1	Establishment of an Arabinose-Inducible System in Stenotrophomonas
2	maltophilia
3	Yi-Wei Huang ¹ , Rouh-Mei Hu ² , Yu-Ting Chiang ³ , Tung-Ching Chung ^{1,4*} , and
4	Tsuey-Ching Yang ^{3*}
5	
6	¹ Graduate Institute of Microbiology and Public Health, National Chung-Hsing
7	University, Taichung, 402, Taiwan
8	² Department of Biotechnology, Asia University, Taichung 413, Taiwan
9	³ Department of Medical Laboratory Science and Biotechnology, China Medical
10	University, Taichung 404, Taiwan
11	⁴ Department of Veterinary Medicine, National Chung-Hsing University, Taichung,
12	402, Taiwan
13	
14	Running title: Arabinose-inducible system in Stenotrophomonas maltophilia
15	
16	For correspondence
17	Tsuey-Ching Yang
18	E-mail: <u>tcyang@mail.cmu.edu.tw</u>
19	Mailing address: 91 Hsueh-Shih Rd., Taichung. Taiwan, 40402, R.O.C.

20	Tel: 886-4-2205-3366 ext. 7203
21	Fax: 886-4-2205-7414
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	

39 ABSTRACT

40	Stenotrophomonas maltophilia is an opportunistic pathogen and has gained increasing
41	attention as a cause of healthcare-associated infection. In this study, a
42	pBBad22T-derived conditioned arabinose-inducible expression system was evaluated
43	in S. maltophilia. S. maltophilia cannot grow well when arabinose is the sole available
44	carbon source. The induction kinetic study, optimal inducer concentration
45	determination, and depletion experiment were performed by using a xylE gene fusion
46	construct, pBxylE, to monitor the expression of pBBad22T in S. maltophilia. For
47	induction survey, the expression of catechol 2,3-dioxygenase (C23O), encoded by xylE
48	gene, continuously increases during an 8-h induced course and can be modulated by
49	different inducer concentrations. The applied induction condition of pBBad22T in S.
50	maltophilia is the inducer concentration ranging from 0.1% to 0.5% for an induction
51	time of 4 h. For repression evaluation, the C23O expression is rapidly turned off
52	within 30 min after the removal of arabinose. Accordingly, the established arabinose
53	inducible system can provide a convenient tool for the study of S. maltophilia.
54	
55	
56	Keywords: Stenotrophomonas maltophilia, xylE, pBBad22T, arabinose

58	Abbreviations: A, absorbance; Ap, ampicillin; BHR, broad host range; C23O,
59	catechol 2,3-dioxygenase; E., Escherichia; kb, kilobase(s); Km, kanamycin; LB,
60	Luria-Bertani; MCS, multiple cloning site(s); R, resistance/resistant; S.,
61	Stenotrophomonas; Tet, tetracycline; xylE, gene encoding C230.
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	

77 INTRODUCTION

79	It is often necessary to express a cloned gene from an inducible promoter and
80	assess the influence of the gene expression in many bacterial studies. Accordingly, it
81	is highly desirable to establish a controlled system that can quantitatively turn on or
82	shut off the expression of the cloned gene. Many of such systems have been
83	developed (Tabor and Richardson 1985; Elvin et al. 1990; Guzman et al. 1995; Lutz
84	and Bujard 1997). Among them, the $araC-P_{BAD}$ system is the typical one that can
85	tightly regulate the inducible expression of the cloned genes (Guzman et al. 1995).
86	In the field of bacteriology, a conditioned mutant for some essential genes is
87	necessary for the study of gene functions and its involved complex regulation or
88	physiological properties. The essential genes are indispensable for bacterial survival.
89	Hence, the null mutation of essential genes is unavailable for further study. An
90	alternative strategy is to develop a tight regulated induction implement to determine
91	the essentiality and function of these essential genes. The $araC-P_{BAD}$ -derived plasmid
92	is such a design that can meet the requirement. The viability and phenotype of the
93	mutants depends on the presence of arabinose to induce the expression of the studied
94	genes. The depletion experiment, in which the expression of the studied genes is shut
95	off by shifting the bacterial culture from an arabinose-containing medium to a no
96	arabinose-containing medium, allows us to examine the null mutant phenotype.

97	In <i>E. coli</i> , the P_{BAD} promoter is induced in the presence of _L -arabinose and in the
98	absence of glucose. AraC is a cAMP-catabolite repressor protein that can bind to the
99	operator sequence upstream P_{BAD} and repress the expression of <i>araBAD</i> genes (Hahn
100	et al. 1984). Guzman et al. have developed an $araC-P_{BAD}$ controlled expression vector
101	that is tightly regulated in enteric bacteria (Guzman et al. 1995). Some broad host
102	range araC-P _{BAD} -derived systems have been reported, including the plasmids of
103	pCF430, pJN105, pBBad18-series, and pBBad22-series (Newman and Fuqua 1999;
104	Sukchawalit et al. 1999). Among them, the pCF430 and pJN105 have been utilized in
105	the plant pathogen Agrobacterium tumefaciens (Newman et al. 1999). The application
106	of pBBad18- and pBBad22-serie plasmids in Pseudomonas aeruginosa and
107	Xanthomonas campestris pv. phaseoli has also been characterized (Sukchawalit et al.
108	1999).
109	Stenotrophomonas maltophilia is an aerobic, ubiquitous Gram-negative bacillus

and has gained increasing attention as a cause of nosocomial infection (Nyc and
Matejkova, 2010). A compatible inducible expression system for *S. maltophilia* is of
great urgency. In this study, we described the application of the broad host range
pBBad22T vector and established the induction parameters for the expression of
cloned gene in the *S. maltophilia* system.

116 MATERIALS AND METHODS

- 117
- 118 Strains and culture conditions.
- 119 S. maltophilia KJ (Hu et al. 2008), a clinical isolate, and E. coli S17-1 were grown
- 120 aerobically in LB medium. Tetracycline was added, if needed, at a concentration of 30
- 121 mg/L⁻ The XOL medium (Yang et al. 2002) contained the basal salts (per litre):
- 122 K₂HPO₄, 0.7 g; KH₂PO₄, 0.2 g; (NH₄)₂SO₄, 1.0 g; MgCl₂ 6H₂O, 0.1 g; FeSO₄ 7H₂O,
- 123 0.01 g; MnCl₂, 0.001g; pH 7.15. Carbon sources were autoclaved separately and
- 124 added before use.
- 125
- 126
- 127 Growth conditions
- 128 To study the utilization of arabinose by E. coli and S. maltophilia, the growth 129 characteristics of S. maltophilia KJ and E. coli S17-1 in the XOL medium containing 130 0.4% arabinose or glucose were evaluated. The bacterial growth was monitored by 131 recording the A_{450nm} (for *S. maltophilia*) or A_{600nm} (for *E. coli*) at an interval of 1 h. 132 133 134 Construction of the araC- P_{BAD} ::xylE fusioned plasmid, pBxylE 135 136 The xylE gene of Pseudomonas putida was obtained from pX1918G (Schweizer 137 and Hoang 1995) by PCR using the paired primers XylE-F:5'-GAA TTC GCG GCC
- 138 GCG ATC AAG GAC TAC TAC CAT T-3' and XylE-R:5'-GCG GCA AGT CGT

139	ACC GGA CCT TCA G-3', and then cloned into yT&A vector (Yeastern Biotech Co.
140	Taiwan), yielding the recombinant plasmid pTXylE. The 1.3-kb xylE gene was
141	subcloned from pTXylE into the <i>Hind</i> III/ <i>Eco</i> RI pretreated plasmid pBBad22T.
142	Plasmid pBBad22T is an L-arabinose-inducible BHR expression vector with the BAD
143	promoter and araC gene of Escherichia coli (Sukchawalit et al. 1999). The resultant
144	recombinant plasmid pBxylE (Fig. 1) was sequenced to confirm the correct
145	orientation of $xylE$, under the driving of promoter P_{BAD} . The recombinant plasmid was
146	transported into the assayed S. maltophilia strain via conjugation as described
147	previously (Lin et al. 2009). Acquisition of the appropriate plasmids was confirmed
148	by a colony-PCR method (Lin et al. 2008) using the paired primers XylE-F and
149	XylE-R.
150 151	
152	Induction kinetics studies
153	Twenty milliliters of fresh LB broth was inoculated at a turbidity of 0.15 A_{450} with the
154	assayed bacteria grown overnight at 37°C. The culture was further incubated for 0.5
155	h, and then arabinose was added to the culture at a concentration of 0.02%. A control

157 of 1 h and the C23O activity was determined. Meanwhile, the growth of bacteria was

group without additive was simultaneously assayed. Samples were taken at an interval

- also monitored by recording the A_{600nm} for *E. coli* and the A_{450nm} for *S. maltophilia*.

160 Determination of the optimal inducer concentration

An overnight culture was used as a starting inoculum to give 0.15 optical density at 450 nm. The culture was further grown for 0.5 h. Then, the distinct amounts of $_{\rm L}$ -arabinose were added and incubation was continued for 4 h. For investigation of $_{\rm L}$ -arabinose induction potency, the C23O activity was determined.

165

166 *C23O activity determination*

167 C23O activity was measured in intact cell as described previously (Lin et al. 2009). 168 Activity assays were performed in a buffer with 50 mmol/L sodium phosphate buffer, 169 10% acetone and 0.1 mol/L pyrocatechol as the substrate. Hydrolysis of pyrocatechol 170 was examined by spectrophotometric analysis, with readings recorded at 10-s 171 intervals for 3 min at the wavelength of 375 nm. The rate of hydrolysis was calculated by using 44,000 $M^{-1}cm^{-1}$ as extinction coefficients. One unit of enzyme activity 172 173 was defined as the amount of enzyme that converts 1 nmole substrate per minute. The specific activity of the enzyme was defined in terms of units per 3.6×10^8 cells 174 (assuming that an A_{450nm} of 1 corresponds to 3.6×10^8 cells/ml). 175 176 177

178 Depletion experiment

179	S. maltophilia(pBxylE) was culture in the LB medium supplemented with 0.2%
180	arabinose at 37°C. Overnight cultures were washed by a fresh LB medium once and
181	subsequently diluted to an A_{450nm} of 0.15 in the fresh LB medium containing 0.2%
182	arabinose and in the medium without additive, respectively. The C23O activity of S .
183	maltophilia(pBxylE) was monitored before cell-washing, immediately after
184	cell-washing, and during the period of further 1.5-h culture at an interval of 0.5 h.
185	
186	
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	
197	

198 **RESULTS**

199

200 The arabinose utilization in E. coli and S. maltophilia

201	The arabinose utilization by S. maltophilia was evaluated so as to establish the
202	arabinose-induction system in S. maltophilia. In the meantime, the arabinose
203	utilization by E. coli was also monitored. Cultures of E. coli S17-1, S. maltophilia KJ,
204	E. coli S17-1(pBxylE), and S. maltophilia KJ(pBxylE) were grown in the minimal
205	medium supplemented with 0.4% arabinose and glucose, respectively. The growth of
206	the assayed strains was observed up to 9 h because the residual nutrition inside cells
207	can support their growth (Fig. 2). The growth of <i>E. coli</i> in 0.4% arabinose continued
208	with prolonged culture, indicating that E. coli can metabolize arabinose and use it as a
209	sole carbon source. In contrast, the growth of S. maltophilia in 0.4% arabinose was
210	suppressed after 9 h, demonstrating that arabinose is not an autotrophic carbon source
211	for S. maltophilia. The presence of plasmid pBxylE did not interfere with the growth
212	of E. coli and S. maltophilia.
213	

214

215 Induction time courses of E. coli(pBxylE) and S. maltophilia(pBxylE)

216 The induction time course was performed to monitor the C23O activity of *E*.

217	coli(pBxylE) and S. maltophilia(pBxylE). Taking the optimal L-arabinose inducing
218	conditions proposed by Sukchawalit's group as the reference, the induction kinetics
219	were firstly investigated by the induction of 0.02% $_{\rm L}\text{-}{\rm arabinose};$ meanwhile, an
220	additive-free control was also carried out. Without the addition of arabinoses, the
221	C23O activity of <i>E. coli</i> (pBxylE) was below the detection limit. A maximum C23O
222	activity for E. coli(pBxylE) was obtained at 2 h after the addition of arabinose and,
223	thereafter, the activity decreased monotonously (Fig. 3). However, the uninduced
224	C23O activity of S. maltophilia(pBxylE) was low but detectable after 4-h induction,
225	indicating that the promoter of pBBad22T is not tightly repressed in the S. maltophilia
226	system. For the induced S. maltophilia(pBxylE), the C23O activity was detectable for
227	the first sampling and an obvious increase in the C23O activity was observed when
228	the induction time was extended to 8 h.
229	
230	
231	Establishment of the optimal induction parameter of pBBad22T in S. maltophilia
232	Based on the results of growth curve and induction time course, the forth hour

after inducer addition is an appropriate point time for the following assay of optimum
inducing concentrations. The C23O activity displayed an increase as the L-arabinose
concentration exceeded 0.002%. Moreover, the C23O activity changed insignificantly

236	when more than 0.2% arabinose was added (Table 1). In conclusion, the applied
237	induction condition of pBBad22T for S. maltophilia is the inducer concentration
238	ranging from 0.01% to 0.5% for an induction time of 4 h.
239	Table 1 also shows that the induced C23O activity in 0.2% condition was double
240	that in 0.02% condition. It is, therefore, feasible to modulate the expressed amounts of
241	the cloned gene in pBBad22T by the inducer concentrations.
242	
243	
244	Depletion experiments of $araC-P_{BAD}$ promoter in S. maltophilia system
245	For the consideration of the arabinose-inducible system in the essential genes
246	study, whether the $araC-P_{BAD}$ promoter can be repressed rapidly and efficiently in the
247	S. maltophilia system is of great importance. Accordingly, depletion experiments were
248	performed. S. maltophilia KJ(pBxylE) grown in the medium supplemented with
249	arabinose was shifted to arabinose-containing and additive-free LB medium,
250	respectively. In the arabinose-containing culture, the C23O activity was continuously
251	expressed as expected. However, the C23O activity in the additive-free medium
252	decreased rapidly and became undetectable after 30 min of culture.

255 **DISCUSSION**

257	In this present study, the expression vector of pBBad22T has been shown to be
258	compatible with the S. maltophilia system according to the following features: (i) It
259	owns the pBBR1MCS-4 replicon (Kovach et al. 1995) of broad host range
260	characteristic, which can replicate in a variety of Gram-negative bacteria including S.
261	maltophilia. (ii) Mobilization (mob) function of pBBad22T allows a conjugal delivery
262	of the plasmid into S. maltophilia. Our previous studies have shown that heat-shock
263	transformation and electroportation do not work well for transferring the foreign
264	plasmid into the S. maltophilia system. Instead, the conjugation between E. coli S17-1
265	and S. maltophilia provides an efficient transformation (Hu et al. 2008). (iii) A
266	number of multiple restriction sites are available for cloning efficiency and adequate
267	antibiotic resistance markers (Tet^R) for selection. (iv) It is not detrimental for cell
268	growth and viability of S. maltophilia.
269	To survey the availability of the $araC-P_{BAD}$ induction system in S. maltophilia,
270	plasmid pBxylE had been generated. The C23O encoded by the xylE gene offers two

- advantages for the evaluation of the $araC-P_{BAD}$ induction system. Firstly, the C23O activity can be conveniently quantified by spectrometrically recording the amount of
- 273 C23O-hydrolyzed product. Secondly, unlike β -galactosidease or alkaline phosphatase,

the C23O-hydrolyzed product is less accumulated owing to its short half life. Therefore, the turn on or shut off of $araC-P_{BAD}$ promoter can be sensitively and precisely monitored.

277 The application of the pBBad22T induction system in E. coli and S. maltophilia 278 has been comparatively characterized in this study. Some distinct differences can be 279 concluded. (i) The promoter of pBBad22T displays a less tight repression condition in 280 the S. maltophilia system than in the E. coli system in the absence of arabinose (Fig.3). 281 The basal leakiness of pBBad22T in S. maltophilia is consistent with those in X. 282 campestris pv. phaseoli and P. aeruginosa (Sukchawalit et al. 1999). (ii) The 283 induction patterns are quiet distinct between E. coli and S. maltophilia. In the E. coli 284 system, the induction occurs once the inducer is added, which agrees well with the 285 results made by Guzman et al. 1995. The induction reaches a maximum at 2 h after 286 the addition of the inducer and then decreases monotonously with time. The decline 287 after maximum expression is likely due to the decrease in the inducer concentration 288 owing to the arabinose utilization in the *E. coli* system. Nevertheless, the efficiency of arabinose utilization is less prominent in the S. maltophilia system; hence, the 289 290 arabinose concentration hardly changes during the process of induction. This can 291 account for the fact that the induced C23O activity increases after prolonged 292 induction.

293	The $araC-P_{BAD}$ system established in this study can be applied to a variety of S.
294	maltophilia studies, including null mutant construction of essential genes, conditioned
295	modulation of the assayed gene expression, and high-level expression and purification
296	of the assayed protein.
297	
298	
299	
300	
301	
302	
303	
304	
305	
306	
307	
308	
309	
310	
311	

312 ACKNOWLEDGEMENTS

313	This research was supported by grant CMU-99-S-42 from the China Medical
314	University and grant NSC 98-2320-B-039-011-MY3 from the National Science
315	Council.
316	
317	
318	
319	
320	
321	
322	
323	
324	
325	
326	
327	
328	
329	
330	

331 **REFERENCES**

332

348

333	Denton M., Kerr,K.G.: Microbiological and clinical aspects of infection associated
334	with Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 11, 57-80 (1998).
335	Elvin C.M., Thompson P.R., Argall M.E., Hendry P., Stamford N.P.L., Liley P.E.,
336	Dixon N.E.: Modified bacteriophage lambda promoter vectors for
337	overproduction of proteins in Escherichia coli. Gene 87, 123-126 (1990).
338	Hahn S., Dunn T., Schleif R.: Upstream repression and CRP stimulation of the
339	Escherichia coli _L -arabinose operon. J. Mol. Biol. 180, 61-72 (1984).
340	Hu R.M., Huang K.J., Wu L.T., Hsiao Y.J., Yang T.C.: Induction of L1 and L2
341	β-lactamase of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother.
342	52 , 1198-1200 (2008).
343	Kovach M.E., Elzer P.H., Hill D.S., Robertson G.T., Farris M.A., Roop R.M.I.,
344	Peterson K.M.: Four new derivatives of the broad-host-range cloning vector
345	pBBR1MCS, carrying different antibiotic resistance cassettes. Gene 161,
346	175-176 (1995).
347	Lin C.W., Chiou C.S. Chang Y.C., Yang T.C.: Comparison of pulsed-filed gel

349 of *Stenotrophomonas maltophilia* isolates. Lett. Appl. Microbiol. **47**, 393-398

electrophoresis and three rep-PCR methods for evaluating the genetic relatedness

350 (2008).

- Lin C.W., Huang Y.W., Hu R.M., Chiang K.H., Yang, T.C.: The role of AmpR in
- 352 regulation of L1 and L2 β -lactamases in *Stenotrophomonas maltophilia*. Res.
- 353 Microbiol. **160**, 152-158 (2009).
- 354 Lutz R., Bujard H.: Independent and tight regulation of the transcriptional units of
- 355 Escherichia coli via the LacR/O, and TetR/O and the AraC/I1-I2 regulatory
- 356 elements. Nucleic Acids Res. **25**, 1203-1210 (1997).
- 357 Guzman L.M., Belin D., Carson M.J., Beckwtth J.: Tight regulation, modulation, and
- 358 high-level expression by vectors containing the arabinose P_{BAD} promoter. J.
- 359 Bacteriol. **177**, 4121-4130 (1995).
- 360 Newman J.R., Fuqua C.: Broad-host-range expression vectors that carry the
- 361 L-arabinose-inducible *Escherichia coli araBAD* promoter and the *araC* regulator.
- 362 Gene **227**, 197-203 (1999).
- 363 Nyc O., Matejkova J.: Stenotrophomonas maltophilia: significant contemporary
- 364 hospital pathogen-review. Folia Microbiol. 55, 286-294 (2010).
- 365 Sanchez P., Alonso A., Martinez J.L.: Cloning and characterization of SmeT, a
- 366 repressor of the *Stenotrophomonas maltophilia* multidrug efflux pump SmeDEF.
- 367 Antimicrob. Agents Chemother. **46**, 3386-3393 (2002)
- 368 Schweizer H.P., Hoang T.T.: An improved system for gene replacement and xylE

369	fusion analysis in <i>Pseudomonas aeruginosa</i> . Gene 158, 15-22 (1995).
370	Sukchawalit R., Vattanaviboon P., Sallabhan R., Mongkolsuk S.: Construction and
371	characterization of regulated L-arabinose-inducible broad host range expression
372	vectors in Xanthomonas. FEMS Microbol. Lett. 181, 217-223 (1999).
373	Tabor S., Richardson C.C.: A bacteriophage T7 RNA polymerase/promoter system for
374	controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci USA 82,
375	1074-1078 (1985).
376	Yang T.C., Wu G.H., Tseng Y.H.: Isolation of a Xanthomonas campestris strain with
377	elevated beta-galactosidase activity for direct use of lactose in xanthan gum
378	production. Lett. Appl. Microbiol. 35, 375-379 (2002).
379	
380	
381	
382	
383	
384	
385	
386	
387	

388 Legends to figures

FIG. 1. Construction of pBxylE. The 1.3-kb *xylE* gene from pX1918GT was PCR

amplified and ligated to yT&A vector, yielding pTxylE. For construction of pBxylE,

391 a1.3-kb HindIII-EcoRI fragment from pTxylE was gel-purified and ligated to

- 392 HindIII/EcoRI-treated pBBad22T.
- 393

FIG. 2. Growth curves of *E. coli* and *S. maltophilia*. (A) Strains *E. coli* and *S. maltophilia* (B) Strains *E. coli*(pBxylE) and *S. maltophilia*(pBxylE). Cells from
overnight cultures were separately harvested and then inoculated into XOL containing
glucose or arabinose at a final concentration of 0.4%. Cell growth was measured by
monitoring A_{600nm} for *E. coli* and A_{450nm} for *S. maltophilia* at intervals of 1 h. The
errors bars indicate standard deviations (n=3).

400

401 **FIG. 3.** Growth curves and induction time courses of *E. coli*(pBxylE) and *S.* 402 *maltophilia*(pBxylE). (A) strain *E. coli*(pBxylE) (B) strain *S. maltophilia*(pBxylE). 403 The errors bars indicate standard deviations (n=3). One unit (U) of enzyme activity 404 was defined as the amount of enzyme that converts 1 nmole substrate per minute. 405 A_{450nm} , optical density at 450 nm. Symbols: O, without arabinose addition; •, 0.02% 406 arabinose.

0 0.001 0.002	10 ± 1.0
0.001 0.002	
0.002	10 ± 1.2
0.005	19 ± 2.0
0.005	24 ± 2.1
0.01	32 ± 2.9
0.02	32 ± 3.2
0.05	38 ± 2.8
0.1	62 ± 7.0
0.2	70 ± 5.9
0.5	72 ± 6.4
1	65 ± 5.6
2	69 ± 8.0

408 of different arabinose concentration.

