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中文摘要 

 腺病毒蛋白 type 5 E1A (E1A)在抗腫瘤的基因治療上具有相當的潛

力，並已在進行乳癌、頭頸癌和卵巢癌的臨床試驗測試。之前的研究指出

E1A 基因治療確實可以顯著降低腫瘤的發生，並且促使癌細胞進行細胞凋

亡和抑制癌細胞的移動性。然而，E1A 抗腫瘤方面的分子機制尚未全然了

解。我們研究發現 E1A 的表現會顯著得抑制葡萄糖調節蛋白 78 (GRP78)，

且此蛋白是一個致癌基因，已廣泛被報導在腫瘤的生長過程中扮演一個重

要的角色。我們觀察到當葡萄糖調節蛋白 78 過度表現時，可以抵消 E1A

所產生的抑制細胞遷移和侵襲能力。另外，為了了解 E1A 如何調控葡萄糖

調節蛋白 78，我們發現到 E1A 會影響到葡萄糖調節蛋白 78 的蛋白層面，

但不會影響核醣核酸的層面。所以我們在 E1A 表現的細胞處理蛋白酶體抑

制劑 MG132，發現可以恢復 E1A 所抑制的葡萄糖調節蛋白 78 的表現量，這

表示了了泛素─蛋白酶體系統可能參予在 E1A 導致葡萄糖調節蛋白 78 降

解的機轉中。因此，這些結果顯示了 E1A 可以促進葡萄糖調節蛋白 78 的

泛素化導致此蛋白降解，進而抑制癌細胞的遷移和侵襲能力。 
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Abstract 

The adenovirus type 5 E1A (E1A) plays a potential role in anti-cancer 

gene therapy and has been tested in clinical trails. Previous reports suggest that 

expression of E1A significantly reduces tumorigenesis, promotes cell death, 

and inhibits cancer cell mobility. However, the molecular mechanisms involved 

in E1A-mediated anti-cancer activity are not yet completely clear. Here, we 

show that expression of E1A significantly suppresses the glucose-regulated 

protein 78 (GRP78), an oncoprotein which has been widely reported to play 

critical roles in tumor progression. We found that E1A-mediated suppression of 

cell mobility and invasion ability was overturned by ectopic expression of 

GRP78. To verify how E1A regulates GRP78, we observed that E1A affects 

GRP78 protein level but not mRNA level. Treatment with proteasome inhibitor, 

MG132, recovered GRP78 expression, suggesting that ubiquitin-proteasome 

system may involve in the E1A-mediated degradation of GRP78. Taken 

together, these results indicated that E1A facilitates the ubiquitination and 

degradation of GRP78 and subsequent suppression of cell mobility. 
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1. 前言 (Introduction) 

1.1 Breast cancer 

The three most common cancers are cancers of the lung and bronchus, 

breast, and colon and rectum, accounting for 50% of estimated new cancer 

cases in women in 2010. Breast cancer is the most diagnosed cancer and 

remains the second leading cause of cancer deaths in women in 2010 (1). 

Metastasis at distant sites is the main cause of cancer death including the cause 

of 90% death from solid tumors (2). Metastases can remain latent for many 

years following primary tumor removal. Present therapy focuses on varying 

combinations of surgery, chemotherapy, and radiation treatment (3). Despite 

healthcare improvements, metastatic disease remains poorly responsive to 

conventional therapy and a new modality of treatment is needed. 

 

1.2 E1A Gene Therapy 

The adenovirus type 5 E1A (E1A) is the first viral gene expressed after 

viral infection of host cells and is a well-known transcription factor and is later 

classified as an immortalization oncogene (4-5). The immortalization of E1A 

may help ras or E1B oncogene to transform primary embryo cells, but E1A can 

not exhibit transforming phenotypes alone (6-9). However, many studies show 

that E1A associates with multiple anti-cancer activities. E1A gene was first 

reported to reduce the metastatic potential of ras-transformed rat embryo 

fibroblast cells in 1988 (10). It has been reported that expression of E1A in 

cancer cells reduce tumorigenic potential, increase contact inhibition, and 

promote apoptosis in vivo (11-13). Previous studies show that E1A does not 

bind to the DNA directly, but interacts with transcription factors, including the 
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TATA-binding protein, p300 (14-15), several TATA-binding protein-associated 

factors (16-17),and others transcription factor such as c-Jun (18). 

E1A-mediated tumor suppression may results from the inhibition of 

HER-2/neu protein expression through transcriptional repression at the 

HER-2/neu promoter (11). In addition to E1A-mediated tumor suppressive 

activity in HER-2/neu-overexpression tumors, other studies indicate that E1A 

associated with tumor-suppression activities independent of HER-2/neu. A 

series of studies have shown that E1A inhibits oncogenic signaling pathways 

including downregulation of HER-2, Akt, IKK and NF-B (19-21) as well as 

activates tumor suppressing pathways such as enhanced expression of p53, p21, 

PP2A phosphatase and E-cadherin (22-24). In addition, the E1A has been 

shown to repress expression of matrix metalloprotease and inhibit metastasis 

(25-26). Furthermore, E1A has been tested in multiple clinical trails including 

breast, ovarian and head and neck cancers (27-30). Thus, different from ovarian 

or head and neck cancer in which regional treatment may be sufficient to 

improve therapeutic efficacy, breast cancer requires systemic gene delivery 

system to be effective for therapeutic efficacy. The development of gene 

therapy to treat breast cancer has been hindered by need for systemic delivery. 

 

1.3 Glucose-regulated protein 78 

The glucose-regulated proteins (GRPs) were first described as protein 

synthesis induction when cells were deprived of glucose (31). GRP78, also 

referred to HSPA5, is a major endoplasmic reticulum (ER) chaperone, 

belonging to member of the heat shock protein 70 (HSP70) family (32). GRP78 

is involved in many cellular processes that promote proper protein folding and 

prevent aggregation of newly synthesized proteins. GRP78 would maintain ER 
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calcium homeostasis and serve as a critical role under ER stress and is widely 

used as a maker for ER stress since its discovery in the 1980s (33-34). GRP78 

is highly induced through intrinsic factors such as altered glucose metabolism 

of cancer cells or extrinsic factors such as glucose deprivation, hypoxia, and 

acidosis in the microenvironment of solid tumor (35). Overexpression of 

GRP78 was widely reported in many tumors, including lung (36), breast 

(37-38), stomach (39), prostate (40), colon (41), and liver (42) cancer cells. In 

the previous studies, GRP78 has been shown to promote cancer metastasis 

through activation of FAK in hepatocellular carcinoma (43). In addition, 

knockdown of GRP78 also has been reported to inhibit the activation of Akt in 

prostate cancer cells (44). GRP78 shows oncogenic activity through promoting 

tumor proliferation, survival, metastasis, and drug resistance (45-47). 

 

1.4 Ubiquitin-proteasome system (UPS) 

To maintain the cellular functionality and viability, the UPS virtually 

involve in any cellular process that depends on the degradation, regulation or 

life-span determination of damaged, modified, misfolded proteins or proteins 

that have become ‘unnecessary’. Most of the 26S proteasome substrates have to 

be polyubiquitinated protein resulting degradation natively folded intact protein 

in an ATP-dependent fashion (48). The UPS contains a very complex system, 

involving in four different kinds of enzymes (E1-E4). First, the step of 

substrate poly-ubiquitination is the ATP dependent activation of ubiquitin (Ub) 

by E1 enzyme. The activated ubiquitin is transferred to a lysine-residue of E2 

ubiquitin conjugating enzyme, and both E2 and doomed substrate are bound by 

an E3 enzyme resulting in catalyzing the ubiquitin transfer from the E2 to 

substrate. The E3 enzymes specifically binds to substrate, containing thousands 
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of Ub-ligases, each one only specific for a limited number of substrate proteins 

(49). Multiple cycles of these reactions and the E4 which is ubiquitin-chain 

elongation factor leads to poly-ubiquitination of the substrate which is 

recognized and degraded by the 26S proteasome (50). Previous studies show 

the important biological role of UPS can be involved in pathophysiological 

processes causing the development of various diseases including cancers 

(51-53). 

 

1.5 Hypothesis 

GRP78 involved in tumorigenesis and cancer progression and provided a 

therapeutic target and mediator of cancer specific therapy. (54-57). We 

identified the molecular mechanisms of E1A-mediated inhibition of cancer 

metastasis. GRP78 was shown to be downregulated by E1A and required for 

E1A-mediated tumor suppression activities. In current study showed that 

GRP78 promotes cell mobility and E1A-mediated ubiquitination of GRP78 

may contribute to E1A mediated invasion suppression activity. 
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2. Materials and Methods 

2.1 Cell line 

MDA-MB-231, MDA-MB-468, HS578T and HBL100 cells were obtained 

from the American Type Culture Collection (ATCC) and grown in Dulbecco’s 

modified Eagle’s medium (DMEM) / F12 supplemented with 10% fetal bovine 

serum, 100 units/mL penicillin, and 100 mg/mL streptomycin at 37℃ in a 

humidified atmosphere of 95% air and 5%CO2. The human breast cancer cell 

line MDA-MB-231 and its E1A/vector-stable transfectants have been described 

previously (58). The transfectants were grown under the same conditions as the 

controls, except that G418 was added to the culture medium. 

MDA-MB-231/E1A cells were transfected with GRP78-expressing vector 

using Lipofectamine LTX (Invitrogen). 24 hours after transfection, cells were 

trypsinized and replated in DMEM/F12 with 10% fetal bovine serum and 

blasticidin (5 g/mL; invitrogen). Blasticidin-resistant clones 

(231/E1A-GRP78) were selected 

 

2.2 RNA Isolation and RT-PCR 

Total RNA was extracted from cultured cells using the TRIzol Reagent 

(Invitrogen). An aliquot of 1-5 g of total RNA was subjected to RT-PCR using   

reverse transcriptase kit (Invitrogen). Equal amount of cDNA was used to 

perform PCR. The sequences of GRP78 and gp78 along with internal reference 

GAPDH primers are as follows:  

GRP78  forward, 5’-ATGAAAGAAACCGCTGAGGC-3’;  

           reverse, 5’-CCAGGTCAAACACCAGGATG-3’;  

    gp78   forward, 5’-ATGAAAGAAACCGCTGAGGC-3’;  
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           reverse, 5’-CCAGGTCAAACACCAGGATG-3’; 

GAPDH forward, 5’-ACCACAGTCCATGCCATCAC-3’;  

    reverse, 5’-ATGTCGTTGTCCCACCACCT-3’.  

After initial denaturation at 95℃ for 5 minutes, cycling parameters were 

as follows : GRP78 ─ denaturation (95℃, 30 second), annealing (55℃, 

30 second), and extension (72℃, 30 second); the reaction included 

amplification 30 cycles; gp78 ─  denaturation (95℃, 30 second), 

annealing (52℃, 30 second), and extension (72℃, 30 second); the reaction 

included amplification 30 cycles; GAPDH ─ denaturation (94℃, 30 

second), annealing (55℃, 30 second), and extension (72℃, 30 second); 

the reaction included amplification 25 cycles. 

 

2.3 Transwell migration and invasion assays 

For transwell migration assays, 1×10
5
 or 5×10

4 
cells were plated in the top 

chamber onto the non-coated membrane (24-well insert; pore size, 8 μm; 

Corning Costar, Corning, NY). For invasion assay, 1×10
5
 or 5×10

4 
cells were 

plated in the top chamber onto the Matrigel-coated membrane. Each well was 

coated freshly with Matrigel (30 μg; BD Bioscience) before the invasion assay. 

In both assays, cells were plated in medium without serum, and medium 

supplemented with serum was used as a chemoattractant in the lower chamber. 

The cells were incubated for 24 hours (migration assay) or 48 hours (invasion 

assay) and cells that did not migrate or invade through the pores were removed 

by a cotton swab. Cells on the lower surface of the membrane were fixed with 

methanol and stained with crystal violet. The number of cells migrating 

through or invading the membrane were counted under a light microscope 

(40X, there random fields per well). 
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2.4 MTT assay 

 The MTT assay are colorimetric assays for detecting the viable cells 

resulting from determining the activity of enzymes that reduce MTT 

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow 

tetrazole) to purple formazan in living cells. 1×10
4
 cells were seeded into 

96-well plates with 200ul of medium and each cell line was set up in 3 replicate 

wells. After incubation for 24 or 48 hours, the MTT reagent was added with 

final concentration of 1 ug/ul to each well and incubated for 3 hours. Removing 

medium, DMSO was added to dissolve the insoluble purple formazan product 

into a purple solution. The absorbance of this solution was measured at 575 nm 

by amiceoplate reader (BioTek). 

 

2.5 Cell tracing assay 

Cells were seeded onto 6 cm dish and grown in DMEM/ F12 

supplemented with 10% fetal bovine serum. After 8 hours, cells set down a 

fluorescence microscope (Axioplan 2, Zeiss) equipped with a charge-couple 

device camera (Axiocam, Zeiss) and incubate at 37℃ in humidified 5% CO2. 

Cells were imaged every 15 min over a 18.5-h period and were quantified using 

image J. 

 

2.6 Western blotting 

Extracts were prepared in lysis buffer (50 mM Tris-HCl, 150mM NaCl, 

1% Nonidet P-40, 0.5% Na-Deoxycholate, 2mM EDTA) containing protease 

inhibitor cocktail. Protein were heated in 4X sample buffer at 100℃ for 10 

minutes and then loaded into each well for SDS-polyacrylamide gel 
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electrophoresis (SDS-PAGE). The separated protein was transferred to a PVDF 

membrane (Millipore) by all-wet method (BIO-RAD) under 88V for two hours. 

After blocking, blots were incubated with specific primary antibodies, and after 

washing and incubating with secondary antibodies (Santa Cruz, CA, USA), 

immunoreactive proteins were visualized using an enhanced 

chemiluminescence detection system (Perkielmer). Followed by various 

primary antibody; GRP78 (Santa Cruz), gp78 (Santa Cruz), E1A (BD 

Bioscience), -actin (Sigma-Aldrich), -tubulin (Sigma-Aldrich). All primary 

antibodies were diluted to a recognition level (1:1000).  

 

2.7 Immunoprecipitation 

Cells were washed with ice-cold PBS and lysed in lysis buffer (50 mM 

Tris-HCl, 150mM NaCl, 1% Nonidet P-40, 0.5% Na-Deoxycholate, 2mM 

EDTA) containing protease inhibitor cocktail (PIC) and sodium orthovanadate 

(Na3VO4). Cell extracts were centrifugated at 13,000 rpm for 30 min. Lysates 

were incubated with protein A/G Sepharose beads (Santa Cruz, CA, USA) and 

then rotated for two hour at 4℃ (pre-clearing). Pre-clearing lysates were 

centrifugated at 3,000 rpm for 5 min. The supernatant was incubated with 

various antibodies and then rotated for three hour at 4℃. Next, lysates 

containing antibody were incubated with protein A/G Sepharose beads at 4℃ 

overnight. Immune complexes were washed three times with lysis buffer. 

Precipitates were resolved by SDS-PAGE, and the separated proteins were 

analyzed by western blot. 

 

2.8 Statistical analysis 

Data are analyzed as the mean ± SD. one-tailed Student’s t test was used to 
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analyze the difference between the means of the different groups. Differences 

with a p value of less than 0.05 were considered statistically significant. 
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3. Results 

3.1 GRP78 Protein Is Critical for E1A–mediated inhibition of cell 

mobility 

To investigate whether E1A affects the cancer metastatic activity, we 

transfected control vector or E1A expression vector into MDA-MB-231, 

HS578T and HBL100 cells. As expected, ectopic expression of E1A 

significantly reduce cell mobility and invasion activity in the vitro model (Fig. 

1). To investigate the downstream target related to E1A-mediated 

anti-metastatic activity, we analyzed the differential expression of proteins in 

MDA-MB-231 breast cancer cells stably transfected with control vector (231/V) 

and E1A expression vector (231/E1A) using two-dimensional gel 

electrophoresis assay. We found 3 candidate proteins were increased and 9 

candidate proteins were decreased in 231/E1A cells compared with 231/V cells 

(Table. 1). Expression of GRP78 protein relates to E1A-mediated 

anti-metastasis activity and GRP78, one of the downregulated protein in 

231/E1A cells, make us interesting to understand which mechanism may 

involoved. Recent researches demonstrated that overexpression of GRP78 

confers antiapoptosis and chemoresistant to promote tumor survival and has 

also been implicated in proliferation and cell motility in different types of 

tumors (55, 59). In the previous report, GRP78 is a key survival factor of 

cancer cells, and reduction of GRP78 expression inhibits tumor formation, 

growth, and suppresses cancer cell metastasis in xenografts models (45-46, 60). 

In breast cancer patient, GRP78 expression is significantly higher in primary 

tumor compared with that in benign tissues (37). Because of the importance of 

GRP78 in cancer progression, we further determined whether GRP78 involves 
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in E1A-mediated tumor suppression activity. We examined the effects of E1A 

on GRP78 expression in various types of breast cancer cells and found that 

E1A suppresses the expression of GRP78 in protein levels but not mRNA level 

in E1A-transfected cells (Fig. 2). To define the role of GRP78 in breast cancer 

cells, we found that knockdown of GRP78 expression using GRP78 specific 

shRNA (shGRP78) significantly reduces migration and invasion ability 

compared with control shRNA in MDA-MB-231 and HS578T cells (Fig. 3).  

To investigate the effects of GRP78 on E1A-mediated suppression of cell 

mobility, we stably transfected GRP78 or control vector (pcDNA6) in 231/E1A 

cells (Fig. 4A). Transfection of 231/E1A cells with GRP78 showed markedly 

promoted cell migration and invasion by transwell assay and cell tracing assays 

(Fig. 4B, 4C). However, cancer metastasis involves multiple steps including 

detachment of the metastatic cells from neighboring cells, the acquisition of 

motility and invasion to other tissue. Among these steps, reorganization of the 

actin cytoskeleton is an important for cell mobility. To investigate the effect of 

GRP78 on actin stress fiber formation, we examined whether GRP78 

participates in actin remodeling to enhance metastasis. These data suggest that 

GRP78 is critical for E1A-mediated inhibition of cell mobility in breast cancer 

cells. 

 

3.2 E1A Enhances Ub-dependent Proteolysis of GRP78 

 As shown in figure 2, E1A suppresses GRP78 in the protein level but not 

mRNA level. To determine the stability of GRP78 protein in response to E1A 

in MDA-MB-231, we treated with cycloheximide (CHX) for the indicated 

times in 231/V and 231/E1A cells. We found that the degradation rate of 

GRP78 protein is faster in 231/E1A cells than in 231/V cells (Fig. 5A). In 
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attempt to determine degradation of GRP78 protein in response to E1A, we 

analyzed expression of endogenous GRP78 protein in presence with 

proteasome inhibitor such as MG132. Our results showed that E1A-mediated 

GRP78 downregulation was rescued by MG132 (Fig. 5B), suggesting that 

E1A-mediated GRP78 degradation via ubiquitin proteasome process. To 

confirm that the ubiquitination of GRP78 is enhanced by E1A, we detected the 

level of GRP78 ubiquitination by immunoblotting (IB) after 

immunoprecipitation (IP) of GRP78 or ubiquitin in231/V and 231/E1A cells. 

After IP with anti-GRP78 antibody and following by IB with anti-Ub, the 

ubiquitination of GRP78 was increased in the MG132-treated 231/E1A cells 

(Fig. 6). We showed that ubiquitin-dependent proteolysis of GRP78 is required 

for E1A-mediated GRP78 degradation, but which E3 ubiquitin ligase involves 

in this degradation process is unkown. Because of the ER localization of 

GRP78, we searched a series of ER-related E3 ubiquitin ligases such as gp78, 

Parkin, CHIP, Cul5 (61-63). Previous report showed that knockdown of gp78 

increased
 
the level of GRP78, and induced cell death in HEK 293 cells (64). 

Here, we found that knockdown of gp78 could revert protein expression of 

GRP78 but not mRNA level in 231/E1A cells (Fig. 7A). To further examine 

whether the expression of GRP78 was also suppressed by the other E3 

ubiquitin ligases, we used shRNA against the expression of CHIP , which play 

roles in the degradation of protein in ER and reduces chaperone efficiency 

(65-68). We found that knockdown of CHIP had slight effect on E1A-mediated 

GRP78 degradation (Fig. 7B). To further investigate the effects of gp78 on 

GRP78 E3 ubiquitin ligase, we transfected with gp78 or control vector 

(pcDNA3.1) in MDA-MB-468 and HS578T, and found that gp78 suppresses 

the expression of GRP78 (Fig. 8). Above data indicated that gp78 involves in 
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E1A-mediated suppression of cancer cell migration and invasion activity 

through degradation of GRP78 expression.  

 

3.3 Gp78 Is Required for E1A-mediated Degradation of GRP78 and 

Suppression Cell Mobility 

To further define the relationship between gp78 and GRP78, 

coimmunoprecipitation assays demonstrated that gp78 physically interacted 

with GRP78 (Fig. 9), indicting that gp78 might serve as a GRP78 E3 ubiquitin 

ligase for GRP78. To further the E3 ligase activity of gp78 is required for 

e1A-induced GRP78 degradation, a double mutation of gp78 RING finger 

(gp78R2m) which loss of E3 ligase activity is used (69-71). Transfected with 

gp78R2m into 231/E1A inhibits E1A-induced degradation of GRP78 was 

inhibited (Fig.10). As gp78 is a RING finger-domain-containing E3 ligase that 

regulates ubiquitin-dependent degradation of its substrates, we further 

transiently transfected with either wild-type gp78 or gp78/R2m along with 

haemagglutinin (HA)-tagged ubiquitin. The level of GRP78 ubiquitination 

detected by immunoblotting after immunoprecipitation of GRP78 shows that 

ubiquitination of GRP78 was enhanced by wild-type but not gp78/R2m (Fig. 

11). Because gp78 functions as an E3 ligase for GRP78 protein, we attempted 

to determine whether knockdown of gp78 affect cell mobility. Our data showed 

that knockdown of gp78 in rescue the expression of GRP78, resulting in 

increasing cell migration and invasion in 231/E1A cells (Fig. 12). Furthermore, 

knockdown of GRP78 re-suppressed cell migration and invasion in 

gp78-silenced 231/E1A cells (Fig. 12), suggesting that gp78 is required for 

E1A-mediated inhibition of cell migration and invasion through degradation of 

GRP78 expression. Take together, these results suggest that gp78-mediated 
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GRP78 degradation is critical for E1A’s anti-metastatic activity. 
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4. Discussion 

In current study, we showed that E1A suppresses cancer cell mobility and 

decreases expression of GRP78 protein in breast cancer cells. The previous 

data have been reported that GRP78 may enhance the activation of FAK which 

is correlation with mediating key signal transduction that regulation of actin 

remodeling (43, 72). We identified that GRP78 was degraded by E1A through 

the ubiquitin-proteasome system. Ubiquitin is covalently attached to target 

proteins through the action of three enzymes known as E1, E2, and E3. The 

ultimate outcome of this post-translational modification depends on the nature 

of the ubiquitin linkage and the extent of polyubiquitination. In most cases, 

ubiquitination results in degradation of the target proteins in the 26S 

proteasome. We show that the half-life of GRP78 protein expression was 

shorter in231/E1A cells compared with 231/V cells. GRP78 was rescued by 

treatment with MG132. Previous study showed that the GRP78 protein 

expression was increased in cells exposed to CHX (73), our data demonstrated 

that CHX indeed evaluate GRP78 expression in 231/V cells but not in 231/E1A 

cells, indicating that expression of E1A also attenuates GRP78 inducer. To 

investigate which E3 ubiquitin ligase involved in E1A-mediated degradation of 

GRP78, we silenced the expression of several ER-related E3 ubiquitin ligases 

by specific shRNA and found that knockdown of gp78 cause enhanced of 

GRP78 expression. However, we found that ectopic expression of E1A 

increased the association of gp78 with GRP78, following enhanced 

polyubiquitination and reduced GRP78 protein levels. Previous study indicated 

that both gp78 and CHIP E3 ligase effectively regulate hepatic CYP3A content 

(74). In our system, knockdown of CHIP expression had no effect on 

E1A-mediated GRP78 degradation, suggesting that gp78 serves as GRP78 
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specific E3 ligase. The domain of GRP78 for gp78 recognition and binding is 

unknown and some yet-to-be-identified protein candidate may be involved in 

the regulation of the gp78-GRP78 interaction. Based on our study, 

E1A-mediated gp78 ligase activity plays a role in the anti-cancer property 

through regulation of GRP78.  

The microRNAs (miRNA) are an extensive class of small noncoding 

RNAs (18-25 nucleotides) with important roles in the regulation of gene 

expression. Mostly, miRNA bind to the 3’ untranslated region (UTR) of 

message RNAs and negatively regulate the gene expression by inhibiting their 

translation. In this case, it has not been reported miRNA regulate the expression 

of GRP78. We predicted miRNAs binding to 3’UTR of GRP78 mRNA. 

However, we did not find miRNAs associated with regulation of GRP78 

mRNA.  

In addition to metastasis, E1A gene therapy has been reported to induce 

sensitization to multiple anticancer drugs (75-77). Recent study shows that 

GRP78 has antiapoptosis activity and associates with drug resistance such as 

etoposide and Temozolomide (78). Therefore, we investigated whether 

E1A-mediating anti-cancer drug sensitivity through regulation of GRP78 

expression. GRP78 was not involved in E1A-mediated sensitization of taxol, 

suggesting that E1A-mediated taxol sensitivity is requiring for the other 

mechanisms. In the other hand, GRP78 also plays important role in the 

maintenance of cancer stem cells population (79). We hope that E1A-mediated 

downregulation of GRP78 might be a potential therapeutic target for cancer 

cells resulting in eliminating cancer stem cells. 

In summary, we found that downregulation of GRP78 is critical for 

E1A-mediated inhibition metastasis. According to our finding, we provide a 
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model in which E1A represses GRP78 though induction of gp78-GRP78 

interaction, which inhibits the breast cancer cells migration and invasion (Fig. 

13).  
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6. Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. E1A mediated inhibition of cell migration and invasion in malignant breast 

cancer cells. A, different breast cancer cells were transfected with E1A. 48h after 

transfection, cancer cell migration and invasion were confirmed by transwell 

migration and matrigel invasion assay. B, quantitative analysis of cell numbers was 

shown. Columns, migration or invasion activity compared with that of vector 

control; bars, SD. Each assay was done in three independent experiments. *, P < 

0.05, between breast cancer cells transfected with vector or E1A. 
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A 

B 

Figure 2. E1A suppresses the expression of GRP78 in protein levels but not mRNA 

level in E1A-transfected cells. The different breast cancer cells were transfected with 

E1A. 48h after transfection, the total lysates of these cells were prepared. A, E1A 

and GRP78 protein expression were confirmed by western blotting. -tubulin was 

used as the internal protein loading control. The E1A protein is identified as a 

doublet at ~35-46 kDa. B, The expression of GRP78 mRNA was determined by 

RT-PCR. GAPDH served as an internal control. The PCR product size of GRP78 is 

~300 b.p. 
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B 

Figure 3. Knockdown of GRP78 expression significantly reduces migration and 

invasion ability. Left, (A) MDA-MB-231 and (B) HS578T transfected with shluc or 

shGRP78 were analyzed by western blotting. -actin was used as the internal protein 

loading control. Transwell migration assay and matrigel invasion assay of (A) 

MDA-MB-231 and (B) HS578T transfected with shluc or shGRP78. Columns, 

migration or invasion activity compared with that of MDA-MB-231 and HS578T 

transfected with shluc. *, P < 0.05, between MDA-MB-231 and HS578T transfected 

with shluc. 
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 Figure 4.  GRP78 may contribute to E1A-mediated invasion suppression activity. 

A, 231/E1A cells stably transfected with GRP78 or control vector were analyzed by 

western blotting. -actin was used as the internal protein loading control. B, In 

231/V, 231/E1A and 231/E1A stably transfected with control vector and GRP78 

were analyzed for transwell migration assay and matrigel invasion assay. Columns, 

migration or invasion activity compared with that of 231/V; bars, SD. Each assay 

was done in three independent experiments.  *, P < 0.05, between 231/V and 

231/E1A cells. #, P < 0.05, between 231/E1A cells stably transfected with vector 

control and GRP78. C, Cell mobility were confirmed by cell tracing assays in 231/V, 

231/E1A and 231/E1A stably transfected with control vector and GRP78; bar, SD. 

n=20 
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Figure 5. E1A enhances proteolysis of GRP78 and its effect was rescued by MG132. 

A, Determination of protein stability of GRP78 in 231/Vand 231/E1A cells. The 

231/V and 231/E1A cells were treated with 50 M cycloheximide (CHX) for the 

indicated times and GRP78 expression were analyzed by western blotting. Folds of 

protein expression are shown below the lanes and .quantified (bottom). B, Cells 

were treated with or without the proteasome inhibitor MG132 (5 M) for 12 hours, 

and GRP78 expression were analyzed by western blotting Folds of protein 

expression are shown below the lanes and the expression levels of each protein 

compared with 231/V. 
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Figure 6. The ubiquitin-dependent proteolysis of GRP78 is required for 

E1A-mediated GRP78 degradation. 231 cells stably expressed E1A were treated 

with either DMSO (control) or the proteasome inhibitor MG132 (5 M) for 12 

hours. The total lysates of these cells were prepared and Immunoprecipitation (IP) 

was performed as described above and followed by Immunoblotting (IB) with an 

anti-Ub Ab. The input IB data were performed with Abs against GRP78 and 

-tubulin as described. 
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Figure 7. Expression of GRP78 was rescued by knockdown of E3 ligase, gp78 but 

not CHIP in protein level. A, 231/E1A transfected shRNA of gp78 were analyzed for 

GRP78 expression by western blotting or RT-PCR. B, 231/E1A transfected shRNA 

of CHIP were analyzed for GRP78 expression by western blotting, 
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Figure 8. gp78 suppresses the expression of GRP78. The different breast cancer cells 

were transfected with gp78. 48h after transfection, GFP and GRP78 expression were 

confirmed by western blotting. 
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Figure 9. gp78 physically interacted with GRP78. 231/V and 231/E1A cells were 

treated with the proteasome inhibitor MG132 (5 M) for 12 hours. The total lysates 

of these cells were prepared and immunoprecipitated with anti-gp78 antibody and 

followed by IB with an anti-GRP78 antibody. The input IB data were performed 

with Abs against GRP78, gp78, and actin as described. 
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Figure 10. E1A-mediated downregulation of GRP78 is required for gp78’s E3 

ubiquitin ligase activity. 231/E1A transfected with vector control (pcDNA3.1) or 

RING finger mutated gp78 (gp78R2m) were analyzed by western blotting. 
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Figure 12. Gp78 regulates ubiquitination of GRP78 protein. Wild-type or mutant of 

gp78 were expressed in 293T cells along with GRP78 and HA-ubiquitin (ub). 48 hr 

post transfection, cells were treated with MG132 (5M) for 12 hr and levels of 

GRP78 ubiquitination were evaluated by immunoprecipitation of GRP78 using 

anti-GRP78 antibody followd by anti-HA immunoblotting 
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Figure 12. Knockdown of GRP78 re-suppressed cell migration and invasion in 

231/E1A with knockdown of gp78. A, 231/E1A transfected with shcontrol 

(231/E1A-shcontrol) or shgp78 (231/E1A-shgp78) and 231/E1A-shgp78 transfected 

with shluc or shGRP78 were analyzed by western blotting. B, Transwell migration 

assay and matrigel invasion assay of these cells. Columns, migration or invasion 

activity compared with that of 231/V; bars, SD. Each assay was done in two 

independent experiments. *, P < 0.05. 
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Figure 13. E1A represses GRP78 through induction of gp78-GRP78 interaction, 

which inhibits the breast cancer cells migration and invasion 
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prot site prot describe 

24 Lonp1 Lon protease homolog 

588 Desmoplakin 

692 Prohibitin 

prot site prot describe 

82 Hspa5 78 kDa glucose-regulated protein 

284 Lmna Isoform C of Lamin-A/C 

486 Alpha-enolase 

523 Vim Vimentin 

588 Cops4 COP9 signalosome complex subunit 4 

621 Isocitrate dehydrogenase [NAD] subunit alpha, 

mitochondria 

724 Anxa2 Annexin A2 

730 Pyruvate dehydrogenase E1 component subunit beta 

954 Prdx4 Peroxiredoxin-4 

The protein were upregulated in 231/E1A cells compared with 231/V cells 

The protein were downregulated in 231/E1A cells compared with 231/V cells 

Table 1. Differential expressions of protein in 231/E1A cells versus 231/V cells 

were analyzed by Two-dimensional gel electrophoresis. 
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