1	SmQnrR, a DeoR Type Transcriptional Regulator, Negatively Regulates
2	the Expression of Smqnr and SmtcrA in Stenotrophomonas maltophilia
3	Yi-Chih Chang ^{1,2} , Mei-Jung Tsai ² , Yi-Wei Huang ³ , Tung-Ching Chung ^{1,3*} ,
4	and Tsuey-Ching Yang ^{2*}
5	¹ Department of Veterinary Medicine, National Chung-Hsing University, Taichung,
6	402, Taiwan
7	² Department of Medical Laboratory Science and Biotechnology, China Medical
8	University, Taichung, Taiwan
9	³ Graduate Institute of Microbiology and Public Health, National Chung-Hsing
10	University, Taichung, 402, Taiwan
11	
12	Running title: SmtcrA-SmqnrR-Smqnr regulon of Stenotrophomonas maltophilia
13	
14	* To whom correspondence should be sent
15	Mailing address: 91 Hsueh-Shih Rd., Taichung. Taiwan, 40402, R.O.C.
16	Tel: 886-4-2205-3366 ext. 7203
17	Fax: 886-4-2205-7414
18	e-mail: <u>tcyang@mail.cmu.edu.tw</u>
19	Keywords: quinolone resistance, tetracycline resistance, major facilitator superfamily

20 Synopsis

Objectives: To characterize the Sm*tcrA*-Sm*qnrR*-Sm*qnr* regulon of *Stenotrophomonas maltophilia* KJ.

23 Methods: SmqnrR, a DeoR-type regulator gene, situates between a quinolone 24 resistance gene (Smqnr) and a major facilitator superfamily (MFS) transmembrane 25 transporter gene (SmtcrA). To assess the regulatory role of SmQnrR in the expression 26 of Smqnr and SmtcrA genes, the transcripts of Smqnr and SmtcrA genes were 27 comparatively determined between the wild-type KJ and the SmqnrR isogenic mutant 28 KJ Δ QnrR. A Sm*qnrR* polar mutant, KJQnrR Ω , was constructed to investigate the 29 possibility of the SmqnrR-SmtcrA operon. The contribution of Smqnr and SmtcrA 30 genes to the intrinsic and acquired resistances of S. maltophilia was evaluated by the 31 susceptibility test among the wild-type KJ and its derived mutants. 32 **Results:** SmQnrR acted as a repressor for the expression of Smqnr and SmtcrA genes. 33 SmqnrR and SmtcrA genes formed an operon, which was negatively autoregulated by 34 SmQnrR. Smqnr and SmtcrA hardly contributed to the intrinsic resistance. 35 Nevertheless, overexpression of Smqnr and SmtcrA by inactivating SmqnrR 36 conferred to the acquired slight quinolone resistance and significant tetracycline

37 resistance in *S. maltophilia*.

38 Conclusions: The SmQnrR protein is a transcriptional repressor for its contiguous,

39	divergently transcribed Smqnr gene. A negative autoregulation phenomenon occurs in
40	SmqnrR, which, in turn, renders SmQnrR that negatively regulates the expression of
41	the SmqnrR-SmtcrA operon. Inactivation of SmqnrR contributes to the acquired
42	quinolone and tetracycline resistance of S. maltophilia.
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

58 Introduction

59	Many quinolone resistance mechanisms have been characterized in
60	Gram-negative bacteria, including mutation in DNA gyrase, low level permeability of
61	outer membrane, overexpression of efflux pumps, fluoroquinolone-modifying enzyme,
62	fluoroquinolone efflux pump QepA, and DNA gyrase protection proteins encoded by
63	quinolone resistance (qnr) determinants. ¹⁻⁴ The qnr determinants have been found
64	either in a plasmid ⁴ or in the chromosome. ⁵⁻⁶ Stenotrophomonas maltophilia has
65	emerged as an important nosocomial pathogen and displays resistance to a variety of
66	antimicrobials. The SmQnr protein encoded by the chromosomal qnr determinant of S.
67	maltophilia has been shown to contribute to the intrinsic quinolone resistance of S.
68	maltophilia. ⁷⁻⁸
69	Although several studies have shown the relevance of qnr determinants to the

quinolone resistance, the regulatory mechanism of *qnr* determinants is still unknown. A silico analysis of *S. maltophilia* K279a genome⁹ revealed that a DeoR type transcriptional regulator gene (Smlt1070), annotated as Sm*qnrR* herein, is contiguous to the Sm*qnr* gene (Smlt1071) but divergently transcribed (Fig. 1). The genomic module of Sm*qnrR*-Sm*qnr* indicates that Sm*qnrR* can be a crucial regulator for the expression of Sm*qnr*. In addition, a putative major facilitator superfamily (MFS) transmembrane transporter gene (Smlt1069), annotated as Sm*tcrA* thereafter, was found to locate downstream the SmqnrR gene (Fig. 1). Both the SmqnrR and SmtcrA genes have the same orientation and an 11-bp gap between them. MFS transporters are generally recognized to be involved in the efflux of a wide range of structurally dissimilar compounds. According to the observation of the genomic organization of SmtcrA-SmqnrR-Smqnr, whether SmqnrR is a dual regulator for the expression of SmtcrA and Smqnr genes is of great interest.

83 The DNA sequences of the SmtcrA-SmqnrR-Smqnr module of S. maltophilia KJ¹⁰ was PCR amplified using the PCR protocol described previously.¹¹ Primer pairs 84 85 TcrA-F/TcrA-R, OnrRC-F/OnrRN-R, and OnrB-F/OnrB-R were used to amplify 86 SmtcrA, SmqnrR, and Smqnr genes, respectively (Table 1). PCR amplicons were 87 cloned into pRKm415 and the resultant plasmids, pRKmTcrA, pRKmQnrR, and 88 pRKmQnr (Table 1, Fig. 1), carrying correctly oriented genes were used for sequences 89 determination and complementary test. The deduced 219-aa SmOnr protein of strain 90 KJ, which displays the feature of pentapeptide family, shared 94-100% identity to 91 those of other S. maltophilia strains, in good consistence with the previous studies showing that the SmQnr displays a high intra-specie protein identity.¹² However, 92 93 SmQnr had 57-62%, 42-45%, and 38-41% inter-species protein identities to QnrB-, 94 QnrA-, and QnrS-type proteins. A 777-bp SmqnrR was included in the 1683-bp PCR 95 amplicon primered by primers OnrRN-F and OnrRC-R (Table 1). A homology search using the BLAST algorithm revealed that SmQnrR showed a significant sequence
identity to members of the DeoR family transcriptional regulators. A
Sm*tcrA*-containing PCR amplicon amplified by primers TcrA-F and TcrA-R (Table 1)
was obtained. The Sm*tcrA* gene is 1134 bp long and its encoded protein SmTcrA with
a significant identity to majority of the MFS proteins, whose functions have not been
characterized.

102 To assess the role of SmQnrR in the regulation of Smqnr and SmtcrA genes, an 103 unmarked deletion mutant KJAQnrR was constructed. A sucrose selection suicide delivery system was performed for mutant construction.¹¹ The procedure included 104 105 constructing a mutagenic plasmid, transferring the plasmid into the target strain, 106 selecting the mutant by tetracycline, norfloxacin, and sucrose, and confirming the 107 correctness of the mutant by PCR. Two nonoverlapping DNA fragments 108 corresponding to the upstream and downstream of the SmqnrR gene were amplified 109 by PCR using pairs of primers, QnrRN-F/QnrRN-R and QnrRC-F/QnrRC-R (Table 1), 110 respectively. The PCR amplicons were sequentially cloned into pEX18Tc, giving rise 111 to a mutagenic plasmid p Δ QnrR with a Δ SmqnrR allele (Table 1, Fig. 1). Quantitative 112 real-time PCRs (qRT-PCR) of Smqnr and SmtcrA genes were comparatively assayed 113 between strains KJ and KJ∆QnrR. The protocols for qRT-PCR were described 114 elsewhere.¹¹ The transcripts of Sm*qnr* and Sm*tcrA* genes had an approximately

115	18-fold (18 \pm 4%) and 4-fold (4 \pm 1%) increment in mutant KJ Δ QnrR, indicating that
116	the SmQnrR protein plays a repressor role in the expression of Smqnr and SmtcrA
117	genes. A standard twofold serial agar dilution method ¹¹ was performed to determine
118	the MICs of strains KJ and KJ∆QnrR. The antimicrobials tested included quinolone
119	(nalidix acid, norfloxacin, and ofloxainc), aminoglycoside (kanamycin, gentamicin,
120	and sisomicin), tetracycline (tetracycline and deoxycycline), and erythromycin. E-test
121	was used for the MIC determination of moxifloxacin. Compared with KJ, KJAQnrR
122	displayed an increased resistance toward tetracycline (128 versus 16 mg/L),
123	deoxycycline (8 versus 1 mg/L), nalidixic acid (16 versus 8 mg/L), and moxifloxacin
124	(0.094 versus 0.19 mg/L), whereas retained the same susceptibility to the other agents
125	tested. Owing to the presence of two inducible L1 and L2 β -lactamase genes in S.
126	<i>maltophilia</i> KJ^{10} , the impact of $\Delta SmqnrR$ to the β -lactams resistance may be shielded.
127	Therefore, the $\Delta SmqnrR$ allele was further introduced into a L1/L2 double mutant
128	KJ Δ L1 Δ L2. ¹⁰ KJ Δ L1 Δ L2 Δ QnrR and KJ Δ L1 Δ L2 had an indistinguishable β -lactams
129	susceptibility, indicating that inactivation of $SmqnrR$ is irrelevant to the β -lactam
130	resistance. Since Smqnr has been known to be a determinant for the quinolone
131	resistance in S. maltophilia, ⁷⁻⁸ it is reasonably speculated that the increased
132	tetracycline resistance observed in KJ Δ QnrR can result from the overexpression of
133	Sm <i>tcrA</i> gene.

134	To further elucidate the roles of Smqnr and SmtcrA in the antimicrobial
135	resistance, $\Delta Smqnr$ and $\Delta SmtcrA$ were, respectively, introduced into KJ $\Delta QnrR$,
136	resulting in KJ Δ QnrR Δ Qnr and KJ Δ QnrR Δ TcrA. A 206-bp PstI-fragment and a
137	395-bp SphI-fragment were deleted from pRKmQnr and pRKmTcrA, respectively,
138	and the resultant $\Delta Smqnr$ and $\Delta SmtcrA$ fragments were subcloned into pEX18Tc to
139	obtain mutagenic plasmids $p\Delta Qnr$ and $p\Delta TcrA$ (Table 1, Fig. 1) for mutant
140	construction. Thereafter, mutants KJ Δ QnrR Δ Qnr and KJ Δ QnrR Δ TcrA were
141	complemented with plasmids pRKmQnr and pRKmTcrA, respectively. The
142	susceptibility test for strains KJ, KJ Δ QnrR, KJ Δ QnrR Δ Qnr, KJ Δ QnrR Δ TcrA,
143	$KJ\Delta QnrR\Delta Qnr(pRKmQnr), \ and \ KJ\Delta QnrR\Delta TcrA(pRKmTcrA) \ was \ performed. \ The$
144	significant changes observed included: (i) The MICs of strains KJ, $KJ\Delta QnrR$,
145	KJ Δ QnrR Δ Qnr, and KJ Δ QnrR Δ Qnr(pRKmQnr) toward nalidixic acid were 8, 16, 8,
146	and 16 mg/L and toward moxifloxacin were 0.094, 0.19, 0.094, and 0.125 mg/L,
147	respectively. These findings indicate that SmQnrR negatively regulates Smqnr
148	expression and overexpression of SmQnr slightly contributes to the quinolone
149	resistance. (ii) The tetracycline MICs for strains KJ, KJ Δ QnrR, KJ Δ QnrR Δ TcrA, and
150	KJ Δ QnrR Δ TcrA(pRKmTcrA) were 16, 128, 16, and 64 mg/L, respectively. Therefore,
151	Sm $tcrA$ is responsible for the acquired tetracycline resistance observed in KJ Δ QnrR.
152	To assess the contribution of Smqnr and SmtcrA genes to the intrinsic antibiotic

153	resistance of S. maltophilia, the MICs of strains KJ, KJAQnr, and KJATcrA were
154	measured. Strains KJ, KJ Δ Qnr, and KJ Δ TcrA exhibited the same MICs in all
155	antimicrobials tested, indicating that Smqnr and SmtcrA genes hardly contribute to
156	the intrinsic resistance in S. maltophilia.
157	The evidence of a short intergenic region (IG) of 11 bp between $SmqnrR$ and
158	SmtcrA genes highly suggests that the two genes may form an operon. To verify the
159	possibility, a polar mutant KJQnrR Ω was constructed. A transcriptional terminator, Ω
160	cassette, retrieved from pX1918GT ¹¹ was inserted into the SphI site of p Δ QnrR,
161	resulting in the mutagenic plasmid pQnrR Ω for construction of mutant KJQnrR Ω (Fig.
162	1). The SmtcrA transcript of KJQnrR Ω , determined by qRT-PCR, was as low as that
163	of the wild-type KJ. In addition, reverse transcription-PCR (RT-PCR) was performed
164	to amplify the joint between SmqnrR and SmtcrA genes using the primers set
165	QnrRC-F/QnrRC-R. A 489-bp PCR amplicon was observed in KJAQnrR, but absent
166	in KJQnrRΩ. Accordingly, SmqnrR and SmtcrA genes form an operon.
167	The intergenic region (IG) between SmqnrR and Smqnr is as short as 145 bp.
168	DeoR-type regulator generally works as a repressor and binds onto the upstream of
169	the regulated gene. Therefore, it is likely that the binding site of SmQnrR overlaps
170	with the promoter of $SmqnrR$ gene. To determine whether the $SmqnrR$ gene has the
171	phenomenon of autoregulation, a promoter-xylE transcriptional fusion construct,

172	pRK145 R_{xylE} , was obtained. The cloned 312-bp region contained the partial 5'
173	terminus of Smqnr gene, intact 145-bp intergenic region of Smqnr and SmqnrR genes,
174	and partial 5' terminus of SmqnrR gene. A xylE cassette was inserted behind the
175	SmqnrR gene to give rise to the SmqnrR-xylE fusion construct pRK145 R_{xylE} (Fig. 1).
176	The orientation of the <i>xylE</i> gene was opposite to that of P_{lacZ} of the pRK415 vector.
177	The catechol 2,3-dioxygenase (C23O) activities ¹⁰ of strains $KJ(pRK145R_{xylE})$ and
178	$KJ\Delta QnrR(pRK145R_{xylE})$ were measured. The C23O activities were seven times
179	higher in KJAQnrR(p145R _{xylE}) (50 \pm 0.8 Uc/OD _{450nm}) than in the parental strain
180	KJ(p145R _{xylE}) (7 \pm 0.1 Uc/OD _{450nm}). Therefore, SmQnrR negatively regulates the
181	expression of SmqnrR-SmTcA operon. In the absence of SmQnrR, overexpression of
182	the SmqnrR-SmTcA operon will confer to the acquired tetracycline resistance in S.
183	maltophilia.

- 184
- 185 Nucleotide sequence accession number
- 186 The nucleotide sequences of the S. maltophilia KJ SmtcrA-SmqnrR-Smqnr regulon
- 187 have been deposited in GenBank under accession no. HQ259608.

188

189

190

191	Fundi	ing								
192	This	work	was	supported	by	the	National	Science	Council	(NSC
193	98-23	20-B-03	9-011-1	MY3) and the	e Chir	na Meo	lical Univer	sity (CMU	(99-S-42).	
194										
195										
196	Trans	sparency	y decla	rations						
197	None	to decla	re.							
198										
199										
200										
201										
202										
203										
204										
205										
206										
207										
208										
209										

210 **References**

211	1.	Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased
212		accumulation and DNA gyrase protection. J Antimicrob Chemother 2003; 51:
213		1109-17.
214	2.	Robicsek A, Strahilevitz J, Jacoby GA et al. Fluoroquinolone-modifying enzyme:
215		a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006;
216		12: 83–8.
217	3.	Yamane K, Wachino J, Suzuki S, et al. New plasmid-mediated fluoroquinolone
218		efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob
219		Agents Chemother 2007; 51: 3354–60.
220	4.	Cattoir V, Nordmann P. Plasmid-mediated quinolone resistance in gram-negative
221		bacterial species: an update. Curr Med Chem 2009; 16(8): 1028-46.
222	5.	Cattoir V, Poirel L, Mazel D et al. Vibrio splendidus as the source of
223		plasmid-mediated QnrS-like quinolone resistance determinants. Antimicrob Agents
224		<i>Chemother</i> 2007; 51: 2650-1.
225	6.	Shimizu K, Kikuchi K, Sasaki T et al. Smqnr, a new chromosomal-carried
226		quinolone resistance gene in Stenotrophomonas maltophilia. Antimicrob Agnet
227		<i>Chemother</i> 2008; 52: 3823-5.

228 7. Sanchez MB, Martinez JL. SmQnr contributes to the intrinsic resistance to

229 quinolones of *Stenotrophomonas maltophilia*. Antimicrob Agnet Chemother 2009;

54: 580-1.

- 231 8. Gordon NC, Wareham DW. Novel variants of the Smqnr family of quinolone
- 232 resistance genes in clinical isolates of *Stenotrophomonas maltophilia*. J.
- 233 *Antimicrob Chemther* 2010; **65:** 483-9.
- 234 9. Crossman LC, Gould VC, Dow JM et al. The complete genome, comparative and
- 235 functional analysis of *Stenotrophomonas maltophilia* reveals an organism heavily
- shielded by drug resistance determinants. *Gen Biol* 2008; **9:** R74.
- 237 10. Hu RM, Huang KJ, Wu LT et al. Induction of L1 and L2 β-lactamases of
- 238 Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2008; 52:

1198-200.

- 240 11. Huang YW, Lin CW, Hu RM et al. AmpN-AmpG operon is essential for
- 241 expression of L1 and L2 β-lactamases in *Stenotrophomonas maltophilia*.
 242 *Antimicrob Agents Chemother* 2010; **54**: 2583-9.
- 243 12. Sanchez MB, Hernandez A, Rodriguez-Martinez JM et al. Predictive analysis of
- 244 transmissible quinolone resistance indicates *Stenotrophomonas maltophilia* as a
- 245 potential source of a novel family of Qnr determinants. *BMC Microbiol* 2008; 8:
 246 148.
- 247

248 Figure Legends

249	FIG. 1. A schematic representation of the SmtcrA-SmqnrR-Smqnr region in S.
250	maltophilia KJ and the structure of recombinant plasmids pRKmTcrA, pRKmQnrR,
251	pRKmQnr, p Δ QnrR, pQnrR Ω , p Δ Qnr, p Δ TcrA, and pRK415R _{xylE} . The filled straight
252	arrows represent ORFs and transcription direction. The solid lines represent the PCR
253	amplicons and the dashed lines represent the deleted region for each plasmid construct.
254	The symbol Ω indicates the inserted transcriptional terminator. The crosshatched
255	arrows represent the <i>xylE</i> cassette.
256	
257	
258	
259	
260	
261	
262	
263	
264	
265	
266	

TABLE 1. Bacterial strains, plasmids, and primers used in this study

Strain, plasmid or		
primer	Genotype or properties	Reference
S. maltophilia		
KJ	Wild type, a clinical isolate from Taiwan	10
ΚΙΔL1ΔL2	S. maltophilia KJ L1 and L2 double mutant	10
KJAL1AL2AQnrR	S. maltophilia KJ L1, L2 and SmqnrR triple mutant	This study
KJ∆QnrR	S. maltophilia KJ SmqnrR isogenic mutant; deletion of 599-bp internal DNA fragment of SmqnrR gene	This study
KJ∆Qnr	S. maltophilia KJ Smqnr isogenic mutant; deletion of 207-bp internal DNA fragment of Smqnr gene	This study
KJ∆QnrR∆Qnr	<i>S. maltophilia</i> KJ double mutant of SmqnrR and Smqnr genes	This study
KJ∆TcrA	S. maltophilia KJ SmtcrA isogenic mutant; deletion of 396-bp internal DNA fragment of SmtcrA gene	This study
KJ∆QnrR∆TcrA	<i>S. maltophilia</i> KJ double mutant of SmqnrR and SmtcrA genes	This study
KJQnrRΩ	S. maltophilia KJ SmqnrR polar mutant; replacing the 599-bp internal DNA fragment of SmqnrR gene with a transcriptional terminator Ω cassette	This study
Escherichia coli		
DH5a	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Invitrogen
S17-1	λ pir + mating strain	11
Plasmids		
pEX18Tc	<i>sacB oriT</i> , Tc ^r	11
pRK415	Mobilizable broad-host-range plasmid cloning	11
r -	vector, RK2 origin; Tc ^r	
pRKm415	Derived from pRK415, replacing the tetracycline resistance gene with kanamycin resistance gene; Km ^r	This study
pX1918GT	Plasmid containing the <i>xylE</i> -gentamicin resistance cassette; Amp ^r , Gm ^r	11
pRKmTcrA	pRKm415 vector with a 1419-bp DNA fragment	This study

	of S. maltophilia KJ, containing an intact	
	Sm <i>tcrA</i> gene; Km ^r	
pRKmQnrR	pRKm415 vector with a 1683-bp DNA fragment	This study
-	of S. maltophilia KJ, containing an intact	-
	SmqnrR gene; Km ^r	
pRKmQnr	pRKm415 vector with a 826-bp DNA fragment of	This study
	<i>S. maltophilia</i> KJ, containing an intact Sm <i>qnr</i> gene; Km ^r	
p∆QnrR	pEX18Tc vector with a 1359-bp DNA fragment	This study
-	of S. maltophilia KJ, containing the partial	-
	N-terminus of Smqnr and SmqnrR genes,	
	partial C-terminus of SmqnrR gene, and	
	partial N-terminus of SmtcrA gene; Tcr	
p∆Qnr	pEX18Tc vector with a 640-bp DNA fragment of	This study
	S. maltophilia KJ, containing the Smqnr gene	
	with a internal 207-bp deletion; Tc ^r	
p∆TcrA	pEX18Tc vector with a 1023-bp DNA fragment	This study
	of S. maltophilia KJ, containing the SmtcrA	
	gene with a internal 396-bp deletion; Tc ^r	
p∆QnrRΩ	Derived from $p\Delta QnrR$, inserting a transcriptional	This study
	terminator Ω cassette into the SphI site of	
»DV145D	$p\Delta Q III K$, IC pDV 415 with a 226 hp DNA fracmant containing	This study
$p\mathbf{K}\mathbf{K}^{14}\mathbf{K}_{xylE}$	the 145 bn Smanr P. Smanr intergenic region	This study
	and a SmarrP::pylE transcriptional fusion	
Primer	and a SingurKxyte transcriptional rusion	
OnrB-F	5'- GCAAAGCTTGCATTGGTCGGG-3'	This study
OnrB-R	5'- GTTCTAGACAGGCTTCAGCTTC-3'	This study
TcrA-F	5'- GTAAGCTTCGCCGCCACCACTG -3'	This study
TerA-R	5'- GGAGCTCCTGCTGCTGAGCCTG -3	This study
OnrRN-F	5'- GCGCATGCCGCAAGTCTGCACGTTC -3'	This study
OnrRN-R	5'- TTCCCAAAGCTTGCACTTTTCC -3'	This study
OnrRC-F	5'- GAACACGAATTCCACCACGCCC -3'	This study
OnrRC-R	5'- CGTCGCATGCACCACTGA AAAG -3'	This study
16rDNAQ-F	5'- GACCTTGCGCGATTGAATG -3'	11
16rDNAQ-R	5'- CGGATCGTCGCCTTGGT -3'	11
QnrBQ-F	5'- TTCTACGATGCCGACAGCC -3'	This study
QnrBQ-R	5'- CCACAGCTCGCACTTTTCC -3'	This study
TcrAQ-F	5'- CGAGCAGAGCACCGAATAC -3'	This study
TcrAQ-R	5'- ACCTACTGGCACCACAGCGAA -3'	This study
415-F	5'- CGACGACACCCGAAAAAAG -3'	11
415-R	5'- CATTAGCAACATTATCGCACAG -3'	11

270 Fig. 1

