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Abstract  

Background 

Systematic aerobe training has positive effects on the compliance of dedicated arterial 

walls. The adaptations of the arterial structure and function are associated with the 

blood flow-induced changes of the wall shear stress which induced vascular 

remodelling via nitric oxide delivered from the endothelial cell. In order to assess 

functional changes of the common carotid artery over time in these processes, a 

precise measurement technique is necessary. Before this study, a reliable, precise, and 

quick method to perform this work is not present. 

Methods 

We propose a fully automated algorithm to analyze the cross-sectional area of the 

carotid artery in MR image sequences. It contains two phases: (1) position detection 

of the carotid artery, (2) accurate boundary identification of the carotid artery. In the 

first phase, we use intensity, area size and shape as features to discriminate the carotid 

artery from other tissues and vessels. In the second phase, the directional gradient, 

Hough transform, and circle model guided dynamic programming are used to identify 

the boundary accurately. 

Results 

We test the system stability using contrast degraded images (contrast resolutions range from 

50% to 90%). The unsigned error ranges from             to            . The test 

of noise degraded images (SNRs range from 16 to 20 dB) shows the unsigned error ranging 

from             to            . The test of raw images has an unsigned error 

2.56% 2.10% compared to the manual tracings. 
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Conclusions 

We have proposed an automated system which is able to detect carotid artery cross sectional 

boundary in MRI sequences during heart cycles. The accuracy reaches 2.56% 2.10% 

compared to the manual tracings. The system is stable, reliable and results are reproducible. 

 

Background  
Adaptations of the arterial structure and function were associated with blood flow-induced 

changes of wall shear stress which induced vascular remodelling via nitric oxide delivered 

from the endothelial cell [1]. In order to assess functional changes of the common carotid 

artery (CCA) over time, a precise measurement technique was necessary. In [2], only two 

static MR images representing the end-diastole and systole were taken for the measurement of 

the lowest and the highest arterial diameter during the heart cycle. However, this has been 

shown to have a higher variability than the measurement along the complete heart cycle. 

Furthermore the measurement on continuous images by hand-hold tracing was extremely 

time-consuming. Only a limited number of publications focused on the carotid arterial 

structure and function using MRI with advanced imaging technologies in healthy subjects 

were found [3-5]. The purpose of this study was to establish a novel automatic common 

carotid arterial wall detection algorithm in MRI sequences over several heart cycles in order 

to precisely determine carotid diastolic and systolic diameter changes along time and the CCA 

local compliance. For this purpose we have collected some MRI data from participants of the 

multistage ultra-marathon “Trans Europe Foot Race” in 2009 (TEFR09). 

Regarding related researches on engineering aspect, the similar work to ours was found in [6]. 

The images they analyzed had plaques in the artery lumen. This was one additional problem 

they encountered more than ours. The other problems such as: contrast variations among 

blood, vessel wall and surrounding tissues, image artifacts caused by blood flow and random 

patient motion were similar to ours. Their system needed three user interactions: giving the 

system the artery‟s center point, a seed point inside the lipid core, and a circle surrounds the 
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vessel. With the help of the prior knowledge combined with an elliptic model and fuzzy 

clustering, their system was able to identify the arterial boundary and plaque boundary.  

Another previous study [7] was a measurement on arterial wall using discrete dynamic 

contour (DDC) [8]. Their method was semi-automatic because the system needed an initial 

contour of the inner wall contour. Moreover, their images were black blood vessel so that they 

were able to detect both the inner and outer wall boundaries of the carotid artery. 

Another related article but focused on the coronary artery boundary detection was found in 

[9]. They proposed a surface-based method to detect the coronary artery boundary in the poor 

quality X-ray angiography based on a 3D generalized cylinder model. Since their application 

was on the X-ray angiogram, therefore, the proposed method was not suitable for the 

application on MRI sequences. 

Our contributions are to develop an automatic method to measure the arterial boundary in MR 

images. It is able to detect the carotid artery center position in the first stage. In the second 

stage, the cross sectional arterial wall boundary can be detected via Hough transform and a 

circle model dynamic programming. The circle model dynamic programming lets the system 

control the output boundary to be somewhat round but having the ability to detect the fine 

structure. 

The paper is organized as follows. The image sources and MRI protocol are introduced in 

Section 2. Section 2.1-2.2 describes how to detect the artery lumen center position. In Section 

2.3, the circle model guided dynamic programming is issued in details to solve our problems. 

Afterwards, results are given in Section 3. We then discuss properties of the proposed scheme 

in Section 4. Finally the conclusion is given in Section 5. 

  

Methods 
The MR-measurement of the maximal systolic and distal vessel-diameter of the CCA with 

additional blood pressure information leaded to local compliance of the arterial wall. After the 

approval of the local ethics committee in accordance to the Declaration of Helsinki, 12 
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participants in the TEFR09-project of the German Research Foundation (DFG-Project GZ: 

SCHU 2514/1-1, AOBJ: 565344) have been collected for vascular studies based on MR 

image sequences. One MRI sequence of one subject was randomly chosen from these 12 

subjects for the validation of the novel detection algorithm of the CCA lumen presented in 

this study. 

To acquire the vascular MRI sequences, a mobile 1.5-T MR imager (Siemens - Avanto
TM

, 

Model Mob. MRI 02.05, Siemens Ltd., Erlangen, Germany) and a custom-designed four-

channel phased dual mode neck matrix coil with 4 integrated preamplifiers (Siemens Ltd.) 

were used. The movement artifact was minimized via using a dedicated head restraint system 

(head coil, Siemens Ltd.) to fix the head and neck in a comfortable position (patient position: 

supine, head to feet). 

After an initial coronal localizer, three fast localizers (triplanar TRUFI: “true fast imaging 

with steady state precision”; Siemens Ltd.) were used to identify the axial perpendicular 

acquisition location at the right CCA 10 mm inferior the carotid bifurcation. Contrast media 

could not be used in this study because the athletes did not accept it. 

To increase the spatial resolution of the measurement (cross section view of CCA) a T2*-

weighted gradient-spoiled gradient-echo cine-sequence (FLASH: “fast low angle shot”, 

Siemens Ltd.) with prospective two dimensional ECG gating (cardiac triggering) was used. 

Parameters were set to be: flip angle 15°, echo time 5.41 ms, repetition time 34.74 ms, slice 

thickness 6 mm, field of view 289 cm², matrix size 320x320, pixel size 0.53125 mm ISO, 

pixel bandwidth 250, number of images per sequence: 50 images for one RR-cycle. The 

imaging acquisition time was approximately 5 minutes for each sequence. 

 

2.1 Carotid artery position detection 

The carotid artery position detection is the first procedure because it can reduce the following 

computation time. This procedure detects only the rough artery‟s center position but not the 

artery boundary. Here we propose an easily implemented but fast algorithm to perform this 
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work. 

To identify the carotid artery we firstly analyze its features. Normally some large vessels can 

be seen in MR images including carotid arteries, internal jugular veins, and external jugular 

veins (see Figure 1). Among them two most largest vessels are carotid artery and internal 

jugular vein. The internal jugular vein is often larger than the carotid artery, but only in a 

supine position because of the filling at a lower pressure. Another exception is having an 

abnormal hypoplastic situation. This is however not the case in our subjects. The other 

differentiation is that the cross-sectional view on the common carotid is always round with the 

exception of plaques in the artery lumen. Moreover, the vessel lumen in MR images has a 

larger intensity. This is because blood in vessels shows higher signal intensity in the T2-

weighted FLASH-sequences. Due to the blood flow there is also a phase shifting. These are 

reasons for a higher intensity of vessel lumen in contrast to dark vessel wall. These three 

features (area size, shape, and intensity) are useful information in the identification of the 

carotid artery. 

The first feature we utilize is the intensity to identify vessel lumen from other tissues. The 

image contains foreground (the subject) and background. The background is the dark area 

surrounding the subject. The foreground contains mussels, vessels, bones, air chambers and 

other tissues or organs. Among them the air chamber is dark so it is easily to be excluded like 

the background. The rest is to identify vessels from other tissues. Since the vessel lumens are 

lighter than the other, we are able to classify them using the intensity as a feature. Let R 

denote the raw image. The Otsu‟s thresholding technique [10] is applied in two stages. The 

first stage is to segment the foreground (excluding the air chambers) out of the image. The 

extracted foreground is then segmented via Otsu‟s technique again in the second stage. After 

this process some vessel lumens are able to be segmented, however, with some noises in it. 

The first stage can be formulated as follows. 

         
                   

                          
      for all (x,y) (1) 

where    is the threshold obtained by Otsu‟s method. The background is marked by    which 
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will be ignored in the second stage. The second stage is formulated as follows. 

         
                                  
                                                                    

 ,   for all (x,y) (2) 

where    is the threshold obtained by Otsu‟s method which is a value between the gray value 

of the vessel lumen and other tissues. Notably the computation of    is based on the 

precondition of ignoring the background marked as    in the first stage. After this process 

vessel lumens are segmented out. 

The resultant image contains noises needed to be removed. The binary morphological opening 

operation with a structure element is then applied to filter the noise and cut possible 

connections between the internal jugular vein and the carotid artery. The filtration is 

formulated as 

        (3) 

where „s‟ is the structure element with a disk shape (radius is 1). More clearly, it has a central 

pixel (the reference point) and the four-neighborhood pixels. 

Afterwards, the rest features (area size and shape) are utilized to identify the carotid artery 

from other vessels. This process is divided into left and right parts. Assume we are processing 

one part of them, two largest areas are chosen and they are the internal jugular vein and the 

carotid artery. Their boundary points are obtained by using a simple Sobel operation [11]. 

Afterwards, the PCA (principal component analysis [12]) is applied to get the major axis and 

minor axis. The length ratio of these two axes is a feature to indicate if the shape is round. Via 

this scheme, we are able to identify the carotid artery from other vessels. Once its center 

position is estimated, a region of interest (ROI) denoted as    is extracted from the source 

image R to the following procedures while artery center centered at   . The size of region (  ) 

depends on the pixel size of MR images and the anatomic knowledge how large the carotid 

artery can be. This can be calculated in prior.  
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2.2 Carotid artery boundary detection 

2.2.1 Directional gradient 

The results obtained by the method addressed in Section 2.1 do not offer accurate artery 

boundaries. This is because the Otsu‟s thresholding technique never offers good results in 

case that the intensity is not consistent for each object (here the carotid artery) to be measured. 

Especially it is possible that the morphological opening operation shrinks the artery‟s actual 

size. Therefore, we propose a method to detect the accurate artery boundary. Since the artery 

boundary has intensity different to its surrounding area, the gray level gradient is useful 

information. However, the internal jugular vein is very close to the artery in images so that it 

makes the boundary detection difficult if we consider only the intensity gradient only. This 

case is worse if the intensity gradient on the vein boundary is stronger than that on the artery 

boundary. We therefore take the direction into consideration and name this gradient to be 

directional gradient. In literatures we do not find any similar publication except the 

directional gradient vector flow in [13]. Our consideration is that: since the artery lumen is 

brighter than its surrounding areas, gradients resulted from bright pixels to dark pixels are of 

interest. If the artery center is known, then the directional gradient can be found that is 

parallel to the radiation lines centered from the artery. Actually the directional gradient is a 

special case of multi-directional gradient.  

Figure 2 depicts the geometric construction of a directional gradient. Consider the point we 

are processing is           , a unit vector (  ) connecting p and the artery center point is 

computed. The whole space where    might be located is divided into eight regions, i.e. the 

angle resolution is 45 degrees. The gray levels surrounding        are denoted as from    to 

  . Since the y-axis in image is from top to down, we define Region 1 to be the area where 

    
 

 
, where θ is the angle between    and the x-axis, (       . If    is located in 

Region 1, the calculation of the directional gradient considers only two gray-level pairs 

(     ) and (     ) as follows: 

                                   (4a) 
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where       . If    is located in Region 1‟ (          ), the formula can be 

rewritten as: 

                                    (4b) 

where           . The calculations when    is located in other regions are similar. Via 

this scheme an edge map representing the gradient intensity can be obtained and denoted as 

  . Notably, we are looking for gradients resulted from bright pixels to dark pixels. Therefore, 

the edge map we look for is a minimal value. The negative gradient denotes the boundary 

gray level changing from bright pixel to dark pixel along vector    which is we want. Via this 

way, the positive gradient resulted from the jugular vein very close to carotid artery will not 

affect the searching of the artery boundary. Afterwards, positive values in    are set to zeros 

and the Otsu‟s thresholding technique is applied again to find a threshold value. The 

binarisation technique is applied to     values under the threshold are set to ones. The 

resultant binary image is denoted as   . 

 

2.3 Circle model and dynamic programming 

The round shape information of artery is important. It is used to avoid possible errors caused 

by local noises. These errors include the heterogeneous gradient obtained in the artery lumen 

and at the boundary. To alleviate this problem we apply Hough transform [14] to detect round 

objects in   . The Hough transform is a feature extraction technique used in image analysis, 

computer vision, and digital image processing. There are three variables to be determined, i.e., 

the circle center position (x and y coordinates) and the radius. Although the radius of artery is 

unknown in advance, its range of variance can be estimated. Therefore, we have to calculate 

its Hough transform by varying the radius from r1 to rn  . After transformations each radius 

obtains an accumulator matrix. We search the maximum value in each accumulator matrix 

and find out the one which has the maximum value among all accumulator matrices. The 

corresponding radius and position is the artery‟s radius and center position, respectively.  
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Although the artery lumen is in general round, however, it is not the case from the pixel‟s 

view point. In addition, not all artery lumen is pure round during the heart beat cycle. Some of 

them are elliptic. A fine tuning is then necessary to obtain a sub-pixel accuracy. For this 

reason, we propose a method to identify the artery boundary based on a circle model. 

Dynamic programming is a method of solving complex problems by breaking them down into 

simpler steps used in mathematics and computer science [15]. It is applicable in image 

processing to solve optimal problems such as finding a minimum (or maximum) with some 

given constraints[16, 17]. However, the limitation of using this technique in images is that it 

cannot solve the closed form contour. One solution is to transform the image from Cartesian 

coordinate to polar coordinate [18] and then apply dynamic programming on the polar 

coordinate. Note that this procedure applies only on a region of interest (ROI). However, two 

preconditions have to be satisfied: 1) the rough center position is known; 2) the contour has a 

star-like shape. Our problem meets these two preconditions.  

The dynamic programming is issued in details as follows. In Section 2.2.1 we have obtained 

the directional gradient    . Let M and N denote the number of rows and columns of    , 

respectively. Normalization is applied on    so that values range from    to 1, i.e.    

    . Since the center of    is the artery center, we transform    to polar representation 

and denote it as   . The x-axis of    represents angle        and the y-axis represents 

the distance to the center point in    . Notably,      represents the start point copied to the 

end of the matrix    to convince the continuity between the start and end point. Dynamic 

programming is then searching a curve from left to right in    which represents the artery 

boundary. Some features are taken into considerations. 

1) Curve continuity: A variable for continuity is considered. Let    denote the maximal 

range that nodes in column     are allowed to jump onto the next column x in either 

up or down directions. Therefore, each node has maximum        possible link 

paths to its previous column. If    is set larger, the curve‟s roughness and the 

computation time are both increased. The smoothness of the curve is quantified by 
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          which is embedded into the cost function. 

2) Circle model: The circle model having a known radius is embedded into the structure to 

guide the dynamic programming. This is based on the fact that the artery boundary is 

near round and the radius is estimated by Hough transform in prior. A Gaussian model is 

used to generate the strength how strong the dynamic programming is guided by the 

circle model. Let r denote the known circle radius, the strength is formulated as 

 
 

    
      

      

    , where   is a variable controlling the strength of guide. If   is 

getting smaller, the Gaussian has a thin but sharp shape and the circle model has a larger 

effect on the result, i.e. it is a more circle-like boundary. If   is getting larger, the 

Gaussian term vanishes and it works like a normal dynamic programming without the 

circle model. Since y and r are both integers, a look-up table can be set to reduce the 

computation time.  

3) Directional gradient: The directional gradients are very important information to detect 

the artery boundary accurately. Gradients having negative values denote the carotid 

artery boundary, while positive gradients denote other boundary which we treat them as 

noises. Thus, the boundary detection problem is then transformed to an optimization 

problem which searches an optimal contour: 

  
   

   
    

               
                 subject to some constraints, 

where    is the point on the i-th column in the matrix   , and    and      are 

neighborhood. This optimization function can be reformulated to be suitable for 

implementing dynamic programming with respect to a cost function formulated as 

follows. 

          
          

            

             
 

    
      

      

      (5) 

subject to      ,      ;  
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where   is a weighting parameter. The        is a two-dimensional cost map. The 

global optimization problem is the same to its sub-problem         ,         , and 

vice versa. We set                to be a boundary condition. If     , the optimal 

index j
*
 can be determined by the following equation: 

                           . (6) 

Therefore, the index can be stored in the coordinate matrix            . In this 

construction, small cost values indicate higher likely boundary information. The position 

with the minimum cost value in the cost map        is searched. With a backward 

search from N to 1 in X, the complete coordinates (         ) of the artery boundary 

can be determined, which is the optimal solution to this problem. Notably, the processes 

addressed in Section 2.3 are applied only on the extracted ROI (              ) to 

reduce the computation time tremendously. Results obtained by dynamic programming 

are integers. A moving average technique [19] is applied to make the boundary smoother. 

In order to reduce the computation time, we simply average the neighbouring 4 points 

and the center point. The resultant polar coordinates are then transformed back to 

Cartesian coordinates. 

 

2.4 System reliability 

 

The proposed system has been studied for the reliability against different noise levels and 

different contrasts.  

In order to study the effect on different contrasts, we test one image sequence with different 

contrasts. Let          be the contrast resolution of the raw image. The contrast is degraded 

by a ratio ranging from 0.9 to 0.5, in a step of -0.1, and we name them to be 90% contrast to 

50% contrast, respectively. Therefore, the contrast resolution of the 50% contrast will be 

                  and vice versa, where int( ) converts a number „x‟ to be an integer closest 

to „x‟. All raw images are converted to degraded images based on a given ratio. Thereafter, 
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the proposed system is applied on these contrast degraded images and the carotid artery cross-

sectional lumen area of each image is calculated for the following comparison. 

The comparison is performed by calculating their relative signed errors as follows: 

                                              (7) 

where               and            are areas calculated by the automated and the manual 

drawing on image number i, respectively.  

 

To study the system reliability against noise levels, we add artificial white noises (randomly 

generated) with a given SNR (signal-to-noise ratio) ranging from 20 dB to 16 dB with a step 

of -1. The SNR calculation is given as follows: 

    
 

   
         

      

        
 
   

 
    (8) 

where     denotes the image dimension,        and        are the intensities of image 

and noise at image coordinate (x,y), respectively. The MR image at (x,y) has an intensity 

      ≥0 and the noise intensity might be negative. To calculate the SNR we define 

     
      

        
   if          or         . 

 

Results  
Figure 3 shows results of the first process: carotid artery position detection. The two stages 

Otsu‟s thresholding technique can lead to some noises which are removed by morphological 

opening operations as shown in Figure 3(b). Afterwards, the round shape and area size are 

used as features to distinguish carotid arteries from those vessel lumens. Their corresponding 

artery centers can be calculated which are used as reference points in calculating directional 

gradients. 
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The directional gradient is computed on a ROI (    and the normalized result (    is shown 

in Figure 4(a). The surrounding gray area having 0 values are not calculated. The dark area 

represents negative gradients we need whereas the white area denotes positive gradient which 

are noises. Since the positive gradients are very close to the negative gradients, if the gradient 

direction is not considered it is almost impossible to distinguish them. Figure 4(b) shows the 

binary result (    using a thresholding technique for Hough transform. The Hough transform 

can determine a radius which will guide the dynamic programming in detecting the artery 

lumen boundary. Figure 4(c) is the polar representation of    on the left-hand side (right 

carotid artery). The dynamic programming searches a curve from left to right which 

minimizes the given cost function defined in equation (5). 

 

The detected artery lumen center position is used to predict the center in the next image. 

Similarly, the detected artery lumen radius is used to set the size of ROI in the next image. 

Here we expend 1.5 times radius from the center to each side (left, right, up, and down) to 

define the size of ROI. For the reason of explanation, the ROIs shown in Figure 4 are larger 

than 1.5 times. 

In order to explore the accuracy of the proposed automated system, the accuracy control is 

necessary. For this purpose, an image sequence containing 50 images is used to compare the 

manual boundary tracing and the automated identification. The right carotid artery is chose to 

compare. The areas are calculated and shown in Figure 5. The averaged relative error is 

2.56% and its standard deviation is 2.10%. The averaged relative unsigned error is defined as 

follows: 

     
 

 
     

 
     (9) 

where    has been defined in equation (7), N=50. 

 

To investigate the system reliability with respect to different contrast resolutions, the images 

are degraded. Figure 6 shows the raw image and two degraded images with 70% and 50% 
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contrast. The proposed algorithm is repeated on the degraded images and the comparison 

results are shown in Figure 7. In Figure 7, different contrast resolutions do not show 

significant differences (signed error ranges from             to             , 

unsigned error ranges from             to            ) in calculating the carotid 

artery cross-sectional areas. The relative unsigned averaged errors are almost consistent in 

different contrast resolutions. The signed error shows that the automated method produces a 

larger area than the manual tracing does. However, this bias is very limited. Figure 8 shows 

the comparison plot of areas computation with respect to image number with different 

conditions. The line having triangle (up) is the manual drawing. Two automated results made 

from 100% and 50% contrast images are superimposed on the result of manual drawing to 

show the difference. From the plot there are only limited errors between them. The 

experiment of 50% contrast has the largest unsigned error (           ). 

 

 

Figure 9 shows the comparison (relative error) with respect to different noise levels. The image 

having less SNR has larger noise level. From the result we see a tendency of increasing relative 

error when the SNR is decreasing. The signed relative error ranges from             to 

             whereas the unsigned relative error ranges from             to 

           . There is no significant difference between different noise levels ranging from 

16 to 20 dB (SNR). 

 

 

To compare the error on each image number, the results made by the automated method 

applied on raw images and images having 16 dB SNR are superimposed on the manual 

drawing result. Each error is very limited and there is no abrupt large error among them (Figure 

10). 
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To summerize the system reliability we use the Bland-Altman plot as shown in Figure 11. The 

mean of the two measurements (manual drawing and automated method) are assigned as the 

abscissa (x-axis); the differences between the two measurements are assigned as the ordinate. 

From the result we see their differences are mostly under 4 mm
2
. 

 

The computer system has Intel®  Core™ 2CPU T5600, 1.83 GHz, with 2 GB RAM. The 

programs are based on the Matlab platform [20]. The computation time for 50 images 

processing is around 30 seconds. More results are downloadable under our website. 

 

 

 

 

Discussion  
In this study we use a circle model in Hough transform and the dynamic programming instead 

of the ellipse Hough transform because of the consideration on the computation time. Full 

ellipse detection is rarely performed because it is very slow. It requires a 5 dimensional 

parameter space - as opposed to 2 for straight line detection and 3 for circle detection. 

Although the gradient direction can be taken into consideration to reduce the computation 

time [21], it still needs much more time than that in our design. Moreover, the artery‟s shape 

can be changed if a plaque exists. Our design has the advantage to detect boundary which is 

not a circle or an oval. 

Since our algorithm uses area, shape, and intensity as features to identify the carotid artery 

position, the conditions (prerequisites) that the carotid artery is able to be identified are: 1) 

there are less or no plaques in the artery; 2) the blood flow maintains in a level so that the 

intensity in artery lumen in MRI is distinguishable from neighbouring tissues. Our subjects 

are healthy runners, although some are old people, there are less plaques in the artery lumen. 

Therefore all carotid artery lumens can be modelled by a circle model. The blood flow in the 
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carotid artery is different from that in the femoral artery. It does maintain at a level so that the 

intensity in the lumen is distinguishable from the artery wall and other tissue nearby. 

Therefore, there is no problem to identify the carotid artery centers using our proposed 

algorithm. 

Regarding the chosen of parameters, there are three parameters in our scheme:            . 

Normally, the discontinuity is prevented by setting       We suggest the range of  to be 

(0,1]. If  becomes smaller, the output curve is more rough. On the contrary, the curve 

becomes smooth if  is set near to 1. The standard deviation  is a control by the circle model. 

The range we suggest is [0.4, 4]. If , then the output curve is nearly round. If  

then it is able to detect the fine structure such as plaques in the artery lumen. 

Based on the study on different contrast resolutions (from 50% to 100%) and different noise 

levels (SNR ranges from 16 dB to 20 dB), the proposed method has shown its robustness and 

reliability against contrast resolution and noise. 

Conclusions  
In conclusion, we have proposed a fast and robust scheme to detect the carotid artery 

boundary in MR image sequences fully automatically. This scheme is divided into two stages: 

(1) detect the center of the carotid artery (2) detect the boundary of the carotid artery. We 

combine the circle model with the dynamic programming so that the resultant boundary is 

circle-like shape. The accuracy control shows that the averaged relative error of the 

automated results compared to the manual results is 2.56% and the standard deviation is 

2.10%. Via this system we are able to analyze tremendous amount of images and all results 

are repeatable. 
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Figure legend 

 

Figure 1: One of the MR images contains the carotid arteries we interest. The carotid 

arteries are the ones near internal jugular veins which are round having a lighter 

intensity. 

 

Figure 2: The geometric definition for calculating the directional gradient. 

 

Figure 3: Results of carotid artery position detection. (a) The raw image. (b) The center 

position of each detected vessel lumens are marked by „+‟. The carotid artery (denoted as 

arrows) is recognized by its shape and size features. 

 

Figure 4: Results of the carotid artery boundary detection. A. Results of directional gradients. 

B. Results of using Otsu‟s thresholding technique. C. The ROI (    is transformed to the 

polar representation (    for dynamic programming. D. Results of circle model guided 

dynamic programming.                      

 

Figure 5: The comparison of automated and manual results of the right carotid artery. (1 pixel 

size= 0.28 mm
2
) 

 

Figure 6: A. The raw image. B. A 70% contrast degraded image. C. A 50% contrast degraded 

image. 

 

Figure 7: Comparison (signed and unsigned relative error) between the manual drawing and 

the automated method on different contrast degraded images (from 50% to 100% contrast). 
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Figure 8: The areas computations of each image are shown. The line having circles is made 

from 100% contrast images, i.e., without the contrast degradation. The line having triangle 

(down) is made from 50% contrast images. The line having triangle (up) is made by manual 

drawing. 

 

Figure 9: The comparison (signed and unsigned relative error) between manual drawing and 

automated method applied on different noise degraded images. The noise level is represented 

by SNR (dB). The 20 dB means the signal intensity is 10 times the noise intensity. The right 

one without SNR is the raw image (without artificial noises). 

 

Figure 10: The areas computations of each image are shown. The line having circles is made 

from raw images, i.e., without the artificial noises. The line having triangle (down) is made 

from SNR=16 dB noise-degraded images. The line having triangle (up) is made by manual 

drawing. 

 

Figure 11: The Bland-Altman plot is used to compare the manual tracing and the automatic 

identification results. The middle line is the average. The upper and lower lines denote ±2  

standard deviations. 

 


