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Many family-based association tests rely on the random transmission of alleles from parents 

to offspring. Among them, the transmission/disequilibrium test (TDT) may be considered to 

be the most popular statistical test. The TDT statistic was proposed to evaluate nonrandom 

transmission of alleles from parents to the diseased children. However, in family studies, 

parental genotypes are not always available. Quite often, the offspring genotype affects the 

severity of offspring phenotype or/and the age at onset and in turn affects the parental 

missingness. In such case, the nonrandom transmission of alleles may also occur even when 

the gene and disease are not associated. As a consequence, the usual TDT or its variations 

would produce excessive false positive conclusions in association studies. In this note, we 

propose a TDT-type association test which is not only simple in computation but also robust 

to the joint effect of population stratification and informative parental missingness. The test 

statistic does not rely on any model and also allows for having different mechanisms of 

parental missingness across subpopulations. We use a simulation study to compare the 

performance of new test and the TDT and point out the advantage of the new method. 

 

Keywords: Association test; Case-parents study; Informative missigness; Robustness; 

Transmission /disequilibrium test  
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1. Introduction 

Testing association between genetic markers and disease usually consists of a comparison of 

genotypes from a sample of diseased individuals with those from a certain sample of 

nondiseased individuals. The usual case-parents study suggests using genotype data of the 

diseased children and their parents for making inference about gene-disease association. Well 

known tests based on parental controls include the transmission/disequilibrium test (TDT) 

proposed by Spielman et al. [1], and the conditional-on-parental-genotypes (CPG) tests 

proposed by Schaid and Sommer [2] (see also [3]-[7]) for related approaches. The TDT and 

the CPG tests are identical under additive genetic model. However, the CPG approach is 

generally more powerful than the TDT approach under other genetic models. 

In case-parents study, the cases and controls are matched in genetic ancestry. Thus, the 

analysis based on the TDT or CPG tests is free of bias arising from population stratification. 

This is an important property for valid association tests. However, these tests may still 

produce biased results if informative parental missingness exists in the study. The effect of 

missing parental genotype and its correction were studied by Clayton [8], Sun et al. [9], 

Weinberg [10], Cervino and Hill [11], Allen et al. [12], and Chen [13] (see also Robinwitz and 

Laird [14]; Robinwitz [15] for tests based on general families.) However, many of these 

methods often require assumptions such as missing-at-random (MAR, conditional on 

offspring and available parent, the genotype frequencies among missing parents and among 
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observed parents are the same) or missing-independent-of-offspring-genotype (MIOG, 

conditional on parental genotypes, the parental missingness is independent of offspring’s 

genotype). Since there is no genotype information available on the missing parents, thus these 

important assumptions are usually difficult to justify in real applications. Another assumption 

also often required in some association tests is that the response probabilities of parents can be 

modeled by the same parametric function across all families in the study sample. For example, 

Allen et al. [12] required that the response-odds parameters satisfy relatively simple models 

across all studied families. This assumption may not be credible either, if the overall 

population consists of several subpopulations and response rates have different forms across 

subpopulations.  

In this note, we first point out that when there is no disease-gene association, and both 

parents are observed, the probability of offspring’s genotype conditional on the parental 

genotypes (general CPG probabilities) are no longer the same as the usual Mendelian 

proportions, if the parental missingness also depends on the offspring genotype. In this case, 

many tests such as TDT or its variations, depending on using the properties of 

Schaid-Sommer’s CPG probability, would produce biased association results. This particular 

case may occur when, for example, the offspring genotype affects the severity of offspring 

phenotype or/and the age at onset and in turn affects the parental missingness.  

According to the previous discussions, we find that in the literature, there exists no 
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association test which is simultaneously robust to the effects of population stratification and 

general informative parental missingness. In this note, we intend to propose a truly robust 

association test based on case-parents data. The proposed test is novel, simple, and derived 

from using the conditional probability of the offspring’s genotype given parental genotypes 

when they are both observed. Thus, it is robust to the effect of population stratification. We 

emphasize that the new test does not require any assumption or model for parental 

missingness. That is, we let the probability of parental missingness simultaneously depend not 

only on the parental genotypes but also the offspring’s genotype, and be model free. In the 

case of population stratification, we also allow this probability depend on the ethnicity. Thus 

the mechanism of the missingness considered in this note is the most general form of 

informative parental missingness (GIPM), under which many important association tests may 

become invalid. In this note, we also present simulation results to compare the performance of 

the usual TDT test and the new test using only the complete case-parents data. Under some 

scenarios where the MIOG condition fails, we show the TDT test tends to have excessive 

false positive association results. This indicates that many approaches based on the 

Schaid-Sommer’s CPG probability when both parental genotypes are observed [12, 13] may 

be invalid too. In contrast, the new test has satisfactory performance in the sense that its type I 

error can be approximately controlled at the desired significance level and its power is in 

general sufficiently large so that at least moderate genetic effect can be detected using 
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reasonable number of family data. In the simulation study, we consider scenarios where 

conditions such as MAR, MIOG or GIPM are satisfied. We also consider the situation where 

the general population consists of two subpopulations with different allele frequencies at the 

candidate marker and different mechanisms for the parental missingness. Under all conditions 

studied in the simulation, we find out that the new test is insensitive to the joint effect of 

population stratification and GIPM. 

2. Method 

We assume that the candidate gene has two alleles, coded as a (normal allele) and A 

(candidate disease allele), or can be divided into two groups of alleles. The genotype of the 

diseased offspring is denoted by 0G . The set of parental genotypes is denoted by ( ,m fG G ), 

where mG  is the maternal genotype and fG  is the paternal genotype. 0G  represents the 

number of copies of the A allele in the offspring genotype (taking the values 0, 1, and 2) with 

the same convention for mG
 
and fG . The missing pattern is denoted as ( ,m fR R ), where mR  

( fR ) equals one if the maternal (paternal) genotype is available in the study and zero, 

otherwise. 

In the following discussion, we focus on using complete family trios, where both parental 

and maternal genotypes are observed. The probability of an offspring genotype 0G
 

conditional on his/her parental genotypes ( , )m fG G , parental missingness pattern ( ,m fR R ) = (1, 

1), and offspring’s phenotype 0D  is given by 



7 
 

              0 0 0

2

0

0 ( , )

( , ) [ | , ]
,

( , ) [ | , ]
m f

G m f G m f

g m f g m f

g G G

G G P G G G

G G P G g G G

 

 


 
                  (2.1) 

where
0 0 0 0 0[ | ] [ | 0]G P D G P D G    are the genotype relative risk parameters, and 

0 0 0 0 0( , ) [ 1, 1| , , , ] [ 1, 1| 0, , , ]G m f m f m f m f m fG G P R R G G G D P R R G G G D      
 
is a ratio 

of missingness probabilities under offspring genotype 0G versus that under baseline. Note 

that the general CPG probability (2.1) is derived under the usual assumption that the 

offspring’s phenotype and parental genotypes are independent conditional on the offspring’s 

genotype. If the overall population consists of several subpopulations, we require this 

assumption to be held within each subpopulation too. We point out that the general CPG 

probability can be reduced to the Schaid-Sommer’s CPG probability [2], if 
0
( , )G m fG G

 
is a 

constant with respect to 0G . The latter condition holds when, for example, the MAR or 

MIOG condition holds. On the other hand, if 
0
( , )G m fG G

 
is not a constant, then any test 

based on the Schaid-Sommer’s CPG probability may be invalid. 

The general CPG probability depends on the relative risk parameters, ratios of missingness 

probabilities, and Mendelian proportions. If we define ( , )g m fG G
 

0 ( , ) ( , ) 1 ( , )m f g m f g m fG G G G G G       and bassume that with respect to ,g  

( , )g m fG G are small and approximately equal (denoted as ( , )m fG G ) for each fixed 

( , )m fG G , then the general CPG probabilities can be greatly simplified after applying Taylor’s 

expansion. Note that this assumption essentially requires that the probability of parental 

missingness do not deviate too much under different offspring’s genotypes. Simulation results 
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presented in this paper confirm that even the differences are moderate 

( ( , ) ( , ) 0.1g m f m fG G G G   ), the test proposed in this paper still has satisfactory 

performance. In contrast, the usual TDT has type I errors seriously inflated under this scenario. 

In our formulation of the testing procedure we consider approximations of the general CPG 

probabilities by ignoring all terms involving ( , ) ,a

g m fG G 2a   in their Taylor’s expansions. 

Under the null hypothesis of no gene-disease association, the first-order approximations of the 

general CPG probabilities are given in Table I. 

In view of the approximation results of Table I, we consider association analysis using only 

the informative family data. Let 
2 3
ˆ ( )P i

denote the sample proportion of an offspring carrying 

i  risk alleles under parental mating types 2 or 3. 7 8
ˆ ( )P i  and 

6
ˆ ( )P i  represent similar sample 

proportions under parental mating types 7 or 8 and mating type 6, respectively. The results in 

Table I imply that  

2 3 2 3 6 6 7 8 7 82 3 6 7 8(2) (1) 2 (2) (1) (0) (1) 0,S N P P N P P N P P    
           
     

    (2.2)  

under null association. The variance estimate of S is given by  

2 3 2 3 6 6 6 6 6 62 3 6

7 8 7 8 7 8

= 4 (1)(1 (1)) 4 (2)(1 (2)) (1)(1 (1)) 4 (2) (1)

     4 (1)(1 (1))

Var P P N P P P P P P N

P P N

  

  

        
   

  
 

 

where ( )k k jN N  is the number of complete families with mating type k  (mating types k or 

).j Thus, a simple TDT-type association test can be defined as 
2 / .T S Var  The P-value of 
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the test is given by 2

1Pr[ ],T  where 2

1 is a chi-square random variable with one degree of 

freedom. We point out that the test is still valid under population stratification, where the 

probability function of parental missingness differs in subpopulation. 

3. Simulation Results 

We have conducted a simulation study to investigate the performance of the new association 

test T and compared the results with those for the traditional TDT based on the complete trios. 

According to Chen [13], the methods of Allen et al. [12] and Chen [13] had the best overall 

performance under various missingness models satisfying MIOG condition. However, under 

complete trios, the methods of Allen et al. and Chen are the same as or variations of the 

traditional TDT, thus we excluded their methods in our simulation study. To study the 

performance of type I error, we assumed the relative risks satisfied 1 2 1    in the 

simulations. To study the power performance, we considered three genetic models: dominant 

model with 1 2 5   , recessive model with 1 21, 5    and additive model 

with 1 25, 9   . 

In the simulation study, we considered three missingness models satisfying MAR, MIOG, 

or GIPM condition, respectively. We assumed that the joint missingness probability was the 

product of maternal and paternal missingness probabilities: 

0 0

0 0 0 0

( 1, 1| , , , 1)

( 1| , , 1) ( 1| , , 1).

m f m m f f

m m m f f f

P R R G g G g G g D

P R G g G g D P R G g G g D

     

         
 

We also assumed that each marginal missingness probability satisfied a logistic regression 
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model: 

0 0

0

1
( 1| , , 1)

1 exp( )
m m m

m m m m

P R G g G g D
g g  

    
   

 

and 

0 0

0

1
( 1| , , 1) .

1 exp( )
f f f

f f f f

P R G g G g D
g g  

    
   

 

Under MAR condition, we assumed 1.7346m  , 1.0986f  , and the remaining parameter 

values were zeroes. This is equivalent to assuming maternal response rate equal to a constant 

0.85 and paternal response rate equal to 0.75. Under MIOG condition, we assumed 

m  1.3863, 0.5390m   , 0.8473f  , 0.4418f   , and 0.m f    This is 

equivalent to having maternal response rate ranging from 0.5765 to 0.8000 and paternal 

response rate ranging from 0.4909 to 0.7000. Two models satisfying GIPM condition were 

assumed in the study. GIPM (1) model assumed 1.7346,m  0.2183,m    0.3445,m    

1.3863,f  0.1206f   , and 0.2559.f    This is equivalent to assuming maternal 

response rate ranging from 0.6523 to 0.8500 and paternal response rate ranging from 0.6532 

to 0.8000. Note that this is a weak GIPM model. GIPM (2) model assumed 

0.8473,m  0.2513,m  0.3466,m   0.4055,f  0.0827,f   and 0.1614.f   and 

0.1614.f   In this case, the range of maternal response rate is (0.5400, 0.7000) and that for 

the paternal response rate is (0.4800, 0.6000). This is a moderate GIPM model. 

We also studied the effect of population stratification. We assumed that the studied 

population consisted of two subpopulations with high risk allele frequencies 1 0.4,p   and 
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2 0.2,p  respectively, and each subpopulation satisfied Hardy-Weinberg equilibrium 

condition. We assumed the total complete trios for study is 300 and the proportion p of the 

family trios is from subpopulation 1. If p = 1( p = 0) then the studied population was 

subpopulation 1 (2) with allele frequency 0.4 (0.2). The simulation results reported in the 

tables are based on 10,000 replications. Each size (or power) is the proportion of times that 

10,000 simulated p-values 0.05 . 

In Tables II and III, we report the simulated sizes and powers of the association tests T and 

TDT under different combinations of missingness model and population structure. The results 

in Table II were based on one population and therefore there was no effect of population 

stratification. Under this case, the range of the size of the T test was (0.0506, 0.0565) and 

that of the TDT was (0.0519, 0.2685), when the risk allele frequency was 0.4. On the other 

hand, when the risk allele frequency became 0.2, the corresponding ranges changed to 

(0.0534, 0.0762) and (0.0491, 0.1807), respectively. These results showed that the size of the 

new test was basically consistent with the nominal value of 5% under most simulation 

conditions. The exceptional case occurred when the allele frequency was small and GIPM 

level was moderate. In contrast, the size of the TDT tended to be inflated under GIPM models. 

The amount of increase in size also depends on the GIPM level. Under the same case, the 

powers of the T  test were in general greater than 0.9800. The exceptional cases occurred 

when the allele frequency was high and the genetic model was additive or allele frequency 
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was low and genetic model was recessive. However, we pointed out that the power of the new 

test was at least 0.70 under combinations of any genetic model and GIPM model. This 

indicates that the new test is rather efficient. The results in Table III were derived under two 

subpopulations with identical or different missingness models. Under these cases, the effects 

of population stratification were present. Therefore, from Table III one can study the joint 

effects of population stratification and GIPM when the new test T  or TDT were used. 

According to Table III, we first found out that the size of the new test ranged from 0.0530 to 

0.0586 and that of TDT ranged from 0.0528 to 0.2075 under all study conditions. This means 

that using the new test, we were able to control its type I error at the predetermined 

significance level, while the TDT cannot. It is also of interest to point out that the new test 

seems to have better power performance when there is population stratification, comparing 

with that under no population stratification. Table III showed that the power of the new test 

were in general greater than 0.900. The exceptional case happened under MAR and additive 

genetic model where the smallest power was 0.7782. These results concluded that the new test 

was efficient in detecting true associations under population stratification and any missingness   

4. Real data analysis 

We next considered a real study to investigate the performance of the TDT and new 

association test under null association. The study was to examine transforming growth factor 

beta-1 SNPs in relation to asthma risk and degree of atopy among 546 case-parent triads ( Li 
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et al.[16] ), consisting of asthmatics aged 4-17 years and their parents in Mexico City. Five 

SNPs were considered in the study. Here, we focus only on SNP rs8179181. Both TDT and 

the new test showed that no statistically significant association exists between this SNP and 

asthma risk (P-value=0.457901, and 0.797963, respectively). We used GIPM model 

( 1.9924,m  0.2578,m   0.3180m   1.7346,f  0.3483,f   and 0.2685.f   ) as 

described above to randomly generate incomplete family triads. Figure 1 shows the p-value 

histograms for the TDT and the new test based on 10,000 replications. The original study 

has136 informative families (consisting of at least one heterozygous parent) . Under our 

missingness model, the averaged number of informative and complete families is 92. That is, 

about 1/3 of the informative families have missing parental genotypes. The figure shows that 

the TDT has excessive number of small p-values, indicating that the analysis based on the 

TDT has produced too many false positive results. In contrast, the new association test still 

maintains satisfactory performance under complicated missigness scenario. 

5. Discussion 

Several family-based tests of association or linkage of genetic marker and a diseases 

susceptible locus have proposed in the literature. These tests have gained popularity because 

of their insensitivity to population stratification. However, these tests may still be biased 

because of missing parental information, which would be typical for diseases of old age. 

Some of these tests accommodate missing parental information, but they also require 
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important assumptions such as MAR or MIOG. Unfortunately, these assumptions are difficult 

to justify based on the incomplete family data, particularly when the population under study is 

heterogeneous. Under our simulation settings, we found that if the parental missingness also 

depended on the genotypic outcome of the diseased offspring, then the largest empirical type I 

error rate of the usual TDT, based on using 300 complete trios, would be 0.2685, when in fact 

the predetermined significance level was only 0.0500. Since many recently proposed tests for 

correcting bias in case-parents studies, by Allen et al. [12], or Chen [13] for examples, were 

the same as or a variation of the TDT under complete trios, therefore, one needs to be cautious 

in using these tests. Guo et al. [16, 17] considered the missing parental haplotype problem 

based on the EM algorithm approach. However, they also assumed that MAR or MIOG 

conditions were satisfied. 

  We note that under general parental missingness, Rabinowitz [15] also developed an 

analysis based on a regression-adjusted score statistic to adjust for population heterogeneity. 

The proposed method provided a general framework for developing valid association tests 

with incomplete family data. However, the test depends on the choice of score vector and 

specification of the conditional probability of the missing genotype(s). Guidance on the 

choice of these important functions and the related sensitivity analysis so far remain unsolved. 

  In this note, we consider a simple TDT-type test based on complete families with at least 

one heterozygous parent. The test statistic depends on the proportions of the transmission of 
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the risk allele from parents to their diseased children. Thus it is simple in computation and 

robust to the effect of population stratification. The test allows the parental missingness 

depending on all genotype information of the family and the subpopulations involved in the 

study. It is also nonparametric in the sense that there is no model ever being used in the 

analysis. We remark that our analysis is based on using those family data where both parents 

respond to the study. In the development of the new test we have used a Taylor’s expansion 

for the joint response probability conditional on the offspring’s genotype, with the 

requirement that the conditional probability does not deviate too much with respect to the 

offspring’s genotype. Thus, theoretically speaking, if the offspring’s genotypic outcome 

would greatly influence the parental missingness, then the approximation used in the analysis 

may not be valid and the new test could be biased too. However, according to our simulation 

results, if the differences of these conditional response probabilities are less than 10%, the 

performance of our new test is still satisfactory. We consider such differences to be rather 

reasonable in practical applications, especially when the parental response rates are moderate 

or high.  

  Many family-based association tests also include incomplete trios, such as dyads or monads, 

in their analysis. However, the trade-off is that they also require strong assumptions such 

MAR or MIOG be satisfied. To keep full robustness and model-free in our association 

analysis, we find that the genotype data from incomplete families contribute no additional 
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information, if the approach for analyzing complete data was modified for incomplete data. 

This is because that the probability of the offspring’s genotype conditional on the (one) 

observed parent’s genotype still has two unknown parameters under the null hypothesis. So 

far, it is not clear if there exists such a method that includes incomplete trios in the analysis 

without making any assumption about the probability of missingness. It is of interest to 

investigate this issue in the future.  
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Table I. First-order approximations of the general CPG probabilities for the complete trio 

under the null hypothesis of no association 

Mating type 

Parental 

genotype 

m fG G  

Offspring genotype 

AA  Aa  aa  

1 AA AA  1 0 0 

2 AA Aa  1/2 1/2 0 

3 Aa AA  1/2 1/2 0 

4 AA aa  0 1 0 

5 aa AA  0 1 0 

6 Aa Aa  
[4 ( , )]

16

Aa Aa
 

[8 2 ( , )]

16

Aa Aa
 

[4 3 ( , )]

16

Aa Aa
 

7 Aa aa  0 1/2 1/2 

8 aa Aa  0 1/2 1/2 

9 aa aa  0 0 1 
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Table II. Sizes and Powers of the Association Tests Under One Population 

Missingness Model Hypothesis 

Sampling proportion 

p=1 

Sampling proportion 

p=0 

T TDT T TDT 

MAR Null  0.0538 0.0519 0.0535 0.0491 

Dominant (φ2 = 5) 0.9890 1.0000 0.9996 1.0000 

Recessive (φ2 = 5) 1.0000 1.0000 0.7489 0.9898 

Additive (φ2 = 9) 0.4525 1.0000 0.9982 1.0000 

MIOG Null  0.0506 0.0530 0.0534 0.0537 

Dominant (φ2 = 5) 0.9972 1.0000 0.9956 1.0000 

Recessive (φ2 = 5) 0.9997 1.0000 0.6033 0.9740 

Additive (φ2 = 9) 0.7013 1.0000 0.9942 1.0000 

GIPM(1) Null  0.0565 0.1661 0.0692 0.1126 

Dominant (φ2 = 5) 0.9984 1.0000 0.9978 1.0000 

Recessive (φ2 = 5) 0.9998 1.0000 0.7172 0.9339 

Additive (φ2 = 9) 0.7773 1.0000 0.9962 1.0000 

GIPM(2) Null  0.0559 0.2685 0.0762 0.1807 

Dominant (φ2 = 5) 0.9978 1.0000 0.9987 1.0000 

Recessive (φ2 = 5) 0.9998 1.0000 0.7857 0.9335 

Additive (φ2 = 9) 0.7206 1.0000 0.9975 1.0000 
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Table III. Sizes and Powers of the Association Tests Under Two Populations 

Missingness Model 

Hypothesis 

Sampling proportion 

p=2/3 

Sampling proportion 

p=1/3 

Subpopulation 1 Subpopulation 2 T TDT T TDT 

MAR MAR Null  0.0558 0.5450 0.0586 0.0528 

Dominant (φ2 = 5) 0.9973 1.0000 0.9997 1.0000 

Recessive (φ2 = 5) 0.9989 1.0000 0.9725 0.9999 

Additive (φ2 = 9) 0.7782 1.0000 0.9664 1.0000 

MIOG MIOG Null  0.0539 0.0545 0.0536 0.0528 

Dominant (φ2 = 5) 0.9994 1.0000 0.9999 1.0000 

Recessive (φ2 = 5) 0.9933 1.0000 0.9725 0.9999 

Additive (φ2 = 9) 0.9042 1.0000 0.9664 1.0000 

GIPM(1) GIPM(1) Null  0.0554 0.1601 0.0546 0.1373 

Dominant (φ2 = 5) 0.9994 1.0000 0.9999 1.0000 

Recessive (φ2 = 5) 0.9926 0.9995 0.9455 0.9949 

Additive (φ2 = 9) 0.9183 1.0000 0.9869 1.0000 

GIPM(2) GIPM(1) Null  0.0550 0.2075 0.0530 0.1560 

Dominant (φ2 = 5) 0.9990 1.0000 1.0000 1.0000 

Recessive (φ2 = 5) 0.9937 0.9998 0.9485 0.9944 

Additive (φ2 = 9) 0.9084 1.0000 0.9855 1.0000 

 

 

 


