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Phosphorylation of focal adhesion kinase on tyrosine 194 by met leads

to its activation through relief of autoinhibition

T-H Chen1, P-C Chan2, C-L Chen1 and H-C Chen1,2,3
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Focal adhesion kinase (FAK) has a crucial role in
integration of signals from integrins and growth factor
receptors. In this study, we demonstrate that growth
factor receptors including hepatocyte growth factor
receptor Met, epidermal growth factor receptor, and
platelet-derived growth factor receptor directly phosphory-
late FAK on Tyr194 in the FERM domain (band 4.1 and
ezrin/radixin/moesin homology domain). Upon binding to
Met or phosphoinositides, FAK may undergo conforma-
tional changes, which renders Tyr194 accessible for
phosphorylation. Substitution of Tyr194 with Phe sig-
nificantly suppresses the activation of FAK by Met. In
contrast, substitution of Tyr194 with Glu (Y194E
substitution) leads to constitutive activation of FAK.
The phosphorylation of FAK on Tyr194 may cause
conformational changes in the FERM domain, which
disrupts the intramolecular inhibitory interaction between
the FERM and kinase domains of FAK. Moreover,
substitution of the basic residues in the 216KAKTLRK222

patch in the FERM domain with Ala antagonizes the
effect of the Y194E substitution on FAK activation, thus
suggesting that the interactions between the phosphory-
lated Tyr194 and the basic resides in the 216KAKTLRK222

patch may allow FAK to be activated through relief of its
autoinhibition. Collectively, this study provides the first
example to explain how FAK is activated by receptor
tyrosine kinases.
Oncogene (2010) 0, 000–000. doi:10.1038/onc.2010.398

Keywords: FAK; Met; RTK; FERM; autoinhibition

Introduction

Focal adhesion kinase (FAK), a 125 kDa non-receptor
tyrosine kinase localized in focal adhesions, is known for
its pivotal role in the control of a wide variety of cell
functions, including cell migration, cell cycle progres-
sion, cell survival and tumor progression (reviewed
by McLean et al., 2005; Mitra et al., 2005). FAK

was originally identified as a substrate of Src and
subsequently found to be activated upon cell adhesion
to extracellular matrix proteins (Guan and Shalloway,
1992; Hanks et al., 1992; Schaller et al., 1992). Later, it
was also found to be activated by a number of growth
factors (Matsumoto et al., 1994; Rankin and Rozengurt,
1994; Chen et al., 1998; Sieg et al., 2000). It is generally
believed that autophosphorylation of FAK on a
particular tyrosine residue, Y397, is an early, essential
step for the full activation of FAK in response to many
extracellular stimuli. The Y397 is the major site of FAK
autophosphorylation, which creates a high affinity
binding site for the Src-homology 2 domain of several
proteins including the Src family kinases (Cobb et al.,
1994; Schaller et al., 1994; Xing et al., 1994; Eide et al.,
1995). Activated Src phosphorylates FAK on multiple
sites, including Y576 and Y577, both of which are
located in the activation loop within the kinase domain
(Calalb et al., 1995; Lietha et al., 2007). The ensuring
phosphorylation of FAK by Src on Y576 and Y577 is
required for the full enzymatic activity of FAK (Calalb
et al., 1995; Lietha et al., 2007).

FAK contains a central tyrosine kinase domain
flanked by large NH2- and COOH-terminal regions.
The COOH-terminus contains a focal adhesion target-
ing domain responsible for FAK localization in focal
adhesions (Hildebrand et al., 1993). The NH2-terminus
contains a region of sequence homology with FERM
domain (band 4.1 and ezrin/radixin/moesin proteins).
The FERM domain of FAK has been described to
involve in interactions with other proteins including the
cytoplasmic region of integrins (Schaller et al., 1995;
Chen et al., 2000), the FERM domain of ezrin (Poullet
et al., 2001), the pleckstrin homology domain of the
Tec-family kinase Etk (Chen et al., 2001), the Arp2/3
complex (Serrels et al., 2007) and receptor tyrosine
kinases (RTKs), including platelet-derived growth fac-
tor receptor (PDGFR), epidermal growth factor recep-
tor (EGFR) and hepatocyte growth factor (HGF)
receptor (Sieg et al., 2000; Chen and Chen, 2006). It
has been proposed that an intramolecular inhibitory
interaction between the FERM and kinase domains of
FAK suppresses its catalytic activity (Cooper et al.,
2003; Dunty et al., 2004). Truncation of the FERM
domain increases FAK tyrosine phosphorylation and/or
activity (Cooper et al., 2003; Dunty et al., 2004; Jácamo
and Rozengurt, 2005). Mutation of K38 within the
FERM domain also leads to FAK activation (Cohen
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and Guan, 2005). Crystal structure analysis reveals that
the FERM domain of FAK directly binds to its own
kinase domain, blocking access to the catalytic cleft and
protecting the FAK activation loop from Src phosphor-
ylation (Lietha et al., 2007). At the center of the
autoinhibitory interaction between the FERM and
kinase domains of FAK, F596 in the kinase domain
inserts into a hydrophobic pocket in the FERM domain
formed by Y180, M183, V196 and L197 (Lietha et al.,
2007). More recently, dynamic changes of FAK from
autoinhibited to active conformation were verified in
intact cells (Cai et al., 2008).

We have previously described that FAK is phos-
phorylated and activated upon HGF stimulation (Chen
et al., 1998), which thereby contributes to HGF-induced
cell scattering (Lai et al., 2000). In addition, elevated
expression of FAK renders epithelial cells susceptible to
cellular transformation by HGF stimulation (Chan
et al., 2002). Recently, we demonstrated that FAK
directly interacts with the HGF receptor (that is, Met)
upon HGF stimulation (Chen and Chen, 2006). This
interaction occurs through the FERM domain of FAK
and phosphorylated Y1349 and Y1356 of c-Met. In
particular, a basic patch (216KAKTLRK222) in the
FERM domain is crucial for the interaction (Chen and
Chen, 2006). In this study, we aim to examine whether the
FAK FERM domain is phosphorylated by Met and
investigate the significance of this phosphorylation event.

Results

Met, EGFR and PDGFR phosphorylate the NH2 domain
of FAK on Y5 and Y194
As activated Met physically interacts with the FERM
domain of FAK (Chen and Chen, 2006), we speculated
that Met may phosphorylate the FERM domain of
FAK and thereby activate its catalytic activity. As
shown in Figure 1a, the constitutively active form of
c-Met (Tpr-Met), but not oncogenic Src or FAK itself,
induced tyrosine phosphorylation of the NH2 domain
(aa. 1–391) of FAK. In contrast, the NH2 domain (aa.
1–397) of PYK2, another member in the FAK family,
could not be phosphorylated by Tpr-Met (Figure 1b).
To identify the phosphorylation sites in the NH2
domain of FAK, every tyrosine residue in this region
was substituted with Phe (Supplementary Figure S1). Of
total 13 tyrosine residues in this region, mutation at Y5
or Y194 caused a partial decrease in the tyrosine
phosphorylation of FAK NH2 domain induced by
Tpr-Met (Figure 1c). Mutation of both Y5 and Y194
eliminated the phosphorylation of FAK NH2 domain
by Tpr-Met both in intact cells (Figure 1c) and in vitro
(Figure 1d). Interestingly, Y5 and Y194 are conserved in
FAK, but not in PYK2 (Figure 1e). Moreover, like Tpr-
Met, c-Met, EGFR and PDGFR were able to phos-
phorylate FAK NH2 domain, but not its Y5F/Y194F
mutant in intact cells (Figure 2a). In vitro, c-Met and
EGFR failed to phosphorylate the Y5F/Y194F mutant,
whereas PDGFR phosphorylated the Y5F/Y194F

mutant to some extent (Figure 2b), indicating that
PDGFR could phosphorylate FAK NH2 domain at
other sites in addition to Y5 and Y194 in vitro. These
results indicate that RTKs including c-Met, EGFR and
PDGFR directly phosphorylate FAK NH2 domain on
Y5 and Y194.

The phosphorylation of FAK on Y194 by Met was
further demonstrated by a phospho-specific antibody
(referred as anti-FAK pY194), which recognizes FAK,
but not the Y194F mutant, in the presence of Tpr-Met
(Figures 3a and b). Moreover, dephosphorylation of
FAK by the tyrosine phosphatase SHP2 prevented it
from detection by anti-FAK pY194 (Figure 3c), indicat-
ing that this antibody truly recognizes the phosphory-
lated Y194 of FAK rather than dephosphorylated Y194.
Although the Y194F mutant remained phosphorylated
at other tyrosine residues (Figure 3b), it was not
detected by anti-FAK pY194 antibody, supporting the
specificity of this antibody to the phosphorylated Y194
in FAK. Unfortunately, generation of an antibody
specific to the phosphorylated Y5 of FAK was not
successful.

An initial conformational change in FAK may render
Y194 accessible for phosphorylation
The crystal structure of FAK reveals that Y194 is mostly
buried in the structure and is not a good substrate for a
kinase (Lietha et al., 2007; Supplementary Figure S2).
Thus, it can be assumed that initial conformational
changes in FAK would be necessary in order to render
this residue accessible for phosphorylation. To address
this question, we first examined whether Met binding
has an impact on the Y194 phosphorylation. We have
previously demonstrated that phosphorylation of Met
on Y1349 and Y1356 are required for it to bind the
FERM domain of FAK (Chen and Chen, 2006).
Mutation of Met at both sites did not affect its catalytic
activity, but decreased its capability to phosphorylate
FAK Y194 in intact cells (Figure 4a) and in vitro
(Figure 4b), thus suggesting that Met binding may
have an impact to the conformation of the FERM
domain, which thereby render Y194 accessible for
phosphorylation.

Phosphatidylinositol 4,5-P2 has been shown to inter-
act with FAK FERM domain and induce conforma-
tional changes in FAK, leading to FAK activation (Cai
et al., 2008). We found that phosphatidylinositol 4,5-P2

and, to a lesser extent, phosphatidylinositol 3,4,5-P3

facilitated Y194 phosphorylation of the FAK-NK
fragment (containing both the NH2 domain and kinase
domain of FAK), but not the NH2 domain alone,
in vitro (Figures 4c and d). These results suggest that
phosphoinositide binding to the FERM domain may
have an impact to the intramolecular interaction
between the FERM and kinase domains of FAK rather
than the conformation of the FERM domain itself,
which leads to accessibility of Y194 for phosphoryla-
tion. Together, our results suggest that upon binding to
Met or phosphoinositides, Y194 of FAK may become
accessible for phosphorylation.

NPG_ONC_ONC2010398
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Figure 1 Tpr-Met phosphorylates the NH2 domain of FAK on Y5 and Y194. (a) FAK-NH2 domain (FAK-N) was transiently co-
expressed with Tpr-Met, v-Src or FAK in HEK293 cells. FAK-NH2 domain was immunoprecipitated by anti-FAK and the washed
immunocomplexes were analyzed by immunoblotting with anti-PY or anti-FAK. An equal amount of whole cell lysates was analyzed
by immunoblotting with antibodies as indicated. (b) T7-tagged FAK-NH2 domain (T7-FAK-N) and T7-tagged PYK2-NH2 domain
(T7-PYK2-N) were co-expressed with (þ ) or without (�) Tpr-Met in HEK293 cells. T7-tagged proteins were immunoprecipitated by
anti-T7 and their tyrosine phosphorylation were analyzed. An equal amount of whole cell lysates was analyzed by immunoblotting
with anti-Met. (c) FAK-NH2 domain and its mutants were transiently co-expressed with (þ ) or without (�) Tpr-Met in HEK293
cells. The tyrosine phosphorylation of FAK-NH2 domain was analyzed as described in panel (a). The tyrosine phosphorylation of the
FAK-NH2 domain proteins was quantified and expressed as the percentage relative to the level of the wt FAK-NH2 domain, which is
defined as 100%. Values (means±s.d.) are from three independent experiments. *Po0.05. The position of immunoglobulin G (IgG) is
indicated. (d) Tpr-Met was transiently expressed in HEK293 cells, immobilized on protein A beads with anti-Met, and subjected to an
in vitro kinase assay using purified FAK-NH2 domain as substrates. Aliquots of purified proteins same as those used in in vitro kinase
assays were fractionated by SDS-PAGE and visualized by Coomassie blue stain. The 32P-incorporation of FAK-NH2 domain was
quantified and expressed as the percentage relative to the level of the wt FAK-NH2 domain, which is defined as 100%. Values
(means±s.d.) are from three independent experiments. *Po0.05. IVK, in vitro kinase assay. (e) Two segments of the amino acid
sequences (aa. 1–20 and aa. 184–203) of FAK from different species were aligned. The corresponding sequences of PYK2 were also
included in the alignment. Note that Y5 and Y194 are highly conserved in FAK, but no tyrosine residue is found in the corresponding
positions in PYK2.
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Phosphorylation of FAK on both Y194 and Y397 is
essential for its maximal activation by Met
As Y194 is adjacent to the interface between the FERM
and kinase domains of FAK (Supplementary Figure
S2), we speculated that phosphorylation on this residue

may have an impact to the FERM–kinase interaction
and thereby affect the catalytic activity of FAK. To
examine this possibility, FAK and its YF mutants were
transiently co-expressed with Met and the phosphoryla-
tion of FAK on Y577 was measured (Figure 5a). The
Y577 is located within the catalytic domain of FAK and
its phosphorylation level has been used to reflect the
catalytic activity of FAK (Calalb et al., 1995; Lietha
et al., 2007) Q1. The Y577 phosphorylation of wild type
(wt) FAK was apparently increased by Met. Substitu-
tion of Y5 did not affect the activation of FAK by Met
(Supplementary Figure S3), indicating that Y5 is not
involved in Met-induced activation of FAK. However,
substitution of Y194 partially (B50%) suppressed FAK
activation by Met. Substitutions of both Y194 and Y397
completely abolished the activation of FAK by Met
(Figure 5a). These results indicate that the phosphoryla-
tion of Y194 plays a critical role in FAK activation and,
more importantly, the phosphorylation of FAK on both
Y194 and Y397 is essential for its maximal activation by
Met. Notably, Met was able to increase the Y577
phosphorylation of the Y397F mutant to a level
approximately 50% of that of wt FAK (Figure 5a),
indicating that Met could cause FAK phosphorylation
on Y577 through an Y397-independent mode.

We have previously demonstrated that FAK over-
expression promotes the effect of HGF on cell migration
(Lai et al., 2000) and renders epithelial cells susceptible
to cellular transformation by HGF (Chan et al., 2002).
In this study, we found that unlike the wt FAK,
overexpression of Y194F or Y397F mutant in Madin–
Darby canine kidney (MDCK) cells failed to promote
their migration towards HGF (Figure 5c). Additionally,
overexpression of FAK, but not Y194F or Y397F
mutant, promoted HGF-induced anchorage-indepen-
dent growth of MDCK cells (Figure 5d). These results
together indicate that the phosphorylation of FAK on
Y194 by Met is crucial not only for FAK activation but
also for FAK to promote HGF-elicited cell functions.

Substitution of Y194 with Glu leads to constitutive
activation of FAK
To mimic their phosphorylation states, Y5 and/or Y194
of FAK were substituted with Glu. Our results showed
that the Y577 phosphorylation of the Y5E mutant
remained at a level same as that of the wt FAK
(Figure 6a), consistent with our notion that Y5 is not
involved in the regulation of FAK’s catalytic activity. In
contrast, the Y194E mutant and the V196E mutant had
much higher phosphorylation on Y397 and Y577 than
the wt did (Figure 6a). As V196 of FAK is one of the
residues that constitute the hydrophobic pocket essential
for the FERM–kinase interaction (Lietha et al., 2007),
substitution of V196 with a negatively charged residue
may be sufficient to disrupt the hydrophobic pocket and
thereby prevent the FERM–kinase interaction. In
accordance with an increase in the Y577 phosphoryla-
tion, both Y194E and V196E mutants possessed much
higher catalytic activity than the wt did (Figure 6b),
correlated with a robust increase in the tyrosine

NPG_ONC_ONC2010398

Figure 2 Y5 and Y194 of FAK are the phosphorylation sites for
c-Met, EGFR and PDGFRb. (a) FAK-NH2 domain (FAK-N) and
its Y5F/Y194F mutants were transiently co-expressed with c-Met,
EGFR, or PDGFRb in HEK293 cells. The tyrosine phosphoryla-
tion of FAK-NH2 domain was analyzed as described in Figure 1a.
An equal amount of whole cell lysates was analyzed by
immunoblotting to monitor the expression of c-Met, EGFR, and
PDGFRb. (b) c-Met, EGFR and PDGFRb was transiently
expressed in HEK293 cells, immobilized on protein A beads with
specific antibodies, and subjected to in vitro kinase assays using
purified FAK-NH2 domain as substrates in the presence of [g-32P]
ATP. Pre-immune control immunoglobulin was used as a control
(Ctrl). Representative autoradiograph from three experiments is
shown. WT, wild type; FF, Y5F/Y194F mutant; RTKs, receptor
tyrosine kinases. IVK, in vitro kinase assay.
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phosphorylation of paxillin, a physiological substrate of
FAK (Figure 6b). To examine whether the increased
Y577 phosphorylation of the Y194E mutant relies on
Y397 phosphorylation, Y397 in the Y194E mutant was
substituted with Phe. As shown in Figure 6c, no Y577
phosphorylation could be detected in the Y194E/Y397F

mutant, indicating that increased Y577 phopshorylation
of FAK by the Y194E substitution is Y397-dependent.
In other words, Y577 phosphorylation of FAK is totally
Src-dependent in the absence of activated Met. As the
Y194E mutant is constitutively active, its overexpression
is sufficient to support anchorage-independent cell
growth in the absence of HGF stimulation (Figure 6d).

Phosphorylation of Y194 may cause conformational
changes in the FERM domain and interfere with the
intramolecular FERM–kinase interaction of FAK
To examine whether Y194 phosphorylation has an
impact to the conformation of the FERM domain, FAK
NH2 domain was purified and subjected to digestion by
trypsin (Figure 7a) or chymotrypsin (Figure 7b). Our
results showed that substitution of Y194 with Glu
renders FAK NH2 domain more sensitive to proteolytic
digestion. In particular, at the ratio of 1:500 (chymo-
trypsin: substrate), Y194E mutant was completely
digested by chymotrypsin, whereas one-third of the wt
FAK NH2 domain retained intact (Figure 7b). These
results suggest that phosphorylation on Y194 may cause
conformational changes in the FERM domain, which
thereby alters its sensitivity to proteases.

To examine whether Y194 phosphorylation of FAK
has an impact to the intramolecular FERM–kinase
interaction, the co-immunoprecipitation of T7-FAK-
NH2 domain and FLAG Q2-FAK-NK fragment (contain-
ing both the NH2 domain and kinase domain of FAK)
was performed. Our results showed that Tpr-Met, but
not its kinase-deficient mutant, potentiated the interac-
tion between T7-FAK-NH2 domain and FLAG-FAK-
NK fragment (Figure 8a). Additionally, the Y194E
mutant of FLAG-FAK-NK bound more T7-FAK-NH2
domain than the wt did (Figure 8b). These results
together suggest that upon Y194 phosphorylation, the
intramolecular FERM–kinase interaction of FAK may
be relieved, which thereby allows the kinase domain to
interact in trans with another FERM domain. To
examine if the Y194 phosphorylation could cause a
conformational change in FAK, FLAG-FAK-NK
fragment and its Y194E mutant were purified and
subjected to partial digestion by trypsin (Figure 8c) or
chymotrypsin (Figure 8d). The results showed that the
FAK-NK fragment with a substitution of Y194 with
Glu was more sensitive to trypsin and chymotrypsin,
which thus suggest that the conformation of the Y194E
mutant may not be as compact as the wt FAK,
rendering it more sensitive to digestion by proteases.
Notably, at the ratio of 1:500 (trypsin: substrate), an
extra fragment from the Y194E mutant was detected
(Figure 8c), supporting that changes in the tertiary
structure of the Y194E mutant may allow exposure of
previously buried regions to proteases.

Phosphorylated Y194 may interact with the basic residues
in the 216KAKTLRK222 patch in the FERM domain, which
disfavors the intramolecular FERM–kinase interaction
All our experiments performed up to this point suggest
that a negative charge at the residue 194 may interfere

NPG_ONC_ONC2010398

Figure 3 Validation of FAK Y194 phosphorylation by an
antibody specific to pY194. (a) FAK-NH2 domain (FAK-N) and
their YF mutants were transiently co-expressed with (þ ) or
without (�) Tpr-Met in HEK293 cells. FAK proteins were
immunoprecipitated by anti-FAK and the washed immunocom-
plexes were analyzed by immunoblotting with anti-FAK pY194,
anti-phosphotyrosine (PY), and anti-FAK. (b) Full-length FAK
(FL-FAK) and their YF mutants were transiently co-expressed
with (þ ) or without (�) Tpr-Met in HEK293 cells. FAK proteins
were immunoprecipitated and analyzed as described in panel (a).
(c) Full-length FAK (FL-FAK) was co-expressed with (þ ) or
without (�) Tpr-Met and FLAG-tagged SHP2 in HEK293 cells.
FAK was immunoprecipitated by anti-FAK and the washed
immunocomplexes were analyzed by immunoblotting with anti-
FAK pY194 or anti-FAK. An equal amount of whole cell lysates
was analyzed by immunoblotting with anti-Met or anti-FLAG.
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with the FERM–kinase interaction of FAK. We
hypothesized that the phosphorylated Y194 may inter-
act with adjacent basic residues, which thereby affects
the FERM–kinase interaction of FAK. Indeed, Y194 is
adjacent to the 216KAKTLRK222 patch in the FERM
domain (Figure 9a). Substitution of one or two basic
residues in the 216KAKTLRK222 patch did not affect the
Y577 phosphorylation in wt FAK (Chen and Chen,
2006; Figure 9d). However, substitution of any of the
basic residues in the patch partially suppressed the Y577
phosphorylation of the Y194E mutant (Figure 9b). In
the control experiment, mutation at both R204 and
R205 did not affect the Y577 phosphorylation of the
Y194E mutant (Figure 9c). These results suggest that the
interactions between the phosphorylated Y194 and basic
residues in the 216KAKTLRK222 patch may interfere

with the intramolecular FERM–kinase interaction,
resulting in FAK autophosphorylation on Y397 and
subsequently Y576/Y577 phosphorylation by Src. How-
ever, when Tpr-Met was expressed, the Y577 phosphor-
ylation of FAK was significantly increased regardless of
substitutions in the 216KAKTLRK222 patch (Figure 9d).
A possible explanation for this is that once FAK Y194 is
phosphorylated, Met is able to access and directly
phosphorylate Y576 and Y577 of FAK independently of
Y397 and Src, as we proposed previously (Chen and
Chen, 2006). Finally, we found that the Y194E
substitution enhanced the interaction of FAK with
Met, but on the other hand, the Y194F substitution
suppressed it (Figure 9e), thus suggesting that the
phosphorylation state of FAK Y194 may also modulate
the Met–FAK interaction.

NPG_ONC_ONC2010398

Figure 4 FAK may undergo conformational changes upon binding to Met or phosphoinositides, which renders Y194 accessible for
phosphorylation. (a) FAK-NH2 domain (FAK-N) was transiently expressed with Tpr-Met or its Y482F/Y489F mutant (FF) in
HEK293 cells. Y482 and Y489 in Tpr-Met are equivalent to Y1349 and Y1356 in c-Met, both of which are required for FAK binding.
Y194 phosphorylation in FAK-NH2 domain was analyzed by immunoblotting with anti-FAK pY194, which was quantified and
expressed as percentage relative to the level in the presence of Tpr-Met. (b) Tpr-Met and its Y482F/Y489F mutant (FF) were
immobilized on protein A beads with anti-Met and subjected to an in vitro kinase assay using purified FAK-N as a substrate in the
presence of 400mM ATP. The phosphorylation of FAK-NH2 domain on Y194 was analyzed by immunoblotting with anti-FAK
pY194, which was quantified and expressed as percentage relative to the level in the presence of Tpr-Met. The phosphorylation of Met
on Y1234 and Y1235 was measured, which reflects the catalytic activity of Met. IVK, in vitro kinase assay. (c) Tpr-Met was
immobilized on protein A beads with anti-Met and subjected to an in vitro kinase assay using purified FLAG-tagged FAK-NK
fragment (FLAG-FAK-NK; containing both NH2 domain and kinase domain) as substrates in the presence of 400 mM ATP and 20 mM
phosphatidylinositol 4,5-P2 or phosphatidylinositol 3,4,5-P3. The phosphorylation of FAK-NK fragment on Y194 was analyzed by
immunoblotting with anti-FAK pY194. (d) Tpr-Met was immobilized on protein A beads with anti-Met and subjected to an in vitro
kinase assay using purified FLAG-tagged FAK-NH2 domain (FLAG-FAK-N) as substrates in the presence of ATP and 20 mM
phosphatidylinositol 4,5-P2 or phosphatidylinositol 3,4,5-P3. The phosphorylation of FAK-NH2 domain on Y194 was analyzed by
immunoblotting with anti-FAK pY194.
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Discussion

FAK is physically associated with and activated by
growth factor receptors including Met, EGFR and
PDGFR (Sieg et al., 2000; Chen and Chen, 2006).
However, the mechanism how growth factor receptors
activate FAK remains unclear. It is generally believed
that the binding of the FAK FERM domain to the

growth factor receptors causes conformational changes
in FAK, which leads to FAK activation. In this study,
we demonstrate that Met, EGFR and PDGFR are able
to phosphorylate the NH2 domain of FAK on Y5 and
Y194. Although the significance of the Y5 phosphoryla-
tion is currently unknown, the Y194 phosphorylation is
a crucial step for FAK activation by Met. Substitution
of either Y194 or Y397 (autophosphorylation site) of

NPG_ONC_ONC2010398

Figure 5 Phosphorylation of FAK on Y194 is critical for its activation and capability to promote HGF-elicited cell functions.
(a) FAK and its YF mutants were transiently co-expressed with (þ ) or without (�) Tpr-Met in HEK293 cells. FAK proteins were
immunoprecipitated with anti-FAK and the immunocomplexes were analyzed by immunoblotting with antibodies as indicated. The
Y577 phosphorylation of FAK was measured and expressed as the percentage relative to wt FAK in the presence of Tpr-Met. Data
shown are representative of three independent experiments. (b) An equal amount of cell lysates from control neomycin-resistant
MDCK cells (neo) and those stably overexpressing T7-tagged FAK or its mutants were analyzed by immunoblotting with anti-T7,
anti-FAK or anti-tubulin. (c) MDCK cells as described in panel b were subjected to a migration assay in the presence (þ ) or absence
(�) of 20 ng/ml HGF, as described in the Materials and methods. Values (means±s.d.) are from three independent experiments.
*Po0.05 (compared with the neo cells in the absence of HGF). #Po0.05 (compared with the neo cells in the presence of HGF).
(d) MDCK cells as described in panel b were subjected to a soft agar-colony formation assay in the presence (þ ) or absence (�) of
20 ng/ml HGF, as described in the Materials and methods. Values (means±s.d.) are from three independent experiments. *Po0.05
(compared with the neo cells in the presence of HGF).
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FAK with Phe partially (B50%) suppressed Met-
induced activation of FAK (Figure 5a). Substitution of
both Y194 and Y397 totally inhibited Met-induced
activation of FAK (Figure 5a), thus suggesting that the
maximal activation of FAK by Met requires its
phosphorylation on both residues.

Our results support that events such as Met binding
and phosphoinositide binding may first induce confor-
mational changes in FAK, which thus renders Y194
accessible for phosphorylation (Figure 4). In the case of
Met binding, it may be sufficient to cause a conforma-
tional change in the FERM domain, which thereby
enhances the accessibility of Y194 for phosphorylation.
However, in the case of phosphoinositide binding, it
could have an impact to the FERM–kinase interaction

of FAK, which allows Y194 to be phosphorylated more
efficiently. Therefore, a possible scenario for Met to
activate FAK (Figure 10) may be initiated by con-
formational changes in FAK through its binding to Met
and/or phosphoinositides, which renders Y194 accessi-
ble for phosphorylation by Met. Phosphorylation of
FAK on Y194 leads to partial activation of FAK and
allows it to phosphorylate itself on Y397. The phos-
phorylated Y397 subsequently recruits the binding of
Src, finally leading to full activation of FAK by
phosphorylating Y576 and Y577 in the activating loop
within the catalytic domain. Alternatively, once FAK
Y194 is phosphorylated, Met is able to phosphorylate
FAK Y577 through an Y397-independent manner
(Figure 5a). In fact, we have previously demonstrated

NPG_ONC_ONC2010398

Figure 6 Substitution of Y194 with Glu leads to constitutive activation of FAK. (a) FAK and its mutants were transiently expressed
in HEK293 cells and their phosphorylation on Y397 and Y577 was analyzed. (b) FAK and its mutants were transiently expressed in
HEK293 cells. FAK proteins were immunoprecipitated with anti-FAK and the immunocomplexes were subjected to an in vitro kinase
assay using purified GST-FAK (aa 378–406) as a substrate. An aliquot of the immunocomplexes was analyzed by immunoblotting with
anti-FAK to monitor the amount of FAK in the immunocomplexes. IVK, in vitro kinase assay. Paxillin was immunoprecipitated by
anti-paxillin and the immunocomplexes were analyzed by immunoblotting with anti-PY or anti-paxillin. (c) FAK and its mutants were
transiently expressed in HEK293 cells and their phosphorylation on Y397 and Y577 was analyzed. (d) Control neomycin-resistant
MDCK cells (neo) and those stably overexpressing FAK or its Y194E mutant were subjected to a soft agar-colony formation assay, as
described in Materials and methods. Representative micrographs are shown. Values (means±s.d.) are average from two experiments.
Scale bars, 500mm.

Role of Y194 phosphorylation in FAK activation
T-H Chen et al

8

Oncogene



UNCORRECTED P
ROOF

that Met induces FAK phosphorylation on Y576 and
Y577 in src�/� yes�/� fyn�/� cells and directly phospho-
rylates FAK on both residues in vitro (Chen and Chen,
2006). Therefore, it is possible that Met-mediated
phosphorylation of FAK on Y194 may induce a
conformational change, which allows Met to access
and phosphorylate Y576 and Y577 of FAK indepen-
dently of Src.

The positive impact of Y194 phosphorylation to FAK
activation is also supported by the phosphorylation-
mimetic mutant Y194E, which possesses much higher
catalytic activity than the wt FAK does (Figures 6a and
b). But how does the phosphorylation on Y194 lead to
FAK activation? Our results suggest that the phos-
phorylated Y194 may disfavor the intramolecular
FERM–kinase interaction of FAK, which allows FAK
to be activated through relief of its autoinhibition. This
notion is mainly supported by our result that Y194-
phosphorylated FAK or the Y194E mutant was more
accessible to another FAK FERM domain than wt
FAK (Figures 8a and b). In addition, compared with the
wt FAK, the purified Y194E mutant was more sensitive
to protease digestion (Figures 7a and b), suggesting that
the conformation of the Y194E mutant may be altered,
rendering it more accessible to be digested by proteases.

At the center of the intramolecular FERM–kinase
interface of FAK, F596 in the kinase domain inserts into
a hydrophobic pocket constituted by Y180, M183, V196
and L197 in the FERM domain (Lietha et al., 2007).
The activation of FAK by substitution of V196 with Glu
(Figures 6a and b) can be interpreted by disruption of
the hydrophobic pocket. As Y194 is not one of those
residues forming the hydrophobic pocket, how does the
phosphorylation state of Y194 affect the FERM–kinase
interaction? Our results (Figure 9b) suggest that
phosphorylated Y194 may interact with the basic
residues in the 216KAKTLRK222 patch in the FERM
domain, which may pull the hydrophobic pocket away
from F596 in the kinase domain and thereby prevent the
FERM–kinase interaction. Moreover, as the basic patch
216KAKTLRK222 is crucial for FAK to interact with Met
(Chen and Chen, 2006), it is possible that the interaction
between the phosphorylated Y194 and the
216KAKTLRK222 patch may affect the interaction of
FAK with Met. In fact, the Y194E substitution
enhances the interaction of FAK with Met, but on the
other hand, the Y194F substitution suppresses it
(Figure 9e). Our results together suggest that the
phosphorylation of Y194 affects not only the catalytic
activity of FAK but also its interaction with Met.
However, further structure-based studies are required
for interpreting the impacts of Y194 phosphorylation to
both events.

In this study, we found that Met, EGFR and PDGFR
phosphorylate the NH2 domain of FAK on same
residues—Y5 and Y194. In fact, there are precedents
showing different RTKs can have a similar cohort of
phosphorylation sites in a given protein. For example,
EGFR and insulin receptor phosphorylate the docking
protein Gab1 with a similar cohort of phosphorylation
sites, but display distinct preference towards those sites
(Lehr et al., 1999, 2000). Thus, it is possible that Met,
EGFR and PDGFR may have distinct preference for
Y5 and Y194 of FAK. However, it is not clear whether
the phosphorylation of Y5 and/or Y194 affect interac-
tions of FAK with other cellular proteins, in particular,
those known to interact with the FERM domain of
FAK such as the Arp2/3 complex (Serrels et al., 2007).
In addition, it remains possible that phosphorylated Y5
and/or Y194 may serve as binding sites for other Src-
homology 2 domain-containing proteins. In conclusion,
this study provides the first example to illustrate how
FAK is activated by RTKs.

Materials and methods

Materials
Polyclonal anti-Met (C-12), anti-FAK (A-17) and anti-EGFR
(1005) were purchased from Santa Cruz Biotechnology, Inc. Q3

Monoclonal anti-paxillin, anti-FAK (clone 77), anti-phospho-
tyrosine (PY20) and polyclonal anti-PDGFRb were from BD
Transduction Laboratories Q4. Polyclonal anti-FAK pY397 and
anti-FAK pY577 were purchased from BioSource Interna-
tional Inc. Q5Polyclonal anti-FAK pY194 was generated by
Quality Controlled Biochemicals (Hopkinton, MA, USA).

NPG_ONC_ONC2010398

Figure 7 Substitution of Y194 with Glu may cause conforma-
tional changes in FAK-NH2 domain. (a) FLAG-FAK-NH2
domain (FLAG-FAK-N) and its Y194E mutant were expressed
in HEK293 cells and purified as described in the Materials and
methods. An equal amount of purified FAK-NH2 proteins was
incubated with or without (�) trypsin at various ratios (trypsin :
substrate) as indicated. The digested products were analyzed by
immunoblotting with anti-FLAG. (b) An equal amount of purified
FAK-NH2 proteins was incubated with or without (�) chymo-
trypsin at various ratios (chymotrypsin: substrate) as indicated.
The digested products were analyzed by immunoblotting with anti-
FLAG.

Role of Y194 phosphorylation in FAK activation
T-H Chen et al

9

Oncogene

HCC
插入號
 (Santa Cruz, CA, USA)

HCC
插入號
 (San Jose, CA, USA)

USER
插入號
(Camarillo, CA, USA).



UNCORRECTED P
ROOF

Monoclonal anti-Src (clone 327) was purchased from Onco-
gene Research ProductsQ6 . Polyclonal anti-Src pY416 was
purchased from Cell Signaling TechnologyQ7 . Monoclonal anti-
T7 was purchased from NovagenQ8 . Protein A-Sepharose beads,
FLAG peptides, monoclonal anti-FLAG (M2), and anti-
FLAG (M2)-conjugated beads were purchased from Sigma-
AldrichQ9 . Phosphatidylinositol 4,5-P2 and phosphatidylinositol
3,4,5-P3 were purchased from Echelon Biosciences Inc. (Salt
Lake City, UT, USA).

Plasmids and mutagenesis
The cDNAs for FAK, PYK2, and oncogenic Src were kindly
provided by JL Guan (University of Michigan, MI, USA).
The plasmid pcDNA3.1-EGFR was kindly provided by MC
Hung (University of Texas MD Anderson Cancer Center, TX,
USA). The plasmid pcDNA3.1-PDGFRb was kindly provided
by CH Heldin (Ludwig Institute for Cancer Research,
SwedenQ10 ). The plasmid pCMV-FLAG-SHP2 was kindly
provided by DL Wang (Academia Sinica, Taipei, Taiwan).
Plasmids pMT2-cMet and pMT2-Tpr-Met were described
previously (Chen and Chen, 2006). The following plasmids
were constructed in our laboratory: the pcDNA3-FAK
(amino acids [aa] 1–1053), pcDNA3-T7-FAK (aa 1–1053),
pcDNA3-FAK-NH2 (aa 1–391), pcDNA3.1-T7-FAK-NH2

(aa 1–391), pcDNA3.1-T7-PYK2-NH2 (aa 1–397), pCMV-
FLAG-FAK-NK (aa 31–686), pCMV-FLAG-FAK-N
(aa 1–391) and pGEX1-FAK (aa 378–406). Mutagenesis was
carried out using a QuikChange site-directed mutagenesis
kit (Stratagene Q11). Mutagenic primers for making FAK mutants
used in this study are listed in Supplementary Table S1.
All desired mutations were confirmed by dideoxy DNA
sequencing.

Cell culture and transfections
Human embryonic kidney 293 (HEK293) cells and MDCK
cells maintained in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal bovine serum. For transient
transfections, HEK293 cells (5� 105) were seeded on a 6 cm
culture dish. 18 h later, the cells were incubated with the
mixture of plasmid (1B3mg) and LipofectAMINE (Life
Technologies-Invitrogen Q12) for 5 h and allowed to grow for
another 36 h. To generate MDCK cells stably overexpressing
T7-tagged FAK or its mutants, MDCK cells were transfected
with plasmids encoding desired proteins using LipofectA-
MINE. Two days after transfection, the cells were selected in
the medium containing 0.5mg/ml G418 for one week. The
neomycin-resistant cells were collected and analyzed by
immunoblotting with anti-T7 and anti-FAK.

NPG_ONC_ONC2010398

Figure 8 Phosphorylation of FAK on Y194 interferes with the intramolecular FERM–kinase interaction of FAK. (a) FLAG-tagged
FAK-NK fragment (FLAG-FAK-NK) and T7-tagged FAK NH2 domain (T7-FAK-N) were transiently co-expressed with (þ ) or
without (�) Tpr-Met or its kinase-deficient (kd) mutant in HEK293 cells. Co-immunoprecipitation of FLAG-FAK-NK and T7-FAK-
N was analyzed as indicated. (b) FLAG-FAK-NK and its Y194E mutant were co-expressed with (þ ) or without (�) T7-FAK-N in
HEK293 cells. Co-immunoprecipitation of FLAG-FAK-NK and T7-FAK-N was analyzed as indicated. (c) FLAG-FAK-NK and its
Y194E mutant were expressed in HEK293 cells and purified as described in the Materials and methods. An equal amount of purified
FAK-NK proteins was incubated with or without (�) trypsin at various ratios (trypsin: substrate) as indicated. The digested products
were analyzed by immunoblotting with anti-FLAG. (d) An equal amount of purified FAK-NK proteins was incubated with or without
(�) chymotrypsin at various ratios (chymotrypsin: substrate) as indicated. The digested products were analyzed by immunoblotting
with anti-FLAG.
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Immunoprecipitations and immunoblotting
Immunoprecipitation and immunoblotting were carried out as
described previously (Chen and Chen, 2006). Chemiluminescent
signals were detected and quantified using the Fuji LAS-3000
luminescence image system.

Protein purification
To obtain purified FAK-NH2 domain (aa 1–391) for in vitro
kinase assays, HEK293 cells were transiently transfected

with pcDNA3-FAK-NH2 or its mutants for 48 h and lyzed
in 1% Nonidet P-40 lysis buffer (Chen and Chen, 2006).
Cell lysates (1mg) were incubated with protein A-Sepharose
beads covalently linked with polyclonal anti-FAK for 2 h at
4 1C. Polyclonal anti-FAK antibodies were covalently linked
on protein A-Sepharose beads by dimethyl pimelimidate
dihydrochloride (Sigma-Aldrich). Beads were washed six
times with 1% Nonidet P-40 lysis buffer. The bound proteins
were eluted in 150 ml of 0.1M glycine buffer (pH 2.8)

NPG_ONC_ONC2010398

Figure 9 Phosphorylated Y194 of FAK may interact with the basic residues in the 216KAKTLRK222 patch. (a) Diagram showing the
relative position of Y194 to the 216KAKTLRK222 patch and the FERM–kinase interface in FAK. At the center of the FERM–kinase
interface, F596 in the kinase domain inserts into a hydrophobic pocket in the FERM domain formed by Y180, M183, V196 and L197.
(b) FAK and its mutants were transiently expressed in HEK293 cells and their phosphorylation on Y577 was measured. The Y577
phosphorylation of FAK was quantified and expressed as the percentage relative to the level of the Y194E mutant, which is defined as
100%. Values (means±s.d.) are from three independent experiments. *Po0.05. (c) FAK and its mutants were transiently expressed in
HEK293 cells and their phosphorylation on Y577 was analyzed. The Y577 phosphorylation of the Y194E mutant is defined as 100%.
Values (means±s.d.) are from three independent experiments. *Po0.05. (d) FAK and its mutants were transiently co-expressed with
(þ ) or without (�) Tpr-Met in HEK293 cells. The phosphorylation of FAK Y577 was analyzed. (e) FAK and its mutants were
transiently co-expressed with (þ ) or without (�) Tpr-Met in HEK293 cells. The co-immunoprecipitation of FAK and Tpr-Met was
performed. The level of co-precipitated FAK is measured and expressed as fold change relative to wt FAK. Similar results were
observed in two independent experiments.
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and neutralized with 1 ml of 1M Tris-HCl (pH 9.0). To obtain
purified FLAG-tagged FAK-NK (aa 31–686) and FLAG-
tagged FAK-N (aa 1–391) for protease digestion, HEK293
cells were transiently transfected with pCMV-FLAG-FAK-
NK or pCMV-FLAG-FAK-N for 48 h and lyzed in 1%
Nonidet P-40 lysis buffer. Cell lysates (1mg) were incubated
with beads covalently linked with monoclonal anti-FLAG for
2 h at 4 1C. Beads were washed three times with 1% Nonidet
P-40 lysis buffer and one time with Tris-buffered saline (50mM

Tris-HCl, 150mM NaCl, pH 7.4). The bound proteins were
eluted in 150ml of 300 ng/ml FLAG peptides. The purified
proteins were fractionated by SDS–polyacrylamide gel electro-
phoresis and visualized by Coomassie blue stain.

In vitro kinase assay
For in vitro kinase assays, Tpr-Met, c-Met, EGFR or PDFGR
were transiently overexpressed in HEK293 cells and immobi-
lized on protein A-Sepharose beads with specific antibodies.
The kinase reactions were carried out in 40ml of kinase buffer
(50mM Tris-HCl, pH 7.5, 10mM MnCl2) containing 10mCi of
[g-32P] ATP (3000 Ci mmol�1; PerkinElmer Life Sciences) and
0.5 mg of purified FAK-NH2 (aa 1–391) proteins for 15min at
25 1C. Reactions were terminated by addition of SDS sample
buffer, and the 32P-incorporated proteins were fractionated by
SDS–polyacrylamide gel electrophoresis and visualized by
autoradiography. The radioisotope activity was quantified
using a phosphoimager system (PharmaciaQ13 ). In some cases,
in vitro kinase assays were carried out in the presence of
regular ATP (400mM) rather than [g-32P] ATP and the in vitro
phosphorylated FAK proteins were analyzed by immunoblot-
ting with anti-FAK pY194.

Protease digestion
Trypsin digestion reactions were carried out in 30 ml of Tris-
buffered saline (50mM Tris-HCl, 150mM NaCl, pH 7.4)
containing 250 ng of purified FLAG-tagged FAK proteins

and various amount of trypsin (Promega Q14) for 15min at 37 1C.
Chymotrypsin digestion reactions were carried out in 30ml of
chymotrypsin digestion buffer (100mM Tris-HCl, 10mM

CaCl2, pH 7.8) containing 250 ng of purified proteins and
various amount of chymotrypsin (Sigma-Aldrich) for 15min at
30 1C. The reactions were terminated by addition of SDS
sample buffer, and the digested products were fractionated by
SDS–polyacrylamide gel electrophoresis and detected by
immunoblotting with anti-FLAG.

Cell migration assay
MDCK cells were collected by trypsinization and suspended in
serum-free medium at 2� 104 cells/ml. Migration assays were
carried out in a Neuro Probe 48-well chemotaxis chamber
(Cabin John Q15, MD, USA). Briefly, the medium containing type
I collagen (10 mg/ml)±HGF (20 ng/ml) was added to the lower
chamber. The lower and upper chambers were separated by a
polycarbonate membrane (8 mm pore size, Poretics, Livermore,
CA, USA). Cells were allowed to migrate for 7 h at 37 1C in a
humidified atmosphere containing 5% CO2. The membrane
was fixed in methanol for 10min and stained with modified
Giemsa stain (Sigma-Aldrich) for 1 h. Cells on the upper side
of the membrane were removed by cotton swabs. Cells on the
lower side of the membrane were counted under a light
microscope. Each experiment was performed in triplicate.

Soft agar-colony formation assay
MDCK cells (5� 103) were suspended in 1ml DMEM Q16

containing 0.3% agar and 10% serum and added onto a layer
of medium containing 0.5% agar and 10% serum in a six-well
plate. One ml of medium containing 0.3% agar and 10%
serum±HGF (20 ng/ml) was added to the dish every other
day. After 14 days, cell colonies were stained with 0.5mg/ml
p-Iodonitrotetrazolium violet for 1 day at room temperature.
To quantify the number of colonies in a whole dish, the
photographs of the stained dishes were taken by a digital
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Figure 10 Diagram illustrating the activation of FAK by Met. Step 1, FAK binds to Met through its FERM domain upon HGF
stimulation. Upon binding to Met and/or phosphatidylinositol 4,5-P2 (PIP2), FAK may undergo conformational changes, which
renders Y194 accessible for phosphorylation. The 216KAKTLRK222 patch (þ þ þ þ ) in the FERM domain is critical for Met binding
(Chen and Chen, 2006). Step 2, Met phosphorylates FAK on Y194, which leads to partially activation of FAK. The phosphorylated
Y194 may interact with the basic residues in the 216KAKTLRK222 patch, causing relief of autoinhibition. Step 3, FAK undergoes
autophosphorylation on Y397. Step 4, the phosphorylated Y397 recruits the binding of Src, finally leading to full activation of FAK by
phosphorylating Y576 and Y577 in the activation loop. Alternatively, Met is able to directly phosphorylate Y576 and Y577 upon Y194
phosphorylation. Note that for simplicity only the FERM and kinase domains of FAK are depicted. A-loop, activation loop in the
kinase domain.
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camera and the number of colonies larger than 40 pixel2 in size
was measured using NIH Image J softwareQ17 .

Structural illustration
Protein structure data of the FAK fragment containing the FERM
and kinase domains (PDB ID: 2J0J) were obtained from Protein
Data Bank (http://www.pdb.org) and illustrated in ribbon style
using YASARA view softwareQ18 (http://www.yasara.org).

Statistical analysis
Student’s t-test was used to determine whether there was a
significant difference between two means. P-values of o0.05
were considered statistically significant.
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