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Abstract

Epitopes are antigenic determinants that are useful because they induce B cell
antibody production and stimulate T cell activation. Bioinformatics can enable rapid,
efficient prediction of potential epitopes. Here, we designed a novel B-cell linear
epitope prediction system called LEPS, Linear Epitope Prediction by Propensities and
Support Vector Machine, that combined physico-chemical propensity identification
and support vector machine (SVM) classification. We tested the LEPS on four
datasets: AntiJen, HIV, a newly generated PC, and AHP, a combination of these three
datasets. Peptides with globally or locally high physico-chemical propensities were
first identified as primitive linear epitope (LE) candidates. Then, candidates were
classified with the SVM based on the unique features of amino acid segments. This
reduced the number of predicted epitopes and enhanced the positive prediction value
(PPV). Compared to four other well-known LE prediction systems, the LEPS
achieved the highest accuracy (72.52%), specificity (84.22%), PPV (32.07%), and
Matthews correlation coefficient (10.36%). The LEPS is freely available for academic
use at http://LEPS.cs.ntou.edu.tw.




Introduction

Epitopes, also called antigenic determinants, are clusters of amino acid segments
located on the surfaces of an antigen. Epitopes can elicit the immune response and are
recognized by specific antibodies [1]. Basically, B-cell epitopes are categorized into
two types: linear and conformational. Linear epitopes (LEs) are composed of
contiguous amino acid residues within a continuous stretch of a primary protein
sequence. Conformational epitopes (CEs) consist of amino acids that are dispersed
among discontinuous regions, but become aggregated on the protein surface [2, 3]. In
general, over 90% of B-cell epitopes are discontinuous [4, 5]; thus, CEs play critical
roles in biological and biomedical applications, including the prevention and
neutralization of pathogen infections, and the design of therapeutic drugs. However,
the prediction and identification of CEs within a protein depend on resolved three-
dimensional structural information. One major, generally accepted concept is that
conformational epitopes cannot be properly formed without binding to a
corresponding antibody [6]. Therefore, antigen-antibody co-crystallographic
information is a major concern in CE prediction. On the other hand, because CEs are
discontinuous epitopes, it is difficult to design a peptide that forms the same
conformation as the predicted CE. Thus, CEs that are predicted by computational
analysis may not be verifiable in biochemical experiments, except with the co-
crystallographic approach. Although B-cell LEs occupy a small part of the entire
epitope group, they are important in biochemistry [7], virology [8], immunology [9],
and vaccine research [10]. Therefore, research and development of accurate
computational approaches for LE prediction remains a critical challenge in
bioinformatics and computational biology [6]. Most published B-cell LE predictors
have been based on the characteristics of amino acids, like hydrophobicity, surface
accessibility, mobility, protrusion area, physico-chemical properties, antigenicity, and
pocket characteristics [1, 3, 11-16]. For example, BcePred [16], BEPITOPE [17],
PEOPLE [11], VaxiJen [18], and LEP [12] are bioinformatics tool that use various
mathematical approaches to predict LEs according to the physico-chemical
propensities of amino acids. Nevertheless, in 2005, Blythe and Flower led a group
that evaluated the physico-chemical propensities of amino acids to predict LEs in
proteins; they reported that even the best physico-chemical propensity scales available

performed only slightly better than a random model [19]. Hence, it was proposed that,



instead of using the antigenicity scale alone, LE prediction may be improved by
integration with other computational approaches.

Several machine learning computational methods have been applied to improve the
accuracy of LE prediction. For example, BepiPred combined a hydrophilicity scale
with a hidden Markov model [20]; BCPred [21] and FBCPred [22] employed SVM
with a subsequent kernel; Sollner and Mayer utilized a molecular operating
environment with the decision tree and nearest neighbour approaches [6]. However,
these machine learning approaches were mostly set to predict peptides of fixed
lengths. It is difficult to analyze true LEs, because they generally range from 8-20
amino acid residues in length [11, 23-25]. Epitopes with fixed lengths are not
typically sufficient to represent the whole region of antigenic determinants. To
overcome the drawbacks of training and/or predicting fixed length epitopes, ABCPred
used two artificial neural network methods, the feed-forward network and the
recurrent neural network, for the prediction of B-cell LEs [26]. Both networks were
used with different window lengths from 10 to 20 amino acids and a two-residue
interval.

Although bioinformatists have expended great effort on developing LE predictors,
there remains much room for improvement. Theoretically, an epitope identified by
experimental immunological or biochemical methods must possess biological
antigenicity that can induce antibody production in animals. However, when
computational skills are used for the prediction, some experimentally identified
epitopes could be missed or ignored. This generated the interesting study of how to
retrieve the unpredictable epitopes and enhance their antigenicity score in silico.

In 2008, LEP was developed for predicting LEs based on physico-chemical
propensities combined with a mathematical morphology approach. LEP could retrieve
some of the LEs that were locally embedded in the noise signals of the antigenic
index [12]. We reasoned that prediction accuracies could be further improved, and
retain the advantage of variable length conditions, by combining the LEP with
machine learning technologies.

As mentioned above, the machine learning methods used in previous LE prediction
methods were often trained to predict epitopes with fixed lengths. Chen’s study
showed that the frequencies of occurrence for some amino acid pairs in the epitope
dataset were significantly higher than in non-epitope datasets, or vice versa [23]. We

noticed this important statistical feature and applied it to enhance the performance of



LE prediction systems. Hence, in order to explore the statistical advantages of verified
epitopes and retain the antigenic characteristics of candidate peptides, we decided to
extend the concept of amino acid pairs from Chen’s study, which only considered
peptides with 2 residues.

In this study, we developed a novel B-cell LE prediction system called LEPS (Linear
Epitope Prediction by Propensities and Support Vector Machine). We adopted the
library for SVM (LIBSVM) tool and trained it to recognize features of amino acid
segments (AASs) with lengths from 2 to 4 residues. Then, SVM was used to
characterize those patterns as epitope and non-epitope clusters [27]. Accordingly, the
LEPS approach first performed physico-chemical propensities and mathematical
morphology approaches, and then used the AAS features to cluster the predicted LE

candidates and remove the less probable LEs.

Materials and Methods

Testing datasets and Predictors

Four datasets were used in this study. The AntiJen dataset was recommended
at an international meeting sponsored by the National Institute for Allergy and
Infectious Disease [6] and contained 171 protein sequences with 691 verified, non-
overlapping epitopes [19]. The HIV dataset was a collection of the antigenic
determinants located on 10 HIV proteins with 54 non-overlapping, verified epitopes
[28]. The PC dataset, generated in this study, was a collection of 12 protein sequences
with 98 non-overlapping, verified epitopes (Table 1). In order to balance out the
variation of each dataset in quantity and antigen diversity, these three datasets were
merged into one, comprehensive dataset called the “AHP dataset”. These datasets
were analyzed with different LE predictors, including the BepiPred [20], ABCPred
[26], BCPred [21], and FBCPred [22], to compare performances with that of the
LEPS developed here.

System flow

The proposed system was divided into three main steps (Fig. 1a). The first step
retrieved primitive epitope candidates from a query protein sequence with LEP [12],
which was developed in our previous work and was used with the default settings.

Then, a SVM classifier was applied to remove less probable epitope candidates and



improve prediction accuracies. In the final step, the predicted epitope residues were
highlighted in the query sequence and visualized in a predicted structure. The virtual
structure was generated from Modeller 9.9, based on homologous protein structure

modeling approaches [29].

Training datasets and SVM model

The process of training the SVM model comprised two major steps (Fig. 1b). The first
step (step 1b) evaluated the statistical characteristics that determined the frequencies
of occurrence of AASs with various lengths from an independent B-cell epitope
dataset (Bcipep [30]) and a non-epitope dataset (Chen [23]). The second step (step 2b)
produced a SVM model that recognized the epitopes and non-epitopes of the Chen
dataset based on the statistical features derived from step 1b.

The Bceipep dataset comprised 1230 experimentally verified, B-cell, and non-
redundant LEs with lengths that ranged from 3 to 56 residues that were identified in
over 1000 antigen proteins. This dataset was used in step 1b to analyze the statistical
characteristics associated with the frequencies of occurrence of AASs of 2 to 4
residues in length that represented epitopes.

The Chen dataset contained 872 epitopes and 872 non-epitopes. All epitopes and non-
epitopes within this dataset were restricted to a length of 20 residues. These verified
epitopes were retrieved from the Beipep dataset by applying a ““truncation-extension
treatment”. That is, when the length of an LE was longer than 20 residues, an equal
number of superfluous residues were truncated from both the N- and C- termini to
preserve the central 20 residues. Conversely, when the length of an LE was shorter
than 20 residues, an equal number of residues were added to both the N- and C-
termini until the epitope comprised 20 residues. On the other hand, the 872 non-
epitopes were generated by randomly selecting peptide segments from the Swiss-Prot
database [31], with the stipulation that none was the same as any of the 872 epitopes.
The 872 non-epitopes were used to analyze the statistical characteristics of AASs for
non-epitopes in step 1b. After determining the statistical features that were associated
with frequencies of occurrence, the proposed system applied these features (step 2b)

to produce a SVM model in a 5-fold cross-validation on the Chen dataset.

Statistical analysis of AASs and epitope indexes



For LE verification, we considered the statistical features to be AASs of 2 (44S 2), 3
(A4S ’ ), and 4 (44S 4) residues in length for both epitopes and non-epitopes. For

AAS 2, 400 possible combinations of residue pairs were analyzed for occurence

frequencies within both the epitope and non-epitope datasets. The epitope index
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There were a total of 8000 and 160,000 possible combinations for A4S° and 44S 4,

respectively. A large portion of AAS® or A4S* did not appear in the non-epitope

dataset; this would cause a problem, because it could lead to a zero in the denominator.
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where / was equal to 3 or 4. Again, the values of and

normalized to the range of [0, 1].

SVM features and model selection
In this study, we adopted the SVM as a learning method to classify epitope and non-
epitope peptides. We employed the open source LIBSVM toolbox for executing this



classification. In LIBSVM, each instance in the training set possessed one target value
(class label) and several features (attributes). In the testing set, only the features were
required for each instance. The objective of SVM was to generate a model from the
training set that facilitated the prediction of the target value of each instance in the
testing set. In this study, a peptide corresponded to an instance and the target value (1

or -1) represented whether that peptide was an epitope. Each peptide contained three
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feature values based on Epidex; , Epidex; , and Epidex, . For example, a 20-mer
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respectively.

The Chen dataset was used to construct a SVM model based on three feature values
and the target values of each epitope and non-epitope. There were four common
kernel functions provided by LIBSVM, including linear, polynomial, radial basis
function (RBF), and sigmoid. We examined these four kernel functions with a 5-fold
cross-validation. The training dataset was equally divided into 5 different subsets;
four of the subsets were used for training the model and the last one was used for
testing the model. These processes were repeated five times with each individual
subset used as the testing subset. Here, the RBF kernel was selected as the default
kernel function, because it provided the best cross-validation accuracy with the
training data. Subsequently, the RBF kernel function was applied to train the whole

testing dataset for constructing the final SVM classifier in the LEPS.

Performance measurement

To evaluate the performance of the LEPS at the level of the amino acid residue,
five indicators were used to measure effectiveness at the default settings. These
indicators were: (1) sensitivity (SEN), defined as the percentage of epitopes that were
correctly predicted as epitopes; (2) specificity (SPE), defined as the percentage of
non-epitopes that were correctly predicted as non-epitopes; (3) positive predictive
value (PPV), defined as the probability that a predicted epitope was, in fact, an
epitope; (4) accuracy (ACC), defined as the proportion of correctly predicted peptides;



and (5) Matthews correlation coefficient (MCC), which was a measure of the
predictive performance that incorporated both SEN and SPE into a single value

between -1 and +1 [26]. These parameters were calculated with the following

equations:
P

Sensitivity = ————
(1) ensitivity PN
(2) Specificity = TN]ZVFP
3) Accuracy = TP+ 1N

TP+ FP+ TN+ FN
TP

PPV = ——
(4) TP+ FP

MCC = TP xTN —-FP x FN
©) (TP + FP)(TP + FN)(IN + FP)(IN + FN)

where TP represented the true positive; 7N, the true negative; FP, the false positive;

and FN, the false negative.

Results and Discussion

A new linear epitope dataset: PC

The new dataset, called the PC dataset (collected by Pai and Chang),
contained 12 sequences that did not overlap with other datasets. It was generated and
analyzed in this study. The experimental epitopes in the PC dataset were identified
with the peptide scan methodology, a conventional method for epitope determination.
The average length of the identified epitopes in the PC dataset was 18.9 residues. This
was considered a practical length for an epitope to be used in peptide vaccine
development or antibody generation. The average epitope lengths in the HIV and
AntiJen datasets were 26.4 and 16.3 residues, respectively. All sequences in the PC
dataset were analyzed with the LEPS, and the predicted and experimentally verified

epitopes are listed in Table 1.

The performance of LEPS
The epitope information collected from the PC, AntiJen, and HIV datasets were
utilized to verify the performance of LEPS. The PC dataset was described in the

previous section. The original AntiJen dataset comprised 3619 epitopes, of which



3168 were found in the Swiss-Port database. As in our previous report, we
regenerated the original AntiJen dataset by removing the repeated epitopes [12]. The
HIV dataset focused on one infectious pathogen and was recognized as a useful tool
in the field of HIV immunology [28]. The AHP dataset combined these three datasets
to balance the variations in each dataset including variations in epitope length and the
physico-chemical properties of antigens. With these 4 datasets, we compared the
performance of five LE predictors, including LEPS, BepiPred [20], ABCPred [26],
BCPred [21], and FBCPred [22].

As expected, LEPS provided favorable results in all four datasets (Fig. 2). Table 2
shows that LEPS displayed the best specificity (SPE), with values of 88.33%, 84.48%,
74.84%, and 84.22% in the PC, AntiJen, HIV, and AHP datasets, respectively.
Moreover, LEPS showed the best PPVs, with values of 45.12%, 28.85%, 71.44%, and
32.07% in the PC, AntiJen, HIV, and AHP datasets, respectively. The PPV indicated
the rate of identifying real epitopes among all positive predicted candidates. It is one
of the most important factors in conducting vaccine development. Reduction of the
false positive candidates can improve the effectiveness and efficiency of identifying
the real epitopes. Therefore, the LEPS will outperform the other predictors in terms of
biological experiment cost-effectiveness. In the field of computational science,
prediction accuracy is one of the most concerned factors for system evaluation.
Except in the HIV dataset, LEPS displayed the best ACCs, with values of 61.66%,
73.81%, and 72.52% for the PC, AntiJen, and AHP datasets, respectively. These
results showed that LEPS displayed excellent performance for LE prediction. The
LEPS also showed the best performance in the MCC for the AntiJen and AHP datasets
(10.10% and 10.36%), and the MCC was only a little lower (22.76%) than BCPred
(29.80%) and FBCPred (27.81%) for the HIV dataset. Taken together, LEPS
displayed excellent performance in SPE and PPVs for all four datasets; it also showed
the best or equivalent ACCs for all datasets. However, it showed relatively low SEN

compared to the other predictors, mainly due to less number of predicted LEs.

The LEPS platform

The LEPS provides a user-friendly interface for biologists to predict linear epitope
candidates (Fig. 3a). LEPS will accept either FASTA format or text, and the default
parameters were set as indicated. In this system, several physicochemical propensities

can be dynamically modified by users, including secondary structures, hydropathy,
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surface accessibility, flexibility, polarity, and other factors. The scanning window size
for each parameter is also adjustable. After executing the prediction, the overall
antigenicity of the query protein and the predicted LE candidates are displayed. For
example, Fig. 3b shows the LEs in HIV integrase predicted by LEPS. Seventeen
candidates were initially predicted by LEP based on the global and local distributions
of antigenicity. These candidates were further filtered by SVM selection, with only 9
remaining candidates. Within these 9 epitope candidates, number 1 (residue 5-19),
number 2 (residue 41-50), numbers 7 and 8 (residue 227-239, and residue 243-247),
and number 9 (residue 261-266) overlapped with the experimental epitopes at
residues 1-16, residues 42-55, residues 228-252, and residues 262-271, respectively.
To verify the surface conditions of the predicted LEs within the query protein
sequence, a protein structure was simulated based on homologous modeling
approaches. This structure can be viewed and analyzed by clicking on the button

labeled ‘predicted structure’.

Visualization of the predicted LEs on 3D structures
Predicted structures of the query sequences can be rendered by Jmol

(http://www.jmol.org/) in LEPS, and the corresponding PDBs and PyMOL script files

(http://www.pymol.org/) are downloadable by request. For example, Figure 4 shows

the simulated structure of HIV integrase as predicted by Modeller, with the predicted
epitope segments displayed in yellow solid spheres. Because there is a high
probability that true epitopes will be exposed on the protein surfaces for binding with
antibodies, visualization of the predicted LEs on 3D structures can facilitate the
selection of suitable epitopes from predicted candidates according to their surface
distributions. Figure 5 shows an example of the experimentally verified epitopes and
predicted epitopes for the 10 kDa chaperonin protein in the AntiJen dataset. The
yellow spheres in both Fig. 5a and 5b show the true and predicted epitope atoms,
respectively. The position of the remaining protein is shown in red and blue solid balls
in the two simulated structures. In both cases, most of the epitope residues are located

on the protein surface.

Acceptability of low sensitivities
Although LEPS can provide a highly accurate prediction of LEs, the low sensitivity is

an issue that remains to be investigated. In general, epitope datasets confront a
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challenge that biological experiments would not cover all the true epitopes within an
individual antigen. Peptide scanning data could only identify potential epitopes that
were recognized by a specific antibody. However, different antibodies to the same
antigen might recognize different epitopes. These biological variations caused low
coverage of epitopes within an antigen [32]. This situation implies that the
sensitivities of a LE predictor should generally be low. Alternatively, a LE predictor
might ubiquitously predict more epitopes to regain the sensitivities accompanying
with the reduction of specificities. This will definitely lead to higher experimental
costs in general. Nevertheless, to persuade biologists to conduct in vitro experiments
on the predicted potential LEs, the accuracy and MCC values could provide balanced

statistics for evaluating the performance of a prediction system.

In this study, LEPS displayed high accuracy, MCC, specificity, and PPV, although the
sensitivity was a little low. However, the reduced sensitivity was offset by the high
PPV. Therefore, the LEPS provides a high probability of success for molecular

biologists in predicting and selecting functional epitopes effectively and efficiently.
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Table 1: Epitopes predicted in the PC dataset after analysis with LEPS

é}ﬁ%ﬁgﬁgﬁ?th LEPS predicted Epitopes Experimental Epitopes Ref.
PrP:253 M;ANLGCWML,
(P04156) Ry7YPGQGa, [33]
Q52GGsy [33]
Qo1GGGTos [33]
N10oKPSKPKTNMKHMA 15 [33]
G1;3GLGGYMLG 3, [33]
S13DYEDRYYRENMHRYPN; 59 H4FGSDY 45 [33]
Qi60VYYRPMD; [33]
F19sTETD2gp [33]
Y,sERESQAYYQRGS,3
GAPDH:338 AKVGING
(P20287) A, AFLKNTVDV;,
V31 SVNDPFIDL,, V3:SVNDPFIDLEYMy; [34]
K4RDSTHGTFPGEVSTENGKLKVNG GsEVSTENGKLKVNGKLISVHCERDPg, [34]
KL7;
CsERDPANIPWDKDGA,
A10sQAHIKNNRAK 5 G19oVFTTIDKAQAHIKN; 4 [34]
S123APSADAPM, 5,
V136NENSYEKS, 44
V14sSNASCTTN; 56
K, VIHDKFELV 7, K, VIHDKFEIVE, ;3 [34]
V,5sVDGPSSKLWRDGRGAM,
A1 o)STGAAKAVG; 9
LysNGKLTs3
R,5sVPTPDVS V.4
Ry LGKGASYEE,sg
F287VGSTSSS,04 S,6sGPLKGILEYTEDEVVSSDFVGg9 [34]
I30SLNNNF;03
Y;1sDNEFGY3y;
150 THMHKVDHA ;3¢
Arah 1:626 K,SSPYQKKTENPCsg K,6SSPYQKKj3;3 [35]
(P43238) Q4 QEPDDLKS, Q.sEPDDLKQKA [35]
EoYDPRCVY 3 [35]
P;sRGHTGTTNQRSPPGERTRGRQPG E¢RTRGRQPGDYDDDRR; s [35]
DYDDDRRQPRREEGGRWGPAGPRE R;;sREEGGRW;5 [35]
REREEDWRQPREDWRRPSHQQPR E2sREEDWRQ;3; [35]
KIRPEGREGEQEWGTPGSHVREETSR  E;3sDWRRPSHQQPRKIRPEG;s; [35]
NN73 P10sGQFEDFF;0, [35]
Y31.LQGFSRN3.9 [35]
F10sNAEFNEIRR:34 [35]
Q34sEERGQRR35; [35]
K351SVSKKGSEEEGDI ;94 D3o;ITNPINLRE 4, [35]
NpoNFGKLFEVK 15 [35]
GussNLELV g5 [35]
Ks»EQQQRGRREEEEDEDEEEEGSNR
EVaor RuosRYTARLKEGs, [35]
Es,sLHLLGFGINs3, [35]
Ha3oRIFLAGDK D [35]
I55;DQIEKQAKDLAFPGSGEs¢g [35]

Ps5;QSQSQSPSSPEKESPEKEDQEEEN
QGGKGPg;;
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SARS N:422
(Q19QWO)

7ZP3:399
(077685, residue
24-422)

AIV-H4:511
(A3KF09,
residuel7-527)

AIV-H5:568
(ASHNY9)

AIV-H12:527
(C7TFPM3,
residue 1-527)

DEN-3 E-
glycoprotein:493
(D2JWZ8,
residue 281-773)

HeGKEELg;s
T7;NSGPDDQg,
L,4NTPKDHIGTRNPNNN 55

T3 QSPAPGSSFSP,,

P12sNLSQ138

QiINYTGNPVICy

S16sDGNAYP, 75

E 8 LEYGNCNTKCyo4
T3sLIEQNVPVTy,

Ss33QEGAs3;
W0 YKKGSSI76
L77NSLG7y,

A3 RPKQRRPQGLPNNTASWFTss

A1ssATVLQLPQGTTLPKGFYAEGSRGG 5
T266KQYNVTQAFGRRGP:s,
NassFGDQDLIRQGTDY K30
K;ssHIDAYKTFPPTEPKKDKKK 375
Ry3sQKKQPTVTLLPAADMDDFSRQLQN.
T;;QSPAPGSSFSPPPVVA,;

Q; AAELTLGPSACAPVPAEPLSK,,
H,0;ECGSELQMTPDSLIYSTVLHY 5,
L1,sSQSPLVLRSSP, 5,

G15IQPTWVPFHSTLSREQ 1,

D,5;SSSIFISPRPG

V10, TATDQAPSPLN;;

A31,DEWLPVEGPRD;»,
Q14EPGNPSEFEADLMLGPLVLSEAENGP;,

D1 TCYPFDVPEYQSLR 3,

F 37 QWNTVKQNGKSGACKRANVNDFFNRLNWLVK
SDGNAYPLQNLTKINNGDYARLYIWGVHHPSTDT,»
N2osLYKNNPGRVTVSTK 20
T»4SVVPNIGSGPLVRGGQSGRVSXYWTIV,s,
V,5;FNTIGNLIAPRGHYKLNNQKKSTILNTAIPIGSCV
SKCHTDKGSLSTTKPFQNISRIAVGDCPRYVKQGSL
KLATGMRNIPEKASRGLFGAL o
D4ssSEMNKLFERVRRQL g0
A47;EDKGNGCFEIFHK CDNN 0
Ns1,RFQIQGVKLTQGY My
A,sNNSTEQVDTIMEKNVTVTHAQDILEK THNGKLs,
EgsFLNVPEWSYIVEKINPANDLCYP, s
C15;PYQGRSSFFRNVVW ¢
DiswAAEQTRLYQNPTTY 5
R,,;SKVNGQSGRMEFFWTILKPNDAINFESNGNFIAP
ENAYKIV,7;

L4, RDNAKELGNGCFEFYHR 40

D3 TVNTLIEQNVPVTQVEELVHj ,
Ki27YERVKMFDFTKWNVTYTGTSKACNNTSNQGSF
YRSMRWLTLKSGQFPVQTDEY 5
F190TWAIHHPPTSDEQVKLYKNPNSLSSVTTDEINRS
FRPNIGPRPL 34

Q,3QGRMDYYWAVLKPGQTV,ss
T,50NGNLIAPEYGHLITGKSHGRILKNDLPIGQCTTEC
294

Ts10SKHYIGKCPKYIPS ;0
R13sNVPQAQDRGLFGAIAGFIEGs,

1530 TDIWAYNAELLVLLENQKTLDEHDANVRNLHDR
VRyss

G473CFEILHKCDDGCMDTIKNGT 98
Qs50,DYEEESKLERQRINGVKLEENSTYKs»7
T331QLATLRKLCIEGKI345
D35;:SRCPTQGEAVLPEEQDPNY 379

Q41 YENLKYTVIITVHTGDQHQVGNETQGVTAEITP
QASTTE.s5

L47sLTMKNKAWMVHRQW 490
QsEVVVLGSQEGAMHTsy
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O. tsutsugamushi
47-kDa
antigen:466
(Q53246)

HPV L1
protein:510
(A8BQO1)

Bacillus
anthracis, PA
domain IIT and
1V:248

(P13423, residue
488-735)

L, KKGEKIR,5,

V122GRGQPL; 33

R3AQGHNNGMCW3

V416PPPPSASL 24
KasoPTPPKTPTDP s,

G497y TPPPTSKRKR V50
Ns;sPSDPLETTKPDMTss,

N720PNYK724

H,,;SKSLLNQKAVLPQQKSDMHIN,,
TesNIGISLNNKVSKYQQEVy,

Vo; TNENVIAGR 05

Y 14sATFGDSNQS; 54

V7, TNGIISSKGRDMG 54

F19IQTNAATHM,;

Ho0:MGSFGGPMF,,

L3;PSNTVLEA V.4

L2sKKGEKIRRG)s,

L33 LRNGKSMTLKCKITANK 35

Q357SNDQSLV VN3¢

L7 TPDLVKKYNITS A g6

D, VYVTRTNVYYHGGSSRLLTVGHPYYSIKKSNNK
VAVPK Vg,
VoKLPDPNKFGLPDADLYDPDTQRLLWACVGVEVG
RGQPLGV 5

T20sTIEDGDMVET, 5

D, sl CTNTCKYPDYLKMAAEPY 134
G13sDSMFFSLRREQMFTRHFFNRGGKMGDTIPD 555

S350 INVSLCATEA 349
F370KEYLRHMEEYDLQFIFQLCKITLTPEIMAY 490

P450YASLTFWDVDLSESFSMDLD,5

Rs;,RIAAVNPSDPLETTKPDMTss,
AsosELNATNIY VL7
I50RDKRFHYDRNNIAVGADES 30
LsoaNISSLRQDGK T3
L11sYISNPNYKVNVYAVTKENT 35

[40]
[40]
[40]
[40]
[40]
[40]

e —
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—_ O O O OO
PR e S s B et et

[41]

[41]
[41]
[41]

[41]
[41]

[41]

[42]
[42]
[42]
[42]
[42]

*Because some of the epitopes in the PC dataset were partial antigen fragments, the serial numbers for the residues in each epitope
were assigned according to the sequence information retrieved from the UniProt database [43]. The overlapping amino acids
between the experimentally verified and predicted epitopes are shown in bold.
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Table 2. Comparison of the performances of LEPS, BepiPred, ABCPred, BCPred, and

FBCPred systems.
Systems SEN® SPE? ACC? PPV*® MCC?
PC dataset
LEPS 12.78 88.33 61.66 45.12 3.65
BepiPred 48.23 59.72 55.33 38.19 7.49
ABCPredy s’ 65.46 40.26 48.89 36.21 5.13
BCPred 50.92 59.35 52.83 36.07 443
FBCPred 51.03 52.55 52.20 35.26 3.17
AntiJen dataset

LEPS 26.72 84.48 73.81 28.85 10.10
BepiPred 51.79 57.61 55.52 22.02 6.04
ABCPredg g 67.33 40.40 44.70 21.83 5.46
BCPred 58.84 54.87 53.92 23.34 8.93
FBCPred 60.31 51.21 51.45 22.33 6.73

HIV dataset

LEPS 48.33 74.84 63.45 71.44 22.76
BepiPred 50.16 60.85 56.72 61.22 9.72
ABCPredy 7 87.97 14.65 56.59 56.33 5.64
BCPred 80.18 54.57 66.57 65.55 29.80
FBCPred 73.20 58.20 67.13 65.56 27.81

AHP dataset®

LEPS 26.97 84.22 72.52 32.07 10.36
BepiPred 51.48 57.91 55.57 25.06 6.32
ABCPredgg 68.28 39.06 45.58 2451 5.45
BCPred 59.45 54.80 54.50 26.32 9.73
FBCPred 60.40 51.66 52.31 25.38 7.60

*SEN, sensitivity; SPE, specificity; PPV, positive prediction value; ACC, accuracy;
MCC, Matthews correlation coefficient, unit, %

®The subscripts of ABCPred denote threshold values according to the highest

accuracy.

“This dataset is a merge of the other 3 datasets.
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Fig. 1 The design of LEPS. (a) Step 1a: Primitive epitope candidates with globally
and locally high antigenicity were extracted by calculating weighting coefficients for
various physic-chemical propensities of each amino acid. After the filtering process
with the SVM classifier (step 2a), predicted epitopes were highlighted (step 3a) in the
query sequence and the simulated structure. (b) Step 1b: 1230 experimentally verified
epitopes and 872 non-epitopes were analyzed to determine the statistical
characteristics of AASs. Step 2b: Subsequently, epitope indexes of 872 epitopes and
872 non-epitopes were used to train the SVM model to predict candidate epitopes

based on the statistical characteristics defined in step 1b.

Fig. 2 Comparison of the performances of LEPS, BepiPred, ABCPred, BCPred, and

FBCPred systems. The best performance for each indicator is marked with a star.

Fig. 3 The LEPS server. (a) Users can input a query sequence and manually adjust
the weight and window size of each propensity. (b) The output information of HIV
integrase predicted by LEPS shows 17 candidates, and only 9 candidates were
retained after SVM filtration. The final predicted epitope segments are labeled in

yellow at the bottom.

Fig. 4 The predicted LEs of HIV integrase mapped onto a simulated 3D structure.
The predicted epitopes are labeled in yellow and the selected epitopes (number 1 and

number 3) are shown in yellow spheres.
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Fig. 5 The experimental and predicted epitopes of 10 kDa chaperonin. The structural
surfaces display the true epitopes (a) and predicted epitopes (b) in yellow spheres.
The red and blue spheres represent the remainder of the protein. Both figures were

created with PyMOL.
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