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Abstract

Matrix metalloproteinase-9 (MMP-9) plays a crucial role in the tumor metastasis.
Previous studies showed that polyunsaturated fatty acids exhibited anti-cancer effect in
various human carcinoma cells. However, the effects of docosahexaenoic acid (Bokor et
al.) and linoleic acid (LA) on metastasis of breast cancer cells have not been fully
clarified. The model of TPA-induced MCF-7 breast cancer cell metastasis was used in
this study. The results showed that TPA-induced MMP-9 gene expression and enzyme
activity in a dose-dependent manner, and 200 uM DHA and LA significantly decreased
the TPA-induced MMP-9 expression, cell migration and invasion. Treatment with JNK,
ERKZ1/2, PI3K, and PKC inhibitors caused a marked decrease in TPA-induced MMP-9
expression; however, only TPA-induced phosphorylation of ERK1/2 and Akt was
attenuated by DHA and LA. The result of EMSA showed that DHA and LA decreased
TPA-induced NF-kB and AP-1 DNA binding activity. Moreover, DHA, but LA,
dramatically increased HO-1 expression in a dose- and time-dependent manner. HO-1
SiRNA alleviated the DHA inhibition of MMP-9 protein and enzyme activities in the
presence of TPA in MCF-7 cells. Taken together, these results suggest that DHA and LA
inhibites TPA-induced cell migration and invasion by reducing MMP-9 activation,
mainly via ERK1/2 and PI3K/Akt pathways and sequentially NF-xB and AP-1
trans-activation. Furthermore, the inhibition of TPA-induced MMP-9 activation by DHA
is at least in part through induction of HO-1 expression in MCF-7 cells.

Keywords: Docosahexaenoic acid; Linoleic acid; MMP-9; Migration; MCF-7

viii






$-% @

o

B AR 7L EA TH I EA LSS Flz g o WY FARFRiFEL
F2 100 # 6 7 15 p AT H St FALE T 0 99 £ L A A RS F] S At B
A #7539 0 B v G vhg b 28498 5 H S A u G v A B & 10.89%
CES R CENEUORIER sl R S NE SR R 2SS R R
SRS ERES e o8 3091 4006 T ke B R B A 1 S
(Weigelt et al., 2005) -

PRI F AR KPR OF REH NS R B AT R
e s BE AR BEFABEAGACRE LS Y I enprd o agE L oS
iRl Edec § E &7 ReniB g B2 gk Su LR T 2R B AR

FERRe o iR E o T 4;%& Vb PR s S - R N
WePmchid Pa B MR KA Pg AR #*i%%kﬁﬂ,x{m@%

J%%@gﬁzﬁﬂﬁﬁ’%“ﬂﬂm3in6”ngmx'AW%ﬁ
(Eicosanoids ) e # > 30 ‘afF A e § 4 Efodf B ~ e 412~ 4 (L 2
AR ¥ £ & chd ¢ (Simopoulos, 2000) - @ gk 10 = b o B
(Docosahexaenoic acid, DHA)# & § £ 7 2t % & 845 tu (xenograft)sh2 £ ~ 5> it §
R AR AR PR TR A A M R F S g $2(Kim et al., 2009;
Mandal et al., 2010; Shao et al., 1995; Sun et al., 2008) ; ¥ 4,3 2 gkﬁ_? o 37 R fR
(Linoleic Acid, LA)s\ 2 X 3+4 ++ ¥ Frd| &R mie 2 £ 2 % & (Luetal., 2010b;
Yasuda et al., 2009; Zuo et al., 2006) -

Fpt o AP HHE N3 5 A7 ke forg sk DHA 2 n6 § A7 e forg iapk LA

AT LG E MR IO 4o AP B 2 e P2 #5 {7 (Migration) - & % (invasion) 2. iF *
O - ﬁ%ﬁiﬁ Voa TR J‘lﬁpi{éflj«?%{‘b} (Rt 2_ 3 3% o



LR I S

K~ AFRYE BB A% R R ERE

=5
&
3
|
IRy
Eir
m-k’g_
TE
£
i
&
&

FEF AR p ARATLEA BHLEA TS R A M Fl2 e 1945 % {100 G
4R AT H A FOREE T 0 998 L 4 AR F 2 Adcd B A #ken753% 0 #
vl R F284% 8 5 0 T o R F AP R R Lo BB S L&
FRPESE 2L D P -

Neoplasm & Tumor & ¢ 2 R KRG FHAER A - BeRDE F RN
(Masson and Mensink) » % 3% A 1 (4ehk 234 F» (autonomous new growth) » H #
fAZEE ¥ eHorF o 2V AL ERdodkn Eg 2 & (Willis, 1952) o #75 e 3
m R B o F05 A B A A e T (1) < BT (parenchyma) d H e chf 24w ve
H 5 (2) % # 10f F(supportive stroma) ¥ g 4w s fow F e o i H AT AR R
AEEF S hINEFEfoESERT BEHA A (LA 1-1) ¢ (1) R (benign
tumors): 5 d 4 i 243 dmre e A R Hinie o p w2 BAGRE F AH R B KR e
P Apin o @ FE ARG ER T F AR e aa(fibrous capsule) - & ¢ [
B SR 0 3k S MR & e (invasion) 2 & # (metastasis) 5 (2) & £ R
(malignant tumors): 3 d & i+ 2 R 2 AL it me e > e A d o0 4 e ¥
(anaplasia) i iz = &% 0L R4tk - BB w8 Khime L BAE S > BE
R e B fm iz 4% 5 5 A5 (ploymorphism) » F o dr £ ‘w2 &4 (loss of polarity)ig @
B e B R SRR - fe b 3 < £ ¥k % (hyperchromatism) i DNA » i ‘¥
PR 0 B UM A RAFHELEBRRT > A A R R e
s B (mitosis) e 5 PLEE o M4 L ARG A ARG M AV RRART X 2R
2 EGERARY B Y E A B S o R ek F Y mRe R 7



PARD 4 4 e a0t e BB Tl F R EF R KA k)0 ¥ B e (local
invasion) » i& @ 1% = w22 g 4% (Ramzi s. Cotran, 1999/6) -

e L g
mP At A FRERLA R e d At a AL w g ¥ ¥ 7
A g
e A L A g
T CRL e LSy SRR SRR A B
AR (RS ER 7 Se HAkiTt e
j:%;‘éto
HFAZRA - B P T RESE AhErdS o g%
BINEPE B> 7 BPAZERRL T E [ % B2 ¥ e s hitix

AL LoV RRRANAE 2R
A i 2 o
im0 AXE 5B -

211 APk R R

S S
CF LU RE YA BT LT E ko SRR RE Y E 8
F _& mﬁ,\%&,ﬁ’?-‘%d&ﬂmi%ﬂf‘i% F’g' #Fjﬁi{%&%\in'ﬁ L”/%

ARG EER THE ) PO R - PRRFEIFOFARIT ERETCER
LT SRE L LN RRL T L F AR RRES E B(FriEd
F,2010) R ERFER N RRSRAAM A ETIR(LA 1-2)F FEH F I
PoAEEAF P AREREL(GRE BEOEL S RE {0 & R) MR
FARRY TR FEF o R E) 2 E D (P s e R Al ) 2
A S B m L MR R FRAE CIGF-L  FiEp A0 12§ F 4 (BRCAL

BRCA2 *P53° ATM ' NBS1’ LKB1 # Fl<h% %)% (Dumitrescu and Cotarla, 2005) °



Factors that increase breast cancer risk

Breast Cancer Risk Factors

Magnitude of

risk
Increasing age ++
Geographical region (USA and western countries) ++
Family history of breast cancer ++
Mutations in BRCAL and BRCA?2 genes ++
Mutations in other high-penetrance genes (p53. ATM. NBS1. LKB1) ++
Tonizing radiation exposure (in childhood) ++
History of benign breast disease ++
Well-confirmed Late age of menopause (=54) ++
factors Early age of menarche (<12) ++
Nulliparity and older age at first birth ++
High mammographic breast density ++
Hormeonal replacement therapy +
Oral contraceptives recent use +
Obesity in postmenopausal women +
Tall stature +
Alcohol consumption (~1 drink/day) +
High insulin-like growth factor I (IGF-I) levels T+
High prolactin levels +
Probable factors High saturated fat and well-done meat intake +
Polymorphisms in low-penetrance genes (see text) *
+

Well-confirmed
factors

Probable factors

High socioeconomic status
Factors that decrease breast cancer risk
Geographical region (Asia and Africa)
Early age of first full-term pregnancy
Higher parity
Breast feeding (longer duration)
Obesity in premenopausal women
Fruit and vegetables consumption
Physical activity
Chemopreventive agents
Non-steroidal anti-inflammatory drugs

Polymorphisms in low-penetrance genes (see text)

1-2. % 0% " F]% (Dumitrescu and Cotarla, 2005)
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ANATOMIC STAGE/PROGNOSTIC GROUPS

Stage 0 Tis NO MO
stagela L NO MD

stagel8 _ TO_ Nimi MO
T1" NTmi MO

Stagema  TO _~~ N1*" MO
Ti" N1 MO

e X2 MO MO
Stage IlB T2 N1 MO
T3 NO MO

Stagema TO M2 MO

oot N2 MO
T2 N2 MO

B T VT T ¥ (¢ I

T3 N2 MO

Stageme T4 ~~ NO MO
T4 N1 MO

L TA T N2 MO
stage IlIC Any T N3 MO
Stage IV Any T Any N M1

% 1-4. 3L 9% 0 #p 2] %7(AJCC, 2010) -
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etal,, 1992) » r2'adF Foo Fx ¥ N2 imie 2 A G o KA o B W AR
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1997; Egeblad and Werb, 2002) -
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(cell-cell adhiesion) 2 ¢ im#e i f¥ cia%t & 4 (cell-matrix adlhesion) » %)@ i v i 22
Bk B
3. ' % (Attachment) : %% ‘m¥e & 4 Fbid ¥ 12 0= A & o

4. Z#(Invasion) : Flwe "EfRmie hAFE E R rOL FEHFTEPHILMT o

R 3T 5 T LR, A R e T o

5. # {7 (Migration) : o e R SRR K AR BN DR RO 3 D e b
Joit B LATIEESRT -

6. = #72 (Angiogenesis) % # & (Growth) : w bARES EE L BEY BT

# A4 o # A 4 # A (micrometastasis tumor) o 2t BF 0 &4 g;gd PR LN

ErAAThE R A BT a2 £ RSB R R BT & wk s
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Bl 1-4.%0 % ‘w22 g 4% 5 3¢ (F5 4 %R nature.com) o

FIE AT LB P s cip M i

A & 39 pr(matrix metalloproteinase, MMPs) & — Az & 3-v 72% » H 4 i

g

BAp& Al ¥ 2 B e pnaf@nd SFE. ed P ERET LRLE
Bplore A ~ BREI L FATARY YHEATE BT feE b g Mo T AT &R
U R E ARG A NRRTRA B UTE o e R dpiR - o

AT &0 RS RGEOId 7OE - BT LR E e o AT
(Royetal., 2009) » B 1-5 5 & ¥ & b 3 frz 3v T4 -
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A) Minimal Domain MMPs (MMP7/matrilysin, MMP26/endometase)

SH

Pro l ICatalytic Zn)

B) Simple Hemopexin Domain-Containing MMPs
(MMP1/collagenase-1, MMP&/collagenase-2, MMP13/collagenase-3,
MMP18/collagenase-4, MMP3/stromelysin-1, MMP10/stromelysin-2, MMP27,
MMP12/melalloelastase, MMP19/RASI-1, MMP20/enamelysin, MMP22/CMMP)

SH H Hemopexin
Pre(Pro [ Catalytic Zn

§—5S

C) Gelatin-binding MMPs (MMP2/gelatinase A, MMP9/gelatinase B)

-

SH Hemopexin

\Pre, Pro Catalytic mm 3
| S

S

D

—

Furin-activated Secreted MMPs (MMP11/stromelysin-3, MMP28/epilysin)
SH

S H Hemopexin
Pre] Pro F) Catalytic Zn

§—§

E) Transmembrane MMPs
(MMP14/MT1-MMP, MMP15/MT2-MMP, MMP16/MT3-MMP, MMP24/MT5-MMP)

H Hemopexin ™

SH
fre Pro ) F) _Catalyﬂc Zn

v

F) GPI-linked MMPS (MMP17/MT4-MMP, MMP25/MT6-MMP)

SH H Hemopexin
Pre| Pro FICatalyﬂc Zn r’mGPI AN
§——FF—F5

G

—

Vitronectin-like Insert Linker-less MMPs (MMP21/XMMP)

SH Hemopexin

Pre[Pro [\ Catalytic Zn

S— 5

H

=

Cysteine/Proline-Rich IL-1 Receptor-like Domain MMPs (MmpP23)
C/P-rich IL-1R-like
Pre[Pro  F) Catalytic 2n

Bl 1-5 A & k9 fs2 4 T 1 (Royetal, 2009) -

RpAT D2 MMPs A &7 22w 2 4e 35 0 (D)% h 30 = ; (2P %
QAFTHERF; GFAATER TG5> 12 7 ARASHDFD A R H 4o(%
1-5) (Nelson et al., 2000) -

(D)

(2)

(3)

" 3¢ = (Collagenases) : i & § '3 25 27| 0% R 3-9 > & 5interstitial
collagenase (MMP-1) ~ neutrophil collagenase (MMP-8) ~collagenase-3 (MMP-13)
% xenopus collagenase (MMP-18) -

P % ps (Gelatinases) © 2 & F2 2% w A R 39 0 2t L AR R Ao @3
gelatinase A (MMP-2) % gelatinase B (MMP-9) -

& F % @ (Stromelysins) @ ¢ 4% stromelysin-1 (MMP-3) - stromelysin-2
(MMP-10) ~ stromelysin-3 (MMP-11) ~ matrilysin (MMP-7) -
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(4) A AT £ % 39 7 (Membrane-type MMPs) : ¢ 3:MT1-MMP (MMP-14)
MT2-MMP (MMP-15) ~ MT3-MMP (MMP-16) ~ MT4-MMP (MMP-17) 4r
MT5-MMP (MMP-21) -

(5) # v : ¢ 4&Enamelysin (MMP-19 ~ MMP-20 ~ MMP-234-MMP-24) -

Table 1.  Substrate-Based Classification of MMPs

Enzyme
MMP Family Descriptive Name No. Principal Substrates
Collagenases Interstitial collagenase MMP-1 Fibrillar collagens, types 1, I, 1l
Neutrophil collagenase MMP-8
Collagenase-3 MMP-13
Xenopus collagenase MMP-18
Gelatinases Gelatinase A MMP-2 Nonfibrillar collagens, types IV, V
Gelatinase B MMP-2
Stromelysins Stromelysin-1 MMP-3 Proteoglycans, laminin, fibronectin, nonfibrillar collagens
Stromelysin-2 MMP-10
Maitrilysin MMP-7
Stromelysin-3 MMP-11 Serine protease inhibitors
Elastase Metalloelastase MMP-12 Elastin, nenfibrillar co||agen
Membrane fype Progelatinase A, undefined
MT1-MMP MMP-14
MT2-MMP MMP-15
MT3-MMP MMP-16
MT4-MMP MMP-17
MT5-MMP MMP-21
Unclassified Enamelysin MMP-20 Undefined
MMP-19
MMP-23
MMP-24

% 1-5. MMPs =44 8 (Nelson et al., 2000) -

MMPs %5 4p i/ el SN sh4e 4§15 signal peptide ~ propeptide - catalytic
{v C # < hemopexin-like % = i domains » MMPs & = & 8 11 2858 1 fg 7]
(Proenzyme) 4 ;& » gt pF propeptide domain B & % § # "=pk 7% £ (cysteine residue) » v
72 & mrger catalytic doamin F erg g3 2 & @ MMPs 4% & A& 1L eyl L 0 75
i* MMPs % & £ & #3320 cysteine foskdt+ 2 [ endg 87> L E M R eh

MMPs & £ - propeptide domain *» %1 » &% 1 &3+ > 4 ¥ =

ETS
it
~=h
A~
e
=
s
Th
T=

MMPs(active form)(Nagase and Woessner, 1999; Nelson et al., 2000) - & it shiE 42 ¢ ¢
#-MMPs 427 N = 1 propeptide domain *» “ﬁf »m % 3 10kD =4 + & (Nagase,

1997; Ries et al., 2007) -
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MMP-24cMMP-94 & % "% f2 & K5 % v 4% K %9 (type IV collagen) » £
B iz R 2 #4552 4p B 12(Brinckerhoff and Matrisian, 2002) (®1-3)- 3 7 = )’%
I AMMP-245 4 < £ 2 R REH B e > 5 MMP-OF 584 £ F15 > b
4 epidermal growth factor(EGF) ~ transforming growth factor beta (TGF-f)(Ramirez et
al., 2011); 2% & w2 %% > &)4e tumor necrosis factor-o (TNF-a)(Youn et al., 2011) ;
e s g &+ (Kimura and Sumiyoshi, 2011) ¢ 12-O-Tetradecanoyl-phorbol-acetate
(TPA)(Linetal., 2008a):% % & # 3 - = 7 % F > MMP-9 promoter % 3 NF-kB{rAP-1
binding site(Chung et al., 2004) ® %% NF-xB4=AP-1 trans-activation £ 3 + MMP-9 %

.7 B (Garg and Aggarwal, 2002; Lee et al., 2007) -

TPA % — #& phorbol ester » &_*& % iZ 32 | (tumor promoter) fr FF» & _F-v & jcfis C
(protein kinase C, PKC) i it 4l » TPA ¥ E f&piph it PKC £.7] 5 &8 S 7 m 12 o9
=¥ 5 - K@@ & 5 p(tetradecanoic acid) £ £¢ 13 £ § - ‘®4dsHps L (acetic acid)
22 = FigH W fig *3 (diacylglycerol, DAG) § 4p i g 4 > st B 405 1t d T4+ 975 & ih
BkPg ik g 1 39 gcfi' (phospholipids-dependent protein Kinase) gz #: — it 8 w¥z 2 4 &L

(Griner and Kazanietz, 2007) -

R L dp TPA T £ Si4 A R F Y 30 gcfs(mitogen activated protein
kinase, MAPK) ~ g p& 3% 3-jcfi= (phospho-inositol 3-kinase,PI3K) 2 PKC % &3 i j&

AP g F] T NF-kB fr AP-1 & > & @ 8452 MMP-9 2 4 7.(Blumberg, 1988) -

% = ¥ Mitogen-Activated protein Kinases (MAPKSs) £ i& #5 :-4p B {4
MAPKSs % **serine/threonine kinases 3-v #2% > # ‘m#e £ 3| *b & fjgcpr > ¢ %’ﬁfd
MAPK: & B iE R T » e b s @i dimie % > 2a BB e g LF R
(inflammination) ~ 3 4 ~ 4 it ~ %= (apoptosis)  #& #% % 4p B 78 F] % IR.(Hammaker and

Firestein, 2010; Johnson and Lapadat, 2002) - MAPKs. % 55 & Ji(cascade reaction) & 353
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B g B oers i 47 5 0 MAPK Kinase kinase (MAPKKK) ~ MAPK kinase (MAPKK) 2
MAP kinase 4-(R®l1-6) - & — féjffisd 7 I = & 7l » MAPKKKd C-RAF1 -
MEKK1 ~ MEKK2 ~ TAK1% ‘2 = > MAPKKd MEK1/2 - MKK1 » MKK4 » MKK54r
MKK6 % % = » MAPK & #ERK 1/2 (extracellar signal-regluatedkinase) » JNK/SAPK

(c-Jun NHy-terminal kinase)» 2 p38 MAPK (Johnson and Lapadat, 2002) -

Cytokines  Stress Growth factors

o) \
OO OO0 OGOOO0E,  SOO0000OGG]
Cell membrane, | .|, e §
[prisesrssis i riesersrersseseees QN OO R COCCOD00000I000

Cytoplasm \ /
N
MAP3K MAP3Ks

MAPKK MEK1/2 MKK4/T MKK3/6
MAPK ERK1/2 JNK1/2/3 p38a/p/y/8

| | > |

Transcripti T

eenpton [ew ] [own]
ATF2 MAPKAPK2/

MK2

|

Cell growth, -—-+—s  Matrix -=+—- Inflammation,
differentiation regulation cytokine production

B 1-6. 3 SkA A RE T 30 jpeps e B & i(Hammaker and Firestein, 2010)

% ERK-INK {r p38 4 7% it pF > § & NF-kB fv AP-1 % 45 %]+ /% it (Force
and Bonventre, 1998) - ¥ =3 ¢ ¢ HFF ¥ A0 MAPKs 2 4 @uipa s b &
MMP-9 =14 31 (Hsieh et al., 2010; Hwang et al., 2011b)> F]* #r 4] MAPKS § /&7 it &2
Pralpimre R E2 A5 M o 0T R4 % ERKL2 ~ P38 & INK B S
(1) Extracellular signal-regulated kinase (ERK1/2) :

AL AfEEEM e »#F €405 42kDa % 44 kDa - ERK ché 4 3 & £33 47
Gore i SEA B R AT AT Ak £ FS e rd o~ opd R A{rRE R0 Ras g
e ivo@m B it > @ g iE e Ras R % d phosphorylation cascade & B iE it
Ras/Raf/MEK/ERK & @ fljgcim?e 2 #7324 2 & it A S i mie @4 cnd &

¥]+ 2. —(Johnson and Lapadat, 2002) - ti&# 4> 6 > 5 < ;Fﬁej;] IR RN o
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(quercetin) iy 1% i 34| PKC/ERK/AP-1 B jS ks i @ ° TPA #1734 %+ MMP-9 %
o igm drg] MCF-7 X g5t e iR 8 {odd # 2 50 4 (Linetal., 2008a) -
(2) c-Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK) :

ER A LR ﬁé%ﬁ S JNK1 ~JINK22% JNK3 ; INK1{=JNK2 4 + & & %] 5 46 kDa
%54kDa - v i A o miefresd o @ JNK3 (57 kDa) i & £ AT FGIR - o B
284 cFwmetDmitgt A LTI ABBERS (UVEBSH ~ ki ~ 5 LR
fr® FER)E Tk 0 € BiEF %+ MAPKKS (MKK4/SEK-1) 2 MKKT7 s i
- HpER R T FINKR L B vE A drimre 4 £ A 0 k= 2 $45 (Barr and
Bogoyevitch, 2001; Johnson and Lapadat, 2002) -

F 3 4n 2% 4 (Common Lilac) # iacteoside ® r4 g d Fr | INKgRRL f i& @
5 NF-kB el 455& 1t (5% > % MMP-94 T » 3% B|4r 4] L 454 4 ¢ % 4077 (HT-1080)
#F 2_ 5 4 (Hwang et al., 2011a) - ¢ » INK MAPK:U 55 @ VR B2 /5 B3 3220 Jm P2 §

HiEARS R F LR LS o
(3) p38 mitogen-activated protein kinase (p38 MAP kinase) :

ARG a~Boy R 8w AR AL e b FE Lame gt UV B B
RnfeB SRS D B EMMT L 55 MKK3 2 MKK6 @ & it T 5
P3BMAPK-p38 » A F s L FF ~mie 3= 224 £ P g€ £ & ¢ (Johnson
and Lapadat, 2002) - & p38 A S WHI > w > § F 2 ;Fﬁe#g D SR A
¥z Z (capsaicin)¥ 5d T A A SR AE Bwe ¢ p38 MAPK Bific it 2 AP-1 i 45
S iEr oA Rt & g 4 R F)SF 4 a0 MMP-9 £ 3 (Hwang et al., 2011b) -

¥ I & PI3-kinase (phosphatidylinositol 3-kinas)/Akt 22 $& #5 p b |
Phosphatidylinositol 3-kinaes (PI13Ks) & - f&*5 & jcp+ (lipid Kinase) » ¢ #-

phosphatidylinositol (P1)=13’-OH i+ % Zip& i (Fruman et al., 1998) » # 72% # #Class

LIS 2 & 8 o of 548 4 cnClass T 5 & B4 fos it 07 B 3 7 4 5 1A IBS 4 »

IAd (g1 = 8 211083 & = B =p85ie & B - FM > 7 F fh iRk s S B A
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ST @ IBk poEd pl10y i =t 8 = 22pl013 6 8 = & > ¥ £ G protein® & 4%
% (G protein-coupled receptor) #7i it (Katso et al., 2001) - P-Akt» 5 #-v #fsB
(protein kinase B, PKB) > ¢ £ Aktl ~ Akt2{rAkt3 (£ PKBa/B/y) = i £ #-48 (Hersetal.,
2011)° A mre P & i cPI3K - 4w 2 Phosphatidylinositol-4,5-bisphosphate (P1P,)#4 &
it = phosphatidyl-inositol-3,4,5-trisphosphate (PIPs) » PIPs ¢ £ Akt:rPleckstrin
homology domain (PH domain)’t & » & AKti®# 3 ‘m % 55T » HE 18
3-phosphoinositide-dependent protein kinase 1 (PDK1) 2 mammalian target of rapamycin
complex 2 (MToRC2) £ Akt & i #-Akt3-v e3Serd734-Thr308+ & % AR EEfL 1 (F)
1-7) i@ ppimse 4 & H ok B 07 (Hersetal, 2011) « § 3% 5 % fiedp &)
Y PIBKIAKEBLE 257 206 & B ~ 5 MUR 2 3 R B TR p Bt (Daietal,
2005; Nam et al., 2003; Perez-Tenorio and Stal, 2002) -

GF

1

- s 8] o S S S W=
PIP,—=— PIP,—= PP, ’
: : : -F’DK—1

/
T3

Inactive 08
Akt
5473

B]1-7. Akt =33 & 22 5 i (Hers et al., 2011)

o
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2 & @73 NF-kB 2 AP-1 $ MMP-9 & F] 4 318
MMP-9# Flend 1 & 22 NF-kB2 AP-17 fa g 4 ] chis i 5 B (R

1-8)(Hwang et al., 2010) -

Invasion
Migration

o ;
@ (L
l IxBex }-cfl 1kBa | = TRy

| ERK172 | | JNK1.2 |

Nucleus

=
—( NF-<B binding site H AP-1 binding site '—_l

MMP-9 gene

B11-8. + XFMMP-9 Flged + T & 2 & < % (Hwang et al., 2010) -
(1) NF-=«B'*:
¥ 45 713 NF-xBiA~ B = fmve ¥ 48 3> 3 27 5% 3 $-v kappa light chain
enhancer region_ t eBi+ % # % & 7|GGGACTTTCC % & (Vermaet al., 1995) 14 34 7
kappa light chain:rg & » F]m f2 wfe i F|F kB NF-xBR2%E 7 5 I fd<H ~
¢ +=Rel A (p65) ~ Rel B (p68) ~ c-Rel (p75) ~ NF-kB1 (p50)£2 NF-kB2 (p52) » i 25 & 7
Il & chke B R 48 (homodimer) ¢ & i i & 4% (heterodimer) » # ¢ & 4 L3
p65/p50:rNF-kB £ B % 48 (De Martin et al., 2000) - fm*e & % 1] PENF-kB 5 {im s

e T aEdrd] 39 IkB (¢ 45 D IkB-a~ IkB-ERIkB-y) % & @ TR &R G F
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fnre 3] g IkB-a ¢ % 3]IKK (IkB Kinase) complexgifié it i 4F » gk it hlkB-o
ST AL F - F-0 fE Rk 4L (ubiqutin-proteasome system)# ' f# > IkB-aif "R AR

NF-kB » & NF-kBFE 11 & § & fhehsc B A % Fie » e 7 o 565 f 547

-

ebs 3 2 NF-kBA T £ 3 B &2 7 & fa 2 Flenfigsn g3 (e 7 (F11-0)(Hiscott et
[,2001) - ¥ 7 #H#ET » NF-kBiit #pmbe 8 L~ LB ~ e 4L F] 5 ~ fmve %
S g BAREAY BRER LS o F ok SRR R SRS E AN D

MMP-2{cMMP-9 2k Flkx# + + % 7 3 NF-xBig & %]+ cn% & = % (Hwang et al.,

2010) -
Ionomycin Mitogens TNF
/ TRADD
Influenza
! HBx » PKC
+\ (HBV) ) RIP/TRAF? <+—— LMP-1(EBV) @
Reactive oxygen * /
/miermedlales “EKKIJTJK
calcium flux \ ( unum;\. 4%
ER {fl'{"!:.ll.r.;utf ' IKK COMPLEX
l[ IkBa
HA (Influenza virus) I \\l“” V-I) a
E319K (Adenovirus) ps0 p6s . ] ) .
Phosphorylation - ElA Core C prmmll (HCY)
(Adenovirus) Measles virus
ﬁ ® i .
NF-xB binding sites Nuclear import pi0 Pos Degradation e R
NF-xB T_'_
Target genes Ll
Sindbis virus
é e S 2 S -
®l 1-9. IxkB # & NF-xB #* 47 B /2 (Hiscott et al., 2001) °

E

BT FAP-IAFrF S 4 B F o ¢ dpmied £ v o v o > Hied f
¢ Jun family (c-Jun ~ v-Jun ~ Jun B % Jun D) ~ Fos family (c-Fos, FosB, Fra-1% Fra-2)
& # 8 2 75 basic region-leucine zipper (bZIP) domain:h3-v & > |4 ATF(e 7 ATF2,
B-ATF, JDP12 JDP2){-Maf (¢ z Maf A, Maf B, c-Maf 2 Maf G/F/K) » r Ir 5 B 48

2RO R AN % & (Mechta-Grigoriou et al., 2001)fm e B ¢ > AP-1enid g5 422
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Haedax H iy B 2P Jun-Fosz Jun-ATF family ¢ &35 B 5 R 42,50 5
T EDNAG g hG E B -

¥ wmve £ P4 e ek (TNF-a IL-1- IL-6% )i M £ % (LPS)~ % ¢ 4 TPA
EFF g v 5 d MAPKs & @ v pe o id (P AP-1 > 8- Hxd P R FI 4R
(Angel and Karin, 1991) - p & © g2 5 iz % {odi 4 40 B MMPsp% % ¢ 32 MMP-22
MMP-Q A Flgcds + F % 7 3 AP-1# 4 F]+ chig & = ¥ (Angel and Karin, 1991;

Hwang et al., 2010) -

-8 gapand B A4 LR

GERCEIER RS Sk Sk LU R R e R L o S
T R s Bt b g TR R A 8¢ en-32 n-67 Ak S8
J7 f: 7 0 & = (Spector and Yorek, 1985) % = - gt ' & (eicosanoids) sk 3 o $3¢
FAMEIV 2 Efogd B - Afrwre 2 L~ 4 4 2 SR F £ & 04 ¢ (Simopoulos,
2000) -
(1) DHA:

Docosahexaenoic acid (DHA, C22:6 n-3) & = -+ = #% = i pe(H11-10) f>n-3 5 ~
7 & o7y ¥ Ek (polyunsaturated fatty acids, PUFA) - DHAR A §8¢ &2 p (& = > 3
i%“gd 4 & #P~=x I - Pk (alpha-linolenic acid, 18:3 n-3) » B BA eSS L fo i
(desaturation) 2 — g B ezt £ (% * (elongation) » & fs #& % @ = (§]1-11)(Bokor et al.,
2010) » DHA- & z*iFA A g @ 2 BigP > REFTIRE 2 dpdt > DHAR S 144
FT Ik R G (24884 107.0 M) » + 125 (279.9 % 116.6 uM)(Welch et al., 2006) -

F TR DHAY AR AR }ﬁafﬂ’? 4o ;gkiﬁ 'DHAG: 49 BaE g o b2 &
AR T (Glhrde B e FEF 2 FUES ) i@t d e F yﬁa%v’%%fz e
7% /% B X p55 (Alzheimer's Disease, AD)(Lukiw et al., 2005) « ¥ ¢ » #+ 4~ 2 ‘m¥ § 5% ¢

7w 7 DHAZL 5 #urd ;2 & + (Kato et al., 2002; Schonberg et al., 2006) > &4 : DHA®
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g R A e (xenograft)end £ SR IV B E P g2 4 £ 2 FE S TV A 4 A B
¥ v o 2 4 A ¢4 (Kim et al., 2009; Mandal et al., 2010; Shao et al., 1995; Sun et al.,
2008) ; 2 MCF-7 % &5 Uy sm e 5 47§ H05Y o % DHA G 5472 B 5 1 a3 4l
& 1 % By (peroxisome proliferator-activated receptors-y; PPARy)# = syndecan-1 #
o iEm R FUR e - (Sunetal., 2008) ; ¥ F A F U A GEEC R dm et
(MDA-MB-231):1 &+ 3] & %9 ’Jﬁu‘;—\ E(NU/NU)® chE 4 7 % > 37 DHAF §

d Frd|dEst s F CDA4eni® ® & m Bt iR fm e 8 2 4 cng 4 (Mandal et al.,

2010) » o b i 2 f& T @ 4c > DHAT 3538 5 630 5 0 (0B 1T % B ok im e 3 B -

F11-10. DHA S H Bl (F 8 % & : commons.wikimedia.org) -

| Omega-6 family | | Omega-3 family |

C18:2n-6 (LA)

elong aity ﬂ,

C20:2n-6

FADS2
A8-desaturation

&=

FADS2
A6-desaturation

C18:3n-6 (GLA)

elongation

C20:3n-6 (DGLA)

&

FADS1
AS-desaturation

C20:4n-6 (ARA)

&=

Q
]
Ly
s
)
&

&

(2]
(]
=
=
E]

&

&=

C24:5n-6

&

C22:6n-6

elongation

elongation

FADS2
A6-desaturation

p-oxidation

C18:3n-3 (ALA)
ﬂ elongation

C18:4n-3 (SA) C20:3n-3

ﬂ FADS2

AB-desaturation
C20:4n-3

&

C20:5n-3 (EPA)

=

C22:5n-

3
w

&

C24:5n-3

&

C24:6n-3

4

C22:6n-3 (DHA)

B]1-11. n-3 ~ n-6%g ¥»p& i 3k 45 (Bokor et al., 2010) -
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(2) LA:

Linoleic acid (LA, 18:2 n-6) & I ffrid fa(B]1-12) o A $pREP 13 Lo foig PR ™ A
s fdn-3-n-6-n-7fon-93] o n-74en-93] Fp ppL B H A % kp{rig B
(Mono-Unsatarated Fatty Acid, MUFA) » ¥ p {7 j¥ 4k 8 ¢ #&P~4¢ {7y ¥ f4 (Satarated
Fatty Acid, SFA)i& - # & & » ©n-34en-6 % = 7 ¢ foiy Wik 4o=t I fif v fi(ALA, 18:3
N-3)fed frid e i A SR E R 76 Fch QUK SR » Flt X fL % F R s
(Essential Fatty Acids, EFA) » T frid fe i 2572 2@ ~ 2380 ~ Fiofd ~ il
MY o B ARPFAGFE A FTERED T NS o AL T R R
fd2 LAY FEgHE mE ARG oA EL 7 2 %55k (Cunnane and
Anderson, 1997; Simopoulos, 2010)

™A g %2 (LOVO and RKO)fe 4 #8 1+ % 0% (HUVEC) = A 7 #ic3t » 37 1<
kB eI R F(<200 pM) T § BB A B R mre B £ o @ F R A (2200 uM) T e
AT TR EAEA SR 2 A (Luetal, 2010b) ° #4 2 ‘wfe F S%EP > &
Frob ez RHA 3 TS AR R F B TR R e B iR drdi

7 2. 2 & (Yasuda et al., 2009; Zuo et al., 2006) °

HO™ 4
RI1-12. LA 4B (F 4 %k commons.wikimedia.org)

¥ A& & AT F 1 pF(Heme oxygenase, HO)

1968 & > AAFF A E RAAET T A KA T e igE e
B0 ¥ AR 4T Bl N Hji A8 (microsomes) ¥ (Tenhunen etal., 1968) © = A 7 ¥
i ¥ 2 L (heme) © B 427 g 5L s ;ﬁd Bite AFeha iz A2 %Y

A geeE % % (biliverdin) ~ — ¥ i g (carbon monoxide, CO) ™ 2 = i 483+ (Fe®") >
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BP e % ¢ i8- o 5 E S F R & pe(biliverdin reductase)#& #% % *% = % (bilirubin)
M AR € 4% 3548 3o (ferritin)=2 = (B 1-13)(Farombi and Surh, 2006) - # 7 %
oL AT BAS 0 B9 5E R A 10 gy 0 H g o wsitdeT
(1) R 4 }.‘%frm 4r
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Effect of Docosahexaenoic Acid and Linoleic Acid on TPA-Mediated

MMP-9 Expression in MCF-7 Human Breast Cells

Introduction

Breast cancer is the most common female cancer and is the second leading cause of
cancer deaths in Western women. About 30% to 40% of women with this form of cancer
will develop metastases and eventually die of this disease (Weigelt et al., 2005).
According to the statistical data of Department of Health of Taiwan, the incidence of
breast cancer has increased 4.5 fold in the past twenty years, and is the fourth leading
cause of cancer death in Taiwanese women (Chang, 2006).

Metastatic spread of cancer cells is the main cause of death of breast cancer patients
(Weigelt et al., 2005). Breakdown of the extracellular matrix (ECM) by proteinases is an
essential step in cancer metastasis (Werb, 1997). Matrix metalloproteinases (MMPs), a
family of ECM degrading proteinases, are divided into four subclasses based on the
substrate including collagenases, gelatinases, stromelysin, and elastases (Nelson et al.,
2000; Yan and Boyd, 2007). Activation of MMP-2 (gelatinase-A) and MMP-9
(gelatinase-B) is intensely correlated with the tumor invasion and metastasis_in different
types of cancer cell, including human breast (Blanckaert et al., 2010; Hanemaaijer et al.,
2000), hepatoma (Zhao et al., 2011), prostate (Wegiel et al., 2008) and lung cancer cells
(Kamaraj et al., 2010). In general, MMP-2 is constitutively expressed in highly metastatic
tumors, whereas MMP-9 can be stimulated by the growth factor, such as epidermal
growth factor and transforming growth factor beta (TGF-p) (Ramirez et al., 2011), the
inflammatory cytokine such as tumor necrosis factor-a (TNF-a) (Youn et al., 2011),
ultraviolet radiation (Kimura and Sumiyoshi, 2011), or phorbol ester (Lin et al., 2008a).

The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent tumor
promoter, stimulates renal tumor cell proliferation through activation of protein kinase C
(PKC)(Kolb and Davis, 2004). TPA-induced MMPs activation was mediated by
modulating the activation of transcription factors such as NF-kB and AP-1 through PKC,
PI3K and mitogen-activated protein kinase (MAPK) signaling pathways (Blumberg, 1988;

Jang et al., 2007). Recent studies showed that the dietary factors such as a-lipoic acid,
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capsaicin, and conjugated linoleic acid (CLA) are protective against cancer migration,
invasion and angiogenesis by suppressing MMP-9 expression or enzyme activity (Hwang
et al., 2011b; Kunigal et al., 2007)). In our previous study, phenobarbital-induced JNK1/2
and ERK?2 activation was down-regulated by DHA (Lu et al., 2009) which suggests DHA
may possess the ability to suppress the MMP-2 or MMP-9 activation. In other words,
DHA can be the potential candidate for antitumor.

Dietary lipids are important to human beings because of their role in energy and
essential fatty acids supplies. Linoleic acid (18:2 n-6) and a-linolenic acid (18:3 n-3) are
essential fatty acids that must be obtained from diets. These polyunsaturated fatty acids
(PUFAS) and their metabolic products play critical roles in a variety of physiological
processes, such as regulation of inflammation (Masson and Mensink, 2011), insulin
resistance (Perez-Martinez et al., 2011), blood pressure (Sagara et al., 2011) and lipid
metabolism (Neff et al., 2011). Epidemiologic studies showed that high consumption of
n-3 PUFASs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from
fatty fish is associated with a reduced risk for breast cancer (Kim et al., 2009).
Experimental animal and cell culture studies provided evidences that dietary n-3 and n-6
PUFAs inhibit the promotion and progression stages of carcinogenesis (Lee et al., 2009b;
Lu et al., 2010a; Sun et al., 2008).

Heme oxygenase 1 (HO-1) is one of the members of HO system. HO-1 is also
known as HSP32 (heat shock protein of 32 kDa), and it is an inducible enzyme and
expressed relatively low in most tissues under basal conditions. HO-1 is induced by a
wide variety of stimuli such as ultraviolet A radiation, endotoxin and cytokines (Chung et
al., 2011; Luo et al., 2011; Ronco et al., 2011; Xu et al., 2011; Zhong et al., 2010). In
addition to anti-oxidant and anti-inflammatory activities of HO-1 (Seo et al., 2010), HO-1
has also been shown to possess anti-tumorigenic action in breast cancer cells (Li et al.,
2011; Pae et al., 2010; Wang et al., 2011). It is also shown that HO-1 is induced by a
wide array of phytochemicals through Nrf2 (Velmurugan et al., 2009). In addition to the
above mentioned stimuli, induction of HO-1 by DHA in BV-2 microglia (Lu et al., 2010a)
and mouse peritoneal macrophages (Wang et al., 2010) was reported. However, the effect
of n-3 and n-6 PUFAs on HO-1 induction in human cancer cells lacks.

Because of the HO-1 induction capability of DHA, it is possible that DHA can exert

antitumor activity. According to previous studies describing the antitumor activity of n-3

32



and n-6 PUFAs, we investigated the metastasis and invasion inhibition effects of n-3 and
n-6 PUFASs in TPA-induced MCF-7 human breast cancer cell and the possible mechanism

involved.
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Materials and Methods

MCF-7

(human breast cancer cells)

* Pretreated with:
- Fatty acid (DHA, LA)
- Kinases inhibitors (SP, PD, SB, Wt, LY, GF)

* Treated with:
-TPA
Boyden
Western X
MTT assay . RT-PCR Zymography chamber EMSA siHO-1
blotting
assay
MMP-9, HO-1,
NF-kB
p-ERK, ERK, MMP-9 invasion .
MMP-9, HO-1 and AP-1 silence
Cell viability || p-JNK. JNK, enzyme and Lo
mRNA o . . DNA binding || HO-1 mRNA
p-p38, p38 activity migration .
activity
p-Akt, Akt,
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Chemicals

Dulbecco's Modified Eagle Medium (DMEM), OPTI-MEM, 25% trypsin-EDTA, and
penicillin-streptomycin solution were from GIBCO-BRL (Grand Island, NY); fetal
bovine serum (FBS) was from HyClone (Logan, UT);
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), albumin, bovine
serum essentially fatty acid free (BSA), sodium bicarbonate, calcium chloride, Triton
X-100, 12-O-tetradecanoylphorbol 13-acetate (TPA), GF109203X (PKC kinase inhibitor),
wortmannin, and LY294002 (PI3K kinase inhibitor) were from Sigma-Aldrich, Inc. (St.
Louis, MO); SP600125 (JNK inhibitor), PD98059 (ERK inhibitor), SB203580 (p38
inhibitor) were from TOCRIS (Ellisville, MO); docosahexaenoic acid and linoleic acid
were from Cayman Chemical (Ann Arbor, Ml); collagen was from Collaborative
Biomedical Products (Bedford, MA); TRIzol reagent was from Molecular Research
Center, Inc (Cincinnati, OH); antibodies against Akt, phospho-Akt (T308 and S473),
ERK1/2, phospho-ERK1/2, p38, and phospho-p38were from Cell Signaling Technology
(Danvers, MA); antibodies against JINK1 and phospho-JNK1/2 were from Santa Cruz
Biotechnology (Santa Cruz, CA); antibody against HO-1was from Calbiochem
(Darmstadt, Germany); and DharmaFECT 1 Transfection Reagent was from Dharmacon

(Lafayette, CO).

Cell culture
The human breast cancer cell line MCF-7 was a kindly gift from Dr. Yi-Hsien Hsieh,
Chung Shan Medical University, Taichung, Taiwan, and was cultured on collagen-coated

cell culture dishes in DMEM (pH 7.2) supplemented with 1.5 g/L. NaHCO3, 10% FBS,
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100 units/mL penicillin, and 100 ug/mL streptomycin at 37°C in a 5% CO, humidified

incubator.

Cell viability assay

Cell viability was assessed by the MTT assay. The MTT assay measures the ability of
viable cells to reduce a yellow 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide to a purple formazan by mitochondrial succinate dehydrogenase. MCF-7 cells
were grown to 70-80% confluence and were then treated with different concentrations of
docosahexaenoic acid or linoleic acid (0-200 uM) for 20 h followed by incubation with
TPA (100 ng/mL) for another 24 h. Finally, the DMEM was removed, and the cells were
washed with PBS. The cells were then incubated with MTT (0.5 mg/mL) in DMEM at
37°C for an additional 3 h. The medium was removed, and isopropanol was added to
dissolve the formazan. After centrifugation at 20,000g for 5 min, the supernatant of each
sample was transferred to 96-well plates, and absorbance was read at 570 nm in an
ELISA reader. The absorbance in cultures treated with 0.005% ethanol was regarded as

100% cell viability.

Western blot analysis

After each experiment, cells were washed twice with cold PBS and were harvested with
150 pL of lysis buffer (10 mM Tris-HCI, pH 8.0, 0.1% Triton X-100, 320 mM sucrose, 5
mM EDTA, 1 mM PMSF, 1 mg/L leupeptin, 1 mg/L aprotinin, and 2 mM dithiothreitol).
Cell homogenates were centrifuged at 14,000g for 20 min at 4°C .The resulting
supernatant was used as a cellular protein for Western blot analysis. The total protein was

analyzed by use of the Coomassie Plus protein assay reagent kit (Pierce Biotechnology
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Inc., Rockford, IL). Equal amounts of proteins were electrophoresed in a sodium dodecyl
sulfate-polyacrylamide gel, and proteins were then transferred to polyvinylidene fluoride
membranes (Millipore Corp., Bedford, MA). Nonspecific binding sites on the membranes
were blocked with 5% nonfat milk in 15 mM Tris/150 mM NaCl buffer (pH 7.4) at 4°C
overnight. After blocking, the membranes were incubated with anti-phospho-Akt (T308
and S473), anti-phospho-JNK1/2, anti-phospho-ERK1/2, anti-phospho-p38, anti-Akt,
anti-JNK1, anti-ERK1/2, anti-p38, anti-MMP-9, anti-HO-1, and anti-p-actin antibodies at
4°C overnight. Thereafter, the membranes were incubated with the secondary
peroxidase-conjugated anti-rabbit or anti-mouse 1gG antibodies at room temperature for 1
h, and the immunoreactive bands were developed by use of the Western Lightning™
Plus-ECL kit (PerkinElmer, Waltham, MA) and were scanned by a luminescent image
analyzer (Fujifilm LAS-4000, Japan). The bands were quantified with an ImageGauge

(Fujifilm).

RNA isolation and RT-PCR

Total RNA of MCF-7 cells was extracted by using TRIzol reagent. Briefly, after
treatment, cells were washed twice with cold PBS and scraped with 500 pL of TRIzol
reagent. Samples were mixed with 100 pL of chloroform and centrifuged at 11,000g for
15 min. The supernatant was collected and mixed with 250 pL of isopropyl alcohol. After
centrifugation at 12,000g for 20 min, the supernatant was discarded and the cell pellet
was gored n 70% dhanol or dssolved n ddonized water for quantification.

We used 0.4 ug of total RNA for the synthesis of first-strand cDNA by using Moloney
murine leukemia virus reverse transcriptase (Promega Co., Madison, W1) in a 20-uL of

final volume containing 250 ng of oligo-dT and 40 U of RNase inhibitor. PCR was
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conducted in a thermocycler in a reaction volume of 50 uL. which containing 20-pL of
cDNA, BioTaq PCR buffer, 50 uM of each deoxyribonucleotide triphosphate, 1.25 mM
MgCl,, and 1 U of BioTag DNA polymerase (BioLine). Oligonucleotide primers of
MMP-9 (forward, 5’-CACTGTCCACCCCTCAGAGC-3’; reverse,
5’-GCCACTTGTCGGCGATAAGG-3’), HO-1 (forward,
5’-CTGAGTTCATGAGGAACTTTCAGAAG-3’; reverse,
5-TGGTACAGGGAGGCCATCAC-3’), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (forward, 5>-CCATCACCATCTTCCAGGAG- 3’; reverse,
5-CCTGCTTCACCACCTTCTTG-3") were designed on the basis of published
sequences (Lin et al., 2008a; Sun et al., 2009). Amplification of MMP-9 was achieved
when samples were heated to 95°C for 5 min and then immediately cycling 30 times
through 30 sec denaturing step at 94°C, 30 sec annealing step at 56°C, and a 1min
elongation step at 72°C. Amplification of HO-1 was achieved when samples were heated
to 95°C for 5 min and then immediately cycling 39 times through a 1 min denaturing step
at 95°C, a 1 min annealing step at 55°C, and a 2 min elongation step at 72°C, respectively.
The GAPDH cDNA level was used as the internal standard. PCR products were resolved
in a 1% or 2% agarose gel, scanned by using a Digital Image Analyzer (Alpha Innotech)

and quantified with an ImageGauge.

RNA interference by small interfering RNA of HO-1
Predesigned small interfering RNA (siRNA) against human HO-1 and nontargeting
control pool siRNA were purchased from Dharmacon (Lafayette, CO). MCF-7 cells were

transfected with HO-1 siRNA SMARTpool by using DharmaFECT1 transfection reagent
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according to the manufacturer’s instructions. Specific silencing was confirmed by at least

three independent immunoblotting assays with cellular extracts 24 h after transfection.

Nuclear extract preparation

After each experiment, cells were washed twice with cold PBS and were then scraped
from the dishes with 1000 uL of PBS. Cell homogenates were centrifuged at 2,000g for 5
min. The supernatant was discarded, and the cell pellet was allowed to swell on ice for 15
min after the addition of 200 pL of hypotonic buffer containing 10 mM HEPES, 1 mM
MgCl;, 1 mM EDTA, 10 mM KCI, 0.5 mM DTT, 0.5% Nonidet P-40, 4 ung/mL leupeptin,
20 pug/mL aprotinin, and 0.2 mM PMSF. After centrifugation at 7,000g for 15 min, pellets
containing crude nuclei were resuspended in 50 pL of hypertonic buffer containing 10
mM HEPES, 400 mM KCI, 1 mM MgCl,, 0.25 mM EDTA, 0.5 mM DTT, 4 pg/mL
leupeptin, 20 pg/mL aprotinin, 0.2 mM PMSF, and 10% glycerol at 4°C for 30 min. The
samples were then centrifuged at 20,0009 for 15 min. The supernatant containing the
nuclear proteins was collected and stored at -80°C until the Western blot assay and

electrophoretic mobility shift assays.

Electrophoretic mobility shift assay (EMSA)

EMSA was performed according to our previous study (Cheng et al., 2004). The
LightShift Chemiluminescent EMSA Kit (Pierce Chemical Co., Rockford, IL) and
synthetic biotin-labeled double-stranded AP-1 consensus oligonucleotides (forward:
5’-GCCTCAGCTGGTAAATGGATAA-3’; reverse:
5’-AAAGGCCCCAGAGCCAGCC-3’) were used to measure AP-1 nuclear protein-DNA

binding activity (Tsai et al., 2007). Ten micrograms of nuclear extract, poly (dI-dC), and
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biotin-labeled double stranded AP-1 oligonucleotide were mixed with the binding buffer
(LightShift EMSA Kit; Pierce Chemical Co., Rockford, IL) to a final volume of 20 uL,
and the mixture was incubated at room temperature for 30 min. Unlabeled
double-stranded AP-1 oligonucleotide and a mutant double-stranded oligonucleotide were
used to confirm the protein-binding specificity. The nuclear protein-DNA complex was
separated by electrophoresis on a 6% TBE-polyacrylamide gel and was then transferred
to a Hybond-N" nylon membrane. The membranes were cross-linked by UV light for 10
min and were then treated with 20 uL of streptavidin-horseradish peroxidase for 20 min,
and the nuclear protein-DNA bands were developed with a Chemiluminescent Substrate
(Thermo, Rockford, IL). The bands were scanned by a luminescent image analyzer

(Fujifilm LAS-4000).

Migration and invasion assays

Transwell (Corning) or BioCoat™ Matrigel™ Invasion Chamber (BD Biosciences) in
vitro migration or invasion 24-well chambers with 8 um pore polycarbonate filters were
used as directed by the manufacturer’s instruction, respectively. Briefly, rehydrated the
number of Matrigel inserts before cells setting. 1x10” cells/mL were placed in 500 pL of
serum free medium and 750 pL of medium containing 10% FBS in the lower wells. The
transwell chambers were incubated with or without 200 uM DHA or LA for 20 h and
treated with or without 100 ng/mL TPA for another 48 h. Cells were fixed with 100%
methanol for 20 min and then stained with Trypan Blue stain (GIBCO) for 30 min.
Non-migrating or non-invading cells on the upper surface of the filter were removed by

wiping out with a cotton swab, and the filters were excised and mounted on the
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microscope slide. Migration and invasiveness were quantified by counting cells on the

lower surface of the filter.

Gelatin zymography assay

The activity of MMP-9 was analyzed by gelatin zymography as described previously
(Chu et al., 2004). MCF-7 cells were pretreated with or without 0-200 uM DHA or LA
for 20 h, or specific inhibitors of MAPKSs (PD98059, SB203580 or SP600125), PI3K
(Wortmannin or LY294002) and PKC (GF109203X) for 1 h, followed by incubation in
serum-free medium containing 0-200 ng/mL of TPA for an additional 24 h. The
conditioned media were collected, mixed with loading buffer and subjected to
electrophoresis on 8% SDS-polyacrylamide gel containing 0.1% (wt/vol) gelatin.
Electrophoresis was performed at 120 V for 2 h. Gels were then washed twice with
washing buffer (2.5% Triton X-100) at room temperature to remove SDS, followed by
incubation at 37°C for 12 to 16 h in reaction buffer (40 mM Tris-HCI, pH 8.0, 10 mM
CaCl,, and 0.02% NaN3), then stained with Coomassie blue R-250 (0.125% Coomassie
blue R-250, 0.1% amino black, 50% methanol, and 10% acetic acid) for 1 h and destained
with destaining solution (20% methanol and 10% acetic acid) for 30 min. MMP-9
gelatinolytic activity was detected as clear bands in a dark blue background, and the
bands were quantified by densitometer measurement using a digital imaging analysis

system (Fujifilm).

Statistical analysis
Data were analyzed by using analysis of variance (SAS Institute, Cary, NC). The

significance of the difference between mean values was determined by one-way analysis
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of variance followed by Tukey’s test; p values of <0.05 were taken to be statistically

significant.
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Results

3.1 Effects of TPA with or without DHA or LA on MCF-7 Cell Viability.

The TPA-induced invasion of human MCF-7 breast cancer cell model has been
established by Lin et al. (2008). Our previous study showed that the concentration of
DHA and LA greater than100 uM significantly caused rat primary hepatocytes damage
(Li et al., 2006). To exclude the cytotoxic effect of TPA, DHA and LA on MCF-7 cell
culture system, the MTT assay was performed. As shown in Figure 1A, no significant
cytotoxic effect of TPA (0-200 ng/mL) on MCF-7 cells for 24 h treatment. MCF-7 cells
treated with 0-200 uM LA or DHA for 20 h showed no significant cytotoxic effects. We
chose 200 uM DHA and LA as the highest treatment concentration because cell damage
occurred when concentration greater than 200uM (Figure 1B). To confirm the additive
effect of cytotoxicity between DHA, LA, and TPA, MCF-7 cells were pretreated with
DHA or LA (0-200 uM) for 20 h followed by incubation with TPA (100 ng/mL) for

another 24 h. The results showed no adverse effect observed in MCF-7 cells (Figure 1C).

3.2 TPA-Induced MMP-9 Gene Expression and Enzyme Activity in MCF-7 Cells.

To confirm the induction effect of TPA on the expression of MMP-9 in MCF-7 cells,
cells were treated with TPA (25, 50, 100, or 200 ng/mL) for 24 h. As shown in Figure 2A,
the MMP-9 activity was increased by TPA in a dose-dependent manner. Also, the
induction of MMP-9 mRNA, protein expression and enzyme activity by TPA (100 ng/mL)
was time-dependent (Figure 2B). In the following experiments, 100 ng/mL TPA and 24 h

treatment were used to induce the MMP-9 expression and enzyme activity.

43



3.3 DHA or LA Suppresses TPA-Induced Migration and Invasion in MCF-7 Cells.

In a mouse study, fish oil was shown to prevent MDA-MB-231 cancer cell
metastasis to bone (Mandal et al., 2010). In order to demonstrate whether the metastasis
of MCF-7 cells was influenced by DHA or LA, in vitro migration and invasion transwell
assays were performed. As shown in Figures 3A and 3B, TPA significantly induced
migration and invasion of MCF-7 cells. However, pretreatment with DHA or LA
significantly suppressed cell motility of MCF-7. These results suggested that DHA and

LA had an inhibitory effect on TPA-induced migration and invasion of MCF-7 cells.

3.4 DHA and LA Inhibited MMP-9 Enzyme Activity via Reducing MMP-9 Gene
Expression.

MMP-9 is recognized to play a role in the metastasis of breast carcinoma cells (Lin et
al., 2008). Therefore, we study the effects of DHA and LA on TPA-induced MMP-9
enzyme activity and gene expression. The results of RT-PCR and Western blotting
analysis showed that MMP-9 mRNA and protein expression were both significantly
induced by 100 ng/mL of TPA, and the induction was dose-dependently down-regulated
by LA or DHA. The result of gelatin zymography analysis showed that the MMP-9
enzyme activity significantly increased by TPA, and pretreatment with DHA or LA

inhibited TPA-induced MMP-9 activity in a dose-dependent manner (Figure 4).

3.5 TPA-Mediated MMP-9 Expression through PKC, PI13K and MAPKs Signaling
Pathways.
Several studies have indicated that the induction of protein kinase C (PKC),

phosphoinositide 3-kinase/Akt (PI3K/Akt) and mitogen-activated protein kinases
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(MAPKS) signaling pathways is involved in TPA-mediated MMP-9 expression (Cho et
al., 2007; Lin et al., 2010). To specify the signaling pathway involved in TPA-mediated
MMP-9 expression in MCF-7 cells, we used the pharmacological inhibitors of MAPKSs,
PI3K and PKC such as SP600125 (JNK inhibitor), PD98059 (ERK inhibitor), SB203580
(p38 inhibitor), wortmannin and LY294002 (PI13K inhibitors), and GF109203X
(non-selective PKC inhibitor) to identify the contribution of these signaling pathways. As
shown in Figure 5A, there was no cell toxicity caused by the dose of indivisual kinase
inhibitor. TPA-induced MMP-9 protein expression and enzyme activity was significantly

inhibited by specific inhibitors of SP, PD, Wt, LY and GF, respectively (Figure 5B).

3.6 DHA or LA Down-Regulates TPA-Induced MMP-9 Expression via ERK and PI13K/Akt
Signaling Pathways.

Our results showed that TPA-induced MMP-9 enzyme activity was significantly
inhibited by specific inhibitors of INK, ERK, PI3K/Akt and PKC. Furthermore, we
investigate whether DHA or LA inhibited TPA-induced MMP-9 expression was through
above-mentioned pathways. As shown in Figure 6, the ERK and Akt pathways were
activated by TPA at 30 and 60 min treatments and this activation was attenuated by
pretreatment with 200 uM DHA or LA. However, DHA or LA had no effect on
TPA-activated JNK and p38 pathways. These results suggested that DHA or LA might
down-regulate TPA-induced MMP-9 expression via ERK and PI3K/Akt signaling

pathways.
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3.7 Inhibition of the TPA-Induced DNA Binding Activities of NF-xB and AP-1 by DHA
and LA.

Activation of NF-kB and AP-1 is involved in the induction of the MMP-9 gene,
which is associated with the invasion and metastasis of tumor cells by TPA (Hwang et al.,
2010). EMSA was used to confirm whether the suppression of DHA or LA on
TPA-induced MMP-9 gene expression was associated with the attenuation of NF-xB and
AP-1 DNA binding. As shown in Figure 7, the DNA-binding complex formation of
NF-kB and AP-1was found to increase after 1 h of TPA treatment and peak at 4 h. DHA
and LA pretreatment dramatically abolished TPA-induced NF-kB and AP-1
DNA-binding complex formation in MCF-7 cells (Figures 7A and B). These results
suggested that attenuation of TPA-induced NF-kB and AP-1 DNA-binding complex
formation is involved in the suppression of TPA-induced MMP-9 expression by DHA

and LA.

3.8 Effect of DHA and LA on HO-1 Expression of MCF-7 Cells in the Presence of TPA.

HO-1, a stress response gene, has been shown to suppress MMP-9 gene expression,
and subsequently decrease tumor metastasis (Lin et al., 2008). To determine whether the
suppression of TPA-induced MMP-9 expression by DHA or LA is via induction of HO-1
expression, we studied the effect of 50, 100, and 200 uM DHA and LA on HO-1
expression in the presence of TPA in MCF-7 cells. In Figure 8A, pretreatment with DHA
for 20 h significantly enhanced HO-1 expression in a dose-dependent manner; however,
the induction of HO-1 expression was not present by TPA and LA treatments.

We further found the induction of HO-1 expression by DHA is a time-dependent

manner. DHA induced HO-1 expression as early as 8 h and effect sustained until 24 h
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(Figure 8B). These data suggested that DHA induces HO-1 expression in both dose- and

time-dependent manners in MCF-7 cells.

3.9 HO-1 siRNA Alleviates DHA Inhibition of MMP-9 expression in the Presence of TPA.

To clarify whether HO-1 is involved in the suppression of DHA on TPA-induced
MMP-9 expression, the HO-1 siRNA SMARTpool system was used. The knockdown
efficiency of HO-1 gene was assayed by Western blotting. HO-1 siRNA alleviated the
DHA inhibition of protein and enzyme activity of MMP-9 in the presence of TPA (Figure
9). These results implicate the importance of HO-1 in the inhibition of TPA-induced

MMP-9 expression by DHA.
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Figure 1. Effects of TPA with or without DHA or LA on MCF-7 Cell Viability.
(A) Effect of TPA on cell viability. Cells were treated with 0-200 ng/mL TPA for 24 h.
(B) Effects of DHA and LA on cell viability. Cells were treated with 0-200 uyM DHA
or LA for 24 h. (C) Effects of LA or DHA with TPA on cell viability. Cells were
pretreated with 0-200 uM LA or DHA for 24 h followed by incubation with 100
ng/mL of TPA for another 24 h. Cell viability was measured by using the MTT assay.
Values are means + SD of three independent experiments. Bars not sharing the same
letters or symbols are significantly different (p<0.05).
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Figure 2. Effect of TPA on MMP-9 gene expression and enzyme activity in MCF-7
cells. (A) TPA induces MMP-9 mRNA expression in a dose-dependent manner. MCF-7
cells were treated with various doses of TPA for 24 h. Total RNA (0.1 pg/pL) were used
to detect the MMP-9 mRNA expression, which was measured by RT-PCR. (B) TPA
induces MMP-9 mRNA and protein expression and enzyme activity in a time-dependent
manner. MCF-7 cells were treated with 100 ng/mL of TPA for 0-24 h. MMP-9 protein
expression was measured by Western blotting (WB) and MMP-9 enzyme activity was
measured by gelatin zymography assay (Zym). Values are means = SD of three
independent experiments. Values not sharing the same letter are significantly different
(p<0.05).
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Figure 3. Effect of DHA or LA on TPA-induced migration and invasion in MCF-7
cells. (A) LA or DHA inhibits TPA-induced cell migration in MCF-7 cells. (B) LA or
DHA inhibits TPA-induced cell invasion in MCF-7 cells. MCF-7 cells were pretreated
with or without 200 uM LA or DHA for 20 h followed by incubation with or without 100
ng/mL of TPA for an addition 24 h. VValues are means + SD of three independent
experiments. Values not sharing the same letter are significantly different (p<0.05).
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Figure 4. Effect of LA or DHA on TPA-induced MMP-9 expression in MCF-7 cells.
Effect of LA or DHA on TPA-induced MMP-9 mRNA and protein expression, and
MMP-9 enzyme activity. MCF-7 cells were treated with 100 ng/mL of TPA for 0-24 h.
MMP-9 mRNA expression was measured by RT-PCR. MMP-9 protein expression was
measured by Western blot (WB) and MMP-9 enzyme activity was measured by gelatin
zymography assay (Zym). Total RNA (0.1 pg/uL) were used for RT-PCR. Aliquot of cell
lysates (20 pg) were used for Western blot assay. One representative experiment out of
three independent experiments is shown. Values are means = SD of three independent
experiments. Values not sharing the same letter are significantly different (p<0.05).
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Figure 5. Effect of protein kinase inhibitors on TPA-induced MMP-9 expression in
MCEF-7 cells. (A) Effects of protein kinase inhibitors on MCF-7 cell viability. Cells were
pretreated with pharmacological inhibitors of MAPKSs, PI3K and PKC including
SP600125 (JNK inhibitor, SP), PD98059 (ERK inhibitor, PD), SB203580 (p38 inhibitor,
SB), wortmannin and LY 294002 (PI3K inhibitors, Wt/LY'), and GF109203X
(non-selective PKC inhibitor, GF) for 24 h followed by incubation with 100 ng/mL of
TPA for another 24 h. Cell viability was measured by using the MTT assay. (B) Effects
of protein kinase inhibitors on TPA-induced MMP-9 protein expression and enzyme
activity. MCF-7 cells were treated with 100 ng/mL of TPA for 0-24 h. MMP-9 protein
expression was measured by Western blot (WB) and MMP-9 enzyme activity was
measured by gelatin zymography assay (Zym). Aliquot of cell lysates (20 pg) were used
for Western blot assay. One representative experiment out of three independent
experiments is shown. Values are means £ SD of three independent experiments. Values
not sharing the same letter are significantly different (p<0.05).
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Figure 6. Effect of LA or DHA on TPA-induced MAPKSs and Akt activation. Cells
were treated with or without 200 uM LA or DHA for 24 h followed by incubation with or
without 100 ng/mL of TPA for indicated time periods. The phosphorylation of protein
kinases was measured by Western blot. Aliquots of cell lysates (20 pg) were used. One
representative experiment out of three independent experiments is shown.
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Figure 7. Effects of LA or DHA on TPA-induced AP-land NF-kB DNA-binding
activity. (A) Effects of LA or DHA on TPA-induced NF-xB DNA-binding activity. (B)
Effects of LA or DHA on TPA-induced AP-1 DNA-binding activity. MCF-7 cells were
treated with 100 ng/mL of TPA for indicated time periods, and cells pretreated with 200
uM LA or DHA for 24 h followed by incubation with 100 ng/mL of TPA for 4 h.
Aliquots of nuclear extracts (10 pg) were used for EMSA. To confirm the specificity of
the nucleotide, 25-fold of cold probe (biotin-unlabeled AP-1 or NF-kB binding site, cold)
and biotin-labeled double-stranded mutant AP-1 or NF-kB oligonucleotide (mut, 4 pg)
were included in the EMSA. One representative experiment out of three independent
experiments is shown.
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Figure 8. Effect of DHA on HO-1 Expression of MCF-7 Cells in the Presence of TPA.
(A) DHA induced HO-1 protein expression in a dose-dependent manner. MCF-7 cells
were pretreated with various doses of LA or DHA for 20 h, followed by treatment with
100 ng/mL of TPA for another 24 h. (B) DHA induced HO-1 protein expression in a
time-dependent manner. MCF-7 cells were treated with 200 uM DHA for indicated time
periods. Aliquots of cell lysates (20 pg) were used for Western blot assay. One
representative experiment out of three independent experiments is shown. Values are
means = SD of three independent experiments. Values not sharing the same letter are
significantly different (p<0.05).
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Figure 9. Effect of siHO-1 on the inhibition of MMP-9 expression by DHA.

An HO-1 siRNA system was used to silence HO-1 mRNA in cells and to create a SIRNA
knockdown MCF-7 cell model. Aliquots of cell lysates (20 pug) were used for Western
blot (WB). MMP-9 enzyme activity was measured by gelatin zymography assay (Zym).
One representative experiment out of three independent experiments is shown.
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Discussion

Breast cancer is the second leading cause of cancer deaths in Western women, and
the majority of breast cancer deaths result from metastases (Culhane and Quackenbush,
2009). The dietary high fat consumption has long been recognized to play a role in the
development of breast cancer (Tannenbaum and Silverstone, 1953), but the relation
between intakes of dietary fat and mortality rates of breast cancer is still in contention.
Previous study suggests that differences in breast cancer growth and metastasis are partly
related to dietary fatty acid intake and especially to the quality and quantity of fatty acid
consumed (Fay et al., 1997). Several experimental evidences indicate that n-3 PUFAs
may have an anti-tumor activity (Bordeleau et al., 2011; Schley et al., 2005), whereas
total fat, saturated, and n-6 PUFAs may stimulate various mammary tumor growth and
metastasis, including breast cancer cells (Funahashi et al., 2008). This study was designed
to examine the effect of n-3 and n-6 PUFAs, such as DHA and LA, on MCF-7 breast
cancer cell migration and invasion and to clarify the possible molecular mechanism
involved.

MCEF-7 breast cancer cell are usually recognized as weakly invasiveness, however,
the invasive potential of MCF-7 cells could be dramatically increased by TPA (Johnson
et al., 1999). The tumor promoter TPA has been shown to induce tumor migration and
invasion by stimulating MMP-2 or MMP-9 expression in human astroglioma cells (Jung
et al., 2006) and hepatoma (Hah and Lee, 2003). Current studies found that medicinal
herb such as kalopanaxsaponin A and flavonoid quercetin inhibits TPA-induced cell
invasion by reducing MMP-9 expression in MCF-7 cells (Lin et al., 2008b; Park et al.,
2009). In the present study, the MMP-9 activity was induced by TPA in a dose-dependent
manner (Figure 2A) and both mMRNA and protein levels were dramatically increased at 24
h after treatment with 100 ng/mL of TPA in MCF-7 breast cancer cells (Figure 2B),
which is in line with the results of a previous study (Lin et al., 2008b).

Previous studies showed that the low concentrations of DHA or EPA (25 uM) alone
had minimal inhibitory effect on cell migration against serum (Siddiqui et al., 2005), but
the relatively high concentration of 100 uM or 152 uM (about 50 ng/ml) DHA
significantly decreased cell migration and invasion in MDA-MB-231 breast cancer cells

(Blanckaert et al., 2010; Mandal et al., 2010). In our previous study, results showed that
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the concentration of PUFASs, including arachidonic acid (AA), LA, EPA, and DHA,
granter than 100 uM significantly caused rat primary hepatocyte damage (Li et al., 2006).
In the present study, the relative high concentration of 200 uM of DHA and LA used had
no cytotoxic effect on MCF-7 breast cancer cells (Figure 1B), which indicated the
difference in cytotoxic potency between normal cells and breast tumor cells (Crawford et
al., 2003). Both 200 uM of DHA and LA have significant suppressive effect on
TPA-induced cell migration and invasion (Figures 3A and B). Pharmacokinetic study
showed that the human plasma concentration of DHA is able to achieve 120 mg/L (about
315 uM) after two-week administration of daily dose of 3 g fish oil supplement, of which
contains 1.365g DHA (Rusca et al., 2009). The mean concentration of plasma
phospholipid-esterified LA of about 824 uM was reported (Hwang et al., 2010). These
results supported the dosage of DHA and LA used in our present study is within the
reasonable physiologically relevant levels in human beings.

It is well established that tumor cell migration and invasion depend on MMP-2 and
MMP-9 expression and enzyme activities. Previous studies indicated that DHA and
dietary CLA are capable of reducing MMP-2 and MMP-9 production in reproductive
tissues of pregnant rats (Harris et al., 2001). In vitro cell experiments, migration of
vascular smooth muscle cells was decreased by DHA via suppressing MMP-2 and
MMP-9 activity (Delbosc et al., 2008). In the present study, we provide the first evidence
that TPA-induced MMP-9 expression and activity were down-regulated by DHA in
MCEF-7 cells (Figure 4). The result indicated the benefit of DHA in the process of breast
tumor metastasis (Mandal et al., 2010). Generally, high intake of n-6 PUFA and saturated
fat are more likely to increased risk of breast cancer (Do et al., 2003). However, treatment
with higher dose of LA (300 uM) was found to suppress colorectal cancer cell growth by
inducing oxidant stress and mitochondrial dysfunction (Lu et al., 2010b). In our present
study, MMP-9 expression and migration and invasion of MCF-7 cells were suppressed by
LA.

TPA increases the migration and invasion of various types of cancer cells by
activating MMP-9 via PKC, MAPKSs, and PI13K/Akt signaling pathways and transcription
factors (Hwang et al., 2010; Park et al., 2009). TPA-induced MMP-9 expression and
activity were significantly inhibited by treatment with JNK inhibitor (SP600125, SP),
ERK inhibitor (PD98059, PD), PI3K inhibitors such as wortmannin (Wt) and LY 294002
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(LY), and non-selective PKC inhibitor (GF109203X, GF) (Figure 5) in our culture
system. Our previous study reported that the activation of INK1/2 and ERK2 could be
down-regulated by DHA (Lu et al., 2009), suggesting DHA may possess the ability to
suppress the MMP-9 expression and it can be developed for anti-breast cancer migration
and invasion agent. However, only TPA-induced activation of ERK1/2 and Akt473/308
was attenuated by DHA and LA and the attenuation was observed after 30-60 min DHA
and LA treatments (Figure 6). The results of figure 5 were different from that incubation
of MCF-7 cells with GF and PD, but not Wt and LY, inhibit TPA-induced MMP-9
expression and activity (Lin et al., 2008b). The other study supported our data that the
PI3K/Akt signaling pathway should be involved in the induction of MMP-9 expression
by TPA in MCF-7 cells (Park et al., 2009). These results suggested that DHA or LA
down-regulates TPA-induced MMP-9 expression and activity is through inhibition of
ERK1/2 or PI3K/Akt signaling pathways, and subsequent suppression of MCF-7 breast
cancer cell metastasis. TPA-induced MMP-9 expression was mediated by modulating the
activation of transcription factors such as NF-xB and AP-1 through PKC, PI3K and
MAPK signaling pathways (Blumberg, 1988; Jang et al., 2007). A recent study reported
that dihydroartemisnin inhibits TPA-induced MMP-9 activation through suppression of
PCKo/Raf/ERK and JNK phosphorylation and subsequent NF-kB and AP-1
trans-activation in HT-1080 cells (Hwang et al., 2010). In the same study,
dihydroartemisnin directly suppressed degradation of IkBa and then decreased p65
nuclear translocation. These results supported the notion that one of the possible
inhibitory mechanisms of DHA or LA on TPA-induced MMP-9 activation may be
associated with suppression of IkBa degradation and p65 or c-jun nuclear translocation in
MCEF-7 cells. Kalopanaxsaponin A (KPS-A) inhibits TPA-induced invasion by reducing
MMP-9 activation, mainly via PI3K/Akt/NF-kB and PKC3/ERK/AP-1 pathways in
MCF-7 cells (Park et al., 2009). EMSA results of the present study indicated that NF-xB
and AP-1 play an important role in the suppression of MMP-9 expression by DHA and
LA (Figure 7). The activation of ERK1/2 and PI3K/Akt signaling pathways were also
involved in TPA-induced MMP-9 activation in our culture system, suggesting DHA or
LA inhibits TPA-induced migration and invasion by reducing MMP-9 expression and
activity may be via PI3K/Akt/NF-kB and PKCS/ERK/AP-1 pathways.
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HO-1 is induced by a wide variety of stimuli such as hydrogen peroxide, ultraviolet
A radiation, heavy metals, endotoxin and cytokines (Chung et al., 2011; Luo et al., 2011;
Ronco et al., 2011; Xu et al., 2011; Zhong et al., 2010). Except for anti-oxidant and
anti-inflammatory activities of HO-1, it has also been shown to suppress breast cancer
migration and invasion in recent studies (Li et al., 2011; Pae et al., 2010; Wang et al.,
2011). A previous study indicated that 25 uM of DHA alone does not have a significant
effect on MDA-MB-231 breast cancer cell migration, but when the cells treated with
DHA and propofol, significant inhibition of cell migration by about 50% was obtained
(Siddiqui et al., 2005). Interestingly, propofol, a widely used sedative and anesthetic
agent, was found to up-regulate HO-1 expression in human umbilical vein endothelial
cells in a recent study (Liang et al., 2011). These results suggest that the greater inhibitory
effect of DHA and propofol combination on cell migration may be via the induction of
propofol-mediated HO-1 expression in MDA-MB-231 cells. In the present study, we are
the first to provide the evidence that HO-1 gene expression was significantly induced by
DHA, but not LA, in a dose- and time-dependent manner in MCF-7 human breast cancer
cells (Figure 8). Knockdown HO-1 gene by siRNA reversed the effect of DHA inhibition
of the TPA-induced MMP-9 gene expression and activity (Figure 9). These results
indicate the importance of HO-1 in the inhibition of TPA-induced MMP-9 expression by
DHA.

Taken together, these results suggest that DHA and LA down-regulate TPA-induced
MMP-9 gene expression and MCF-7 breast cancer cell metastasis is at least in part
through inhibition of ERK1/2 and PI3K/Akt signaling pathways and reduction of NF-xB
and AP-1 transcriptional activation. Moreover, we suggest that DHA and LA exhibit a
novel function to prevent TPA-induced cell migration and invasion by reducing MMP-9
activation through inhibition of the ERK1/2 and PI3K/Akt pathways in MCF-7 breast
cancer cells. Furthermore, the inhibition of TPA-induced MMP-9 activation by DHA is at

least in part through induction of HO-1 expression in MCF-7 cells.
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Conclusion

In the present study, we demonstrate that DHA and LA inhibits TPA-induced cell
migration and invasion by reducing MMP-9 activation, mainly via ERK1/2 and PI3K/Akt
pathways and sequentially NF-xB and AP-1 trans-activation. Furthermore, the inhibition
of TPA-induced MMP-9 activation by DHA is at least in part through induction of HO-1

expression in MCF-7 breast cancer cells. The findings of this study are schematically

presented in Figure 10.
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Figure 10. Model showing pathways that mediate the inhibition of expression of
MMP-9 and metastasis and invasion of MCF-7 cells by DHA or LA. DHA or LA
down-regulates TPA-induced MMP-9 gene expression, cell migration and invasion might
involve inhibition of either ERK1/2 or PI3K/Akt signaling pathway, and reduction of
NF-xB and AP-1 transcriptional activation. Moreover, HO-1 may play an important role
in DHA down-regulation of TPA-induced MMP-9 expression.
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