance of our approach and then 67 
were merged as a single trained model for use with other (independent) datasets (see below). Under 68 
such a critical condition, any afterward AFPs recognition so far is not simply from the self-trained 69 
sequences. 70 
 71 
Independent Datasets— 72 
We constructed three other datasets that did not contain the AFPs included in the aforementioned eight 73 
subsets to test our algorithm after training it with the latter. The first set included three AFP structures 74 
deposited recently in the PDB [23]; the second set contained 369 nonredundant AFP sequences 75 
deposited in the UniProKT database [25,26], which represented an evolutionarily divergent group of 76 
organisms; the third set contained two “antifreeze-like” (AFL) proteins that, while incapable of 77 
binding ice, have both a sequence and a structure that are very similar to the fish type III AFP [27]. 78 
Table 2 lists the number of AFPs derived from each type of organism included in the second dataset.  79 
 80 
Feature schemes— 81 
The n-peptide composition feature-based coding schemes, with n = 1 encoding the amino acid 82 
composition; n = 2, the dipeptide composition; n = 3, the tripeptide composition, etc., were used 83 
previously to predict protein properties [19,20,21,28], and we used them to characterize the important 84 
ice-binding features of AFPs. A set of symbols, An for the original amino acids; Hn for hydrophobicity 85 
[29]; Vn for the normalized van der Waals volume [29]; Zn for polarizability [29]; Pn for polarity [29]; 86 
and Fn, Sn, and En, for groups of residues classified according to four, seven, and eight 87 
physical/chemical properties, respectively, were used to denote the feature schemes [19]. However, to 88 
characterize the key functional residues more robustly, partitioned subsequences, g-gap dipeptides, 89 
and local amino acid composition strategies were also included. [19] The partitioned amino acid 90 

composition Y
kX  is a concatenation of all amino acid sequences of composition Y and length k. The 91 

symbol Dg identifies the frequency of a sequence in the form a(x)gb, where a and b denote specific 92 
amino acids and (x)g denotes the g-intervening (g-gap) residues of any type between the pair. The 93 
symbol Wl indicates the amino acid composition for peptides characterized by a set of sliding 94 
windows of length l centered on a given type of amino acid. It provides information concerning the 95 
sequential neighbors for of a given type of amino acid. 96 
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 97 
Assembly Machine-learning Algorithms— 98 
All SVM calculations were performed using LIBSVM [30], which is a general library for support 99 
vector classification and regression, and the radial basis function kernel. In addition to the SVM 100 
algorithm [31], we implemented a GA to efficiently optimize the selection of feature attributes as 101 
detailed previously [18]. The combined use of the SVM algorithm and the GA is denoted as SVMGA. 102 
For the SVMGA, the feature attributes of each feature scheme, the penalty parameter C, the kernel 103 
parameter γ of the RBF function used for SVM identification by the GA approach were determined in 104 
advance. The GA procedure rapidly filtered out feature attributes that are not useful for SVM 105 
identification on the basis of each feature scheme. 106 
 107 
The Voting System— 108 
The coding scheme symbols given above denote the SVM classifiers that were derived from the 109 
various properties of the sequence descriptors. For simplicity, the participants in the 110 
SVM-identification system [19,20] were incorporated as:  111 
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with S = {H3,V3,Z3,P3,F3,S2,E2} and S' = {7, . . .,15}. The system counts the jury votes from each 113 
classifier to determine if a protein is an AFP. 114 
 115 
Performance Assessment— 116 
As in previous work [19,20,21], we employed the accuracy Qi = ci/ni × 100 to assess the performance 117 
of identification, i.e., the prediction accuracy, where ci is the number of correctly identified AFPs in 118 
the class i∈ (AFP, non-AFP), and ni is the number of sequences. The overall identification accuracy is 119 
given by 120 

∑=
i

iiQfP , 121 

where fi = ni/N, and N is the total number of sequences. Although Qi provides a convenient assessment 122 
for identification performance, the Matthews Correlation Coefficient (MCC) [32] is a more 123 
informative measure of the performance and is given by: 124 
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where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and false 126 
negatives, respectively. A value for MCC of 1, 0, or –1 represents a perfect correlation, a random 127 
correlation, or an inverse correlation, respectively. Consideration of the MCC, allowed us to modify 128 
our approach to lower the number of false positives returned. To be a credible method, our approach 129 
needed to return as few false positives as possible. 130 
 131 
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AFP Sequence Homology Search— 132 
To verify our ability to identify AFPs via their protein sequences, we tested the homology 133 
relationships among the AFP sequences. A query sequence from the second independent data set was 134 
aligned with the sequences of the 44 AFPs of the validation set. Only these 44 AFPs were used 135 
because their 3D structures have been solved, and they had been experimentally shown to bind ice. 136 
We performed an all-against-all sequence alignment using the global alignment program ALIGN [33]. 137 
Only the top-ranked sequence of the 44 AFP sequences was then used to assess the effect of homology 138 
on AFP identification, i.e., the SI value for the query sequence and the top-ranked sequence 139 
determined the usefulness of the homology search approach.  140 

RESULTS 141 

Identification of AFPs in a Cross-validation Dataset— 142 
For the cross-validation test, the non-AFPs were randomly and equally divided into eight subsets, 143 
each of which contained a single representative AFP (which is identified by the first PDB ID (in bold 144 
type) in each subset list (Table 1)), and these sets formed the single representative AFP mode. Then, if 145 
the AFP representative had homologous sequences, these sequences were added into the 146 
corresponding subset. The eight subsets can be thought of as eight distant branches of an evolutionary 147 
tree. These sets formed the multiple representative AFP mode. For an experiment, the sequences of 148 
seven of the subsets were used to train the SVM algorithm with a given feature scheme, and then the 149 
output model of the trained algorithm was used to test the sequences in the subset that was not used 150 
for training. This training-and-testing cross-validation procedure was repeated eight times for a given 151 
feature scheme, each time omitting a different sequence subset during training. All results reported the 152 
performance on the total number of datasets. The SVM classifiers were optimized so that the 153 
algorithm could assign a protein sequence as either an AFP or non-AFP sequence.  154 
Table 3 contains a summary of the identification accuracies and the MCC values for the different 155 
combinations of feature schemes used for the single representative AFP mode and the multiple 156 
representative AFP mode. Only the best result for a given feature scheme is reported. The best overall 157 
identification accuracy was 62.5% for the single representative AFP mode used by the SVM 158 
algorithm. Incorporation of the GA algorithm substantially improved the identification accuracy. 159 
Using the iterative procedures mentioned above, the GA identified the largest number of true positives 160 
and the smallest number of false positives as it discarded feature attributes that were not useful for the 161 
SVM classification. The assembled SVMGA approach correctly identified all AFPs in the single 162 
representative AFP mode. Using just the smallest possible number of selected features, the SVM 163 
classifier identified more completely structurally dissimilar AFPs than did Doxey and colleagues who 164 
used the structural characteristics of the AFPs [9]. After we decreased the number of FPs as much as 165 
possible (<70 FPs remained), we tested the algorithm with the multiple representative AFP mode, 166 
which was a more realistic dataset. Although the performance of the algorithm declined with the 167 
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increase in the number of divergent sequences, the identification accuracy was a respectable 54.5%. 168 
 169 
Identification of AFPs in the Independent Datasets— 170 
The three AFPs of the first independent dataset, which were the A chains of 2zib, 3bog, and 3boi were 171 
all accurately identified as AFPs. We observed that the sequence of 2zib is homologous to that of 2afp, 172 
which was contained in the eighth validation subset, and the sequences of 3bog and 3boi are 173 
homologous to that of 2pne, which was contained in the sixth validation subset. In addition to 174 
accurately identifying the proteins of the first independent dataset as AFPs, the algorithm also 175 
recognized that the human and bacterial AFL proteins (PDB IDs 1wvo and 1xuz, respectively) [27] 176 
were not AFPs. The human AFL and the bacterial AFL are both very similar in sequence and structure 177 
to that of the fish type III AFP (PDB code 1msi).  178 
For the AFPs of the second independent dataset, which represent a divergent group of organisms and 179 
were collected from the UniProKT database [25,26], about 61% were correctly identified as AFPs by 180 
the SVMGA. The SI pair distribution, which characterizes the relative number of sequence pairs in 181 
the close percentage sequence identity interval, was used to examine the effect of sequence homology 182 
on AFP identification. The 369 AFP sequences were each used as a query sequence to profile the SI 183 
pair-distribution. Each query sequence was aligned with the 44 AFPs of the validation set and also 184 
with the other 368 sequences of the second independent data set. The largest SI value for each query 185 
that was aligned with the 44 AFPs was plotted along the y axis, and the largest SI value for 186 
corresponding sequence aligned with the other 368 sequences of the second dataset was plotted along 187 
the x axis (Fig. 1). The SI values associated with AFPs in the independent dataset that were 188 
incorrectly identified by the SVMGA are colored red in Figure 1, and most of these values are <20%, 189 
which below the so-called midnight-zone threshold where a structural/functional relationship can be 190 
detected [34]. Because the dataset that contained the 369 AFPs was biased as it contained AFPs from 191 
well-characterized cold-adapted organisms, many of the points were located at the far end of the x 192 
axis.  193 
 194 
Coding Schemes— 195 
For the different coding-scheme SVM classifiers used in this study, we were able to reduce the 196 
number of feature attributes required by at least 50% after implementing the GA. Consequently, each 197 
remaining classifier was well suited to identifying the corresponding type of AFP (Table 4). To 198 
understand why the features were selected as classifiers, we assigned a number (vote) when the 199 
pattern of residues in a sequence matched a GA-selected feature attribute of a coding scheme. The 200 
sequence position was marked as an SVMGA key residue if it had received a majority of the jury 201 
votes from the 14 coding schemes that we used for the multiple representative AFP mode. For 202 
instance, the dipeptide LT was selected in the D0 scheme, and the interval dipeptide T(X2)T was 203 
selected in the D2 scheme. Hence, for the short peptide NTALT, the L in the forth position and the 204 
first T each received one vote, and the second T received two votes (Table 5). Eight representative 205 
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AFPs are presented in Fig. 2, with their SVMGA key residues marked. Residues with >6 votes, with 4 206 
or 5 votes, and with <3 votes are colored red, yellow, and gray, respectively. Fig. 3 illustrates the 207 
average number of SVMGA key residues in AFP sequences (black bars) and the number of in 208 
non-AFP sequences (gray bars). And it is obviously that the number of SVMGA key residues in AFP 209 
sequences is twice in non-AFPs. Approximately 70% of the SVMGA-selected key residues are 210 
solvent exposed (data not shown), which is sensible as these residues are more likely to interact with 211 
ice. 212 

DISCUSSION 213 

Previous studies have deduced the structural character of the interactions between ice and AFP 214 
molecules [7,14]. Knowing how ice and AFP molecules interact allows for the identification of AFPs 215 
given their structures (see the excellent results of Doxey and colleagues reported in Table 3). However, 216 
the method of Doxey and colleagues required the use of proteins with solved 3D structures, and 217 
therefore, until this report, there has not been a more general method for AFP identification. 218 
For this report, we presented an integrated machine-learning method, SVMGA, to identify AFPs that 219 
uses multiple n-peptide composition features. Our results show that sequentially divergent AFPs can 220 
be identified according to their shared sequence characteristics because any test sequence or its 221 
homologs are not appearing in trained set. A set of n-peptide composition-based SVM predictors were 222 
combined to accurately recognize AFPs, and more importantly, to identify the key functional residues 223 
at the ice-binding surfaces. Several reports [7] have characterized defining residue repeats in AFP 224 
sequences, e.g., alanine-rich sequences in the α-helix of type I AFPs (A28–A34, Fig. 2f), and 225 
Thr-Cys-Thr (Fig. 2b) or Thr-Xaa-Thr (Fig. 2c) sequences in insect AFPs. The feature attributes, 226 
selected by our SVMGA approach, included these features. Some of the key SVMGA residues in 227 
these representative structures of AFPs, formed relatively flat planes, e.g., the red and yellow 228 
clustered regions in Fig. 2 and 4. Additionally, SVMGA approach identified some residues reside at 229 
the interface between two chains of crystallized form in PDB, e.g., T13 and T24 in chain A of 1wfa 230 
(Fig. 2f), but actually the active protein is monomer. We found others that the SVMGA key residues 231 
in red, L12, L23, A31, and T35, reside on the same side of the flat binding interface. Another similar 232 
example is the β-sheet plane of chain A in 1ezg (Fig. 2b), although the Thr-Cys-Xaa tri-peptide 233 
parallel strands [35] align perfectly in the dimer crystallized form, this flattest ice-binding surface is 234 
found in the monomer as seen by the coloration at the functional interface. 235 
We also inspected the key residues that were identified in the eelpout type III AFP, which has been 236 
subjected to many mutagenesis studies. As mentioned in Method, this eelpout type III AFP, which 237 
PDB codes 1msi, had no homolog in any of the AFPs in trained subsets 1, 3, 4, 5, 6, 7 and 8 (Table 1.). 238 
And the key residues of 1msi were inferred from theses dissimilar trained sequences by SVMGA 239 
approach. Compared with previous studies [12,14], the SVMGA identified half of the proven 240 
ice-binding residues at the interface (Fig. 4b). For the three residues, N14, A16, and T18, which when 241 
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mutated caused the greatest decreases in AFP activity, the SVMGA method found the latter two. 242 
Although our approach failed to recognized Q9, T15, V20, and Q44, the SVMGA identified the 243 
nearby residues, L10, P12, L17, M22, V45, and V49. Residues L10 and P12 also reside at the 244 
ice-binding interface. 245 
For the detail results obtained for the 369 AFPs in the second independent dataset (Fig. 5), for which 246 
no structural information was available, the identification accuracy diminished as the evolutionary 247 
distance of a protein sequence increased from the model fish and insect sequences. For sequences 248 
with very low SI values (15~20%), especially those from algae, bacteria, and plants, our approach was 249 
around 30% accurate. The identification of fish AFPs was around 60% accurate even when sequences 250 
with lower than 20% SI values. In fact, we believe that the features encoded in the fish and insect 251 
sequences may be used to identify AFPs from evolutionarily divergent organisms. Additionally, as 252 
more sequence data for AFPs are accumulated, they can be used to further characterize the 253 
mechanisms of cold adaptation. Finally, our approach can be used as an efficient way to obtain high 254 
throughput identification of protein function on a genome-wide scale. We have implemented iAFP 255 
web service, which is available at http://140.134.24.89/~iafp/. 256 
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FIGURE LEGENDS 

Fig. 1. Sequence identity distribution for pairs of AFPs. The x-axis values are the best 
pairwise-matched SI values for each AFP sequence against the other 368 sequences. The y-axis values 
are the best pairwise-matched SI values for each of the 369 AFP sequences of the second independent 
dataset against the 44 sequences of the validation set. A black symbol indicates a correctly identified 
AFP in the independent data set, and a red symbol indicates an incorrectly identified AFP. 

 

Fig. 2. Examples of key residues mapped onto the surfaces of the eight representative AFPs used in 
the cross-validation tests. The structures were drawn with PyMOL [36]. The residues colored in gray 
were not identified as key residues. The residues in red obtained more votes than did the residues in 
yellow. (a) 1c3y; (b) 1ezg; (c) 1eww; (d) 2pne; (e) 1c89; (f) 1wfa; (g) 2py2; (h) 2afp.  

 

Fig. 3. Difference of the number of SVMGA key residues extracted from the 44 AFP and 3762 
non-AFP sequences in cross-validation dataset, respectively. Each black bar represents the mean ± 

standard deviations of coverage percentage a SVMGA residue was included in a AFP sequence. Each 
gray bar represents for non-AFP sequence. 

 

Fig. 4. The surface of the eelpout type III AFP (PDB ID 1msi) drawn with PyMOL [36]. (a) The key 
residues selected by the SVMGA are labeled in black words. Residues Q9 and N14, which were 
identified as key residues in a mutagenesis study but not by the SVMGA, are labeled in blue. (b) A 
view of the ice-binding interface, wherein all residues that are part of the interface are labeled. The 
residues identified by SVMGA are in red and yellow. Residues known to be important in ice binding, 
but not identified by the SVMGA, are in cyan. Residue I13, which was not identified by the SVMGA, 
is in gray. Its status as a key residue has not been determined by a mutagenesis study.  

 

Fig. 5. The identification accuracy for the 369 AFPs from the second independent set. Each bar 
correlates the identification accuracy with a range of maximum SI values, which was found using the 
y axis of Figure 1 in detail ranges of SI for different species.  
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Table 1. The eight protein subsets used for cross-validation testing. 

Subset Type PDB ID 

1 insect AFP 1c3y 
2 Type III fish AFP 1c89; 3nla; 1ucs; 1ops; 1kde; 1ame; 1msi; 1b7i; 

1b7j; 1b7k; 1ekl; 1gzi; 1hg7; 1jab; 1msj; 2ame; 2jia; 
2msi; 2msj; 2spg; 3ame; 3msi; 4ame; 4msi; 5msi; 
6ame; 6msi; 7ame; 7msi; 8ame; 8msi; 9ame; 9msi; 

3 β-helical insect AFP 1ezg 
4 Type I fish AFP 1wfa; 1j5b; 1y03 
5 β-helical insect AFP 1eww; 1l0s; 1m8n 
6 insect AFP 2pne 
7 Type II fish AFP 2py2 
8 Type II fish AFP 2afp 

Notes: The sequences of the PDB codes given in bold type were used for the single representative 
AFP mode. 
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Table 2. The number of antifreeze protein sequences for a given type of organism in the independent 
dataset that contained 369 AFPs. 

Organism Number of sequences 

Algae 17 

Bacteria 101 

Fish 123 

Insects 105 

Plants 23 
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Table 3. The performances of SVM and SVMGA for the eight-fold cross-validation tests that used the 
single representative AFP mode or the multiple representative AFP mode.  

    SVM SVMGA   

Number  Subset  C+X3+V3X5 §14 Feature Schemes  §§Doxey et al.[9] 

1 (1)  1  0 (0) 1 (1)  - 

1 (33)  2  0 (0) 1 (15)  (3) 

1 (1)  3  1 (1) 1 (1)  (1) 

1 (3)  4  0 (0) 1 (1)  (3) 

1 (3)  5  1 (2) 1 (3)  (2) 

1 (1)  6  1 (1) 1 (1)  - 

1 (1)  7  1 (1) 1 (1)  - 

1 (1)  8  1 (1) 1 (1)  (0) 

AFP accuracy  62.5% (13.6%) 100.0% (54.5%)  (90.0%) 

AFP precision  21.7% (25.0%) 10.4% (25.8%)  (42.9%) 

Overall accuracy  99.4% (98.5%) 98.2% (97.7%)  (99.6%) 

MCC  0.367 (0.178) 0.319 (0.365)  (0.620) 

TP  5 (6) 8 (24)  (9) 

TN  3744 (3744) 3693 (3693)  (3184) 

FP  18 (18) 69 (69)  (12) 

FN  3 (38) 0 (20)  (1) 

Notes: Values given in parentheses are the number of homologous proteins accurately recognized 
using in the multiple representative AFP mode. 
§14 feature schemes: ∑∑∑∑

∈
=

=

+++
'

5

3

1

1

Sl
l

S

S
k

g
g

k

A
k WXDX  where g = {0,1,2,3,5}, S = {H3,V3,P3,S2,}, and S' = 

{9,15} 
§§Doxey and colleagues used structure as the property to identify 10 AFPs in their dataset excellently. 
Only 2atp, for which its NMR structure was used, was not identified correctly. 
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Table 4. The feature schemes that enabled the recognition of the AFP in a subset when the single 
representative mode was used. The filled circles correlate the feature schemes with the AFPs that they 
identified. The AFPs are denoted according to their subsets.  

 Feature Scheme 

Subset C Wl D0 D2 D3 S2X5 H3X5 P3X5 V3X5 Z3X5 

1   ●        

2  ● ●   ●     

3 ● ● ● ● ● ●   ● ● 

4   ●    ● ● ●  

5 ● ●  ● ● ● ● ● ●  

6       ● ● ● ● 

7 ● ● ●  ●  ●    

8 ● ● ●   ● ● ●   
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Table 5. An example of votes acquired by residues in a sequence from 1msi.  
Sequence  ….. Q9 L10 I11 P12 I13 N14 T15 A16 L17 T18 ….. 

Coding C  * *  *     *   
 X2     *   * *  *  
 X3    *  *       
 D0          * *  
 D1   *          
 D2        *   *  
 D3             
 D5           *  
 O3X5         * * *  
 P3X5        * * *   
 V3X5   * * *    * * *  
 S2X5             
 W9   * * * * *  * *   
 W15             

Votes  ….. 1 4 3 4 2 1 3 5 6 6 ….. 
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