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ABSTRACT 

The accurate identification of potential poly(A) sites has contributed to all many studies with regard to 

alternative polyadenylation. The aim of this study was the development of a machine-learning 

methodology that will help to discriminate real polyadenylation signals from randomly occurring signals 

in genomic sequence. Since previous studies have revealed that RNA secondary structure in certain 

genes has significant impact, we tried to computationally pinpoint common structural patterns around the 

poly(A) sites and to investigate how RNA secondary structure may influence polyadenylation. This 

involved an initial study on the impact of RNA structure and it was found using motif search tools that 

hairpin structures might be important. Thus, we propose that, in addition to the sequence pattern around 

poly(A) sites, there exists a widespread structural pattern that is also employed during human mRNA 

polyadenylation. In this study, we present a computational model that uses support vector machines 

(SVMs) to predict human poly(A) sites. The results show that this predictive model has a comparable 

performance to the current prediction tool. In addition, we identified common structural patterns 

associated with polyadenylation using several motif finding programs and this provides new insight into 

the role of RNA secondary structure plays in polyadenylation. 

1 INTRODUCTION 
The polyadenylation of mRNA is an essential cellular process by which most eukaryotic pre-mRNAs 

form their 3’ ends (histone mRNAs are the major exceptions). Previous studies have indicated that 

several cis elements of great importance participate in signaling most events of human polyadenylation. 

In general, there are two core elements essential for polyadenylation. One is the highly conserved 

AAUAAA hexamer (or a close variant), which is usually referred to as the polyadenylation signal (PAS) 

and is located 10-40 nucleotides (nt) upstream of the poly(A) site [1-4]. The other element is often 

referred to as a poorly conserved GU- or U-rich downstream element and is located 20-40 nt downstream 

of the poly(A) sites [4-5].  

Traditional bioinformatics collects a large amount of cDNA sequences and Expressed Sequenced Tags 

(ESTs) with the aim of aligning the cDNA/ESTs and the genome sequence [4, 6-7]. This has provided a 

systematic approach to the identification of poly(A) sites in genomes. A substantial amount of data 

generated computationally via cDNA/ESTs alignment is considered valid and, consequently, the dataset 

serves as an excellent resource for the studies related to polyadenylation machinery. The prediction of 

poly(A) sites takes advantage of cDNA/ESTs and because of their availability on a large scales, this 

approach has became practical. In early studies, the problem of poly(A) site prediction was transformed 

to the identification of a putative polyadenylation signal, which was thought to be primarily defined by 

the location of the poly(A) sites [5, 8]. Since PASes are highly conserved elements in the region upstream 

of a poly(A) sites, a correctly identified PAS indicates that a real poly(A) sites is not far away. In view of 

this, recognition of PAS is considered to be an alternative solution to solve the problem of poly(A) site 

prediction. Reliable prediction of poly(A) sites plays a enhancing role in the exploration of the complex 

mechanism of alternative polyadenylation, since it involves the identification of cis elements and 

characterization of the flanking regions. The information revealed via prediction can be of great value 

when studying the mechanisms involved in polyadenylation as well as how gene regulation occurs due to 

alternative polyadenylation. The objective of this study was the development of a machine-learning 
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methodology that will help to discriminate real polyadenylation signals from randomly occurring signals 

in genomic sequence. 

2 METHODS 

2.1 Datasets 

In this study, we used a large number of positive sequences and negative sequences to train and test our 

model. A positive sequence is the human genomic sequence surrounding a poly(A) site. All the positive 

sequences were obtained from the PolyA_DB 2 database [9], which contains poly(A) sites identified for 

genes from several vertebrate species using alignments between cDNA/ESTs and the genome sequences. 

We retrieved 33745 positive sequences from PolyA_DB 2 in total, which correspond to 14078 human 

genes. Each positive sequence is 250nt in length, spanning -125 to +125 nt relative to the poly(A) site. A 

sequence was defined as a single-site type if its associated poly(A) site was unique, otherwise it was be 

defined as a multiple-site type. Among all the positive sequences, 5275 sequences are denoted as 

single-site type and 28470 sequences were denoted as multiple-site type. In addition, we obtained 2327 

sequences from the Erpin training data [5] to perform an independent test. Each of these sequences is 

200nt in length with a candidate PAS in the middle. To test our model, we prepared several types of 

negative sequences, that is sequences without real poly(A) sites. Each of negative sequences is also 250nt 

in length. The negative sets we used 6000 sequence included randomized poly(A) regions (produced by 

randomizing the sequence surrounding a poly(A) site), 313454 human mRNA coding sequences (CDS), 

25700 human 5’-untranslated regions (5’-UTRs) and randomized genome sequences. The human 

RefSeq mRNA coding sequences were obtained from NCBI Build 36 [10] 

(ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/). The 5’-untranslated regions were downloaded from UTRdb 

release 22 [11] (http://www.ba.itb.cnr.it/UTR/). The chromosome 1 sequence of the human genome 

(hg17 version) was downloaded from the UCSC genome bioinformatics site (http://genome.ucsc.edu). 

We also generated randomized sequences of same first order Markov model as human CDS, 5’-UTRs 

and chromosome 1 sequence of human genome. 

2.2 Test procedure 

In this study, we tested our prediction model using all the positive sequences and all the categories of 

negative sequences, and compared its performance with polya_svm [12], the most current tool for poly(A) 

site prediction. It must be noted that our prediction model uses PAS location for prediction while 

polya_svm predicts the location of a potential poly(A) site directly. Therefore, the procedure used to 

evaluate our model and polya_svm should be clearly defined. Since our model could easily reject a 

sequence without a PAS, this would cause a large number of true negative or false negative predictions 

depending on the testing data. To avoid possible bias relative to the testing data, only sequences with 

PASes were taken into account. For positive and negative sequences, we filtered out those without PASes 

through the simple approach of putative PAS detection, which will be illustrated later. The testing data 

we used is shown in Table 3. A total of 27573 sequences (4908 single type, 22665 multiple-type) were 

detected to have putative PASes. For each negative set, 500 sequences were randomly selected (from 

14958 Poly(A) region sequences randomized by 1st order Markov chain, 45203  CDS, 16368 CDS 

randomized by 1st order Markov chain, 3156 5’-UTR sequences, 4645 5’-UTR sequences randomized 

by 1st order Markov chain, 10113 Genomic sequences randomized by 1st order Markov chainand) 

predicted by our model and polya_svm, which was repeated 10 times to calculate mean values. 

Predictive accuracy was then measured as follows: Sensitivity: SN=(TP/(TP+FN)), Specificity: 

SP=(TP/(TP+FP)) Correlation Coefficient: 
FN)FP)(TNFN)(TNFP)(TP(TP

FNFPTNTP
CC






 

where TP is true positive, TN is true negative, FN is false negative and FP is false positive. 

Due to the differences between the predictive models, for polya_svm, a prediction was considered to 

be TP if the reported site is within 24 nt of a real poly(A) site, and is otherwise FN. For our model, a 

sequence was predicted as positive if a PAS is detected within 40 nt upstream of a real poly(A) site 

according to a previous study [4]. To yield Specificity, the number of TP derived from all of the positive 

testing set was scaled so that the size of the positive testing set was equal to the size of negative testing 

set. 

2.3 Detection of candidate PASes 

To prepare for training and testing, only the sequences with candidate PASes were retained. We referred 

to previous studies and selected frequently occurring PASes [2, 4]. The candidate PASes consist of the 
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canonical AAUAAA hexamer, other 11 single-base variants of AAUAAA and one two-base variant of 

AAUAAA. A sequence having any of the 13 hexamers within 40 nt upstream of a poly(A) site was 

retained, otherwise the sequence was discarded. To this end, we implemented a filter to sequentially 

detect these 13 types of candidate PAS; they are shown in Table 1 in terms of their frequencies. For 

single-type poly(A) sites, ~70% of them have AAUAAA, 14% have AUUAAA, ~12% have one of the 

other 11 types of PAS hexamers and ~7% of them do not have any known PAS. The pattern of PAS usage 

is consistent with observation reported in previous studies [4-5] and the ranking is approximately the 

same. Thus, in this study, we focused on the detection of these 13 hexamers, which are found in 81.7% of 

all poly(A) sites. 

2.4 Extraction of k-mer features 

For the upstream and downstream regions of a candidate PAS, the features we used are occurrences of 

k-length contiguous subsequences, that is k-mers [13]. In this study, we used k-mer nucleotide patterns (k 

= 1,2,3) as our features, each of which has a frequency value. The same patterns, but appearing on 

different sides of a candidate PAS, were treated as two distinct features. For example, the frequency of 

GC, a 2-mer pattern, should be counted separately when upstream and when downstream. Thus, a total 

number of 168 (= (
 2 34 4 4 2  

)) possible words, that is features, were used in the first training 

stage. For a sequence with a candidate PAS, we retrieved 78 bases upstream as well as 78 bases 

downstream of the PAS for generation of the k-mer features. 

2.5 Characterization of the sub-regions around the PAS 

The nucleotide composition of positive sequences as well as negative sequences was examined in order 

to characterize the sub-regions upstream and downstream of the polyadenylation signals. The nucleotide 

frequencies were visualized at each position in order to highlight regions that can significantly 

discriminate real PASes from look-alikes. 

2.6 Detection of the core elements involved in the RNA secondary structure 

To discover the structural patterns around poly(A) sites, we used several well-known motif finding 

programs, including Sfold [14], RNAfold [15] and RNAMotif [16], to identify possible RNA secondary 

structures that may be involved in polyadenylation. Based on previous observations in the literature, we 

assumed that there exists simple structures that flank the poly(A) sites and are to a certain extent 

currently unknown. Thus, we focused on a simple hairpin structure that contains a PAS in its loop or has 

a U-rich stem; this was because stem-loop structures commonly define protein-RNA binding sites. 

2.7 Machine learning 

In this study, we used support vector machines (SVMs) as the machine learning method. As 

state-of-the-art classifiers, SVMs have been shown to have excellent empirical performance in prediction 

tasks. In addition, machine learning via SVMs is known to achieve good performance when identifying 

biological signals, such as translation initiation sites [17] and splice sites [18-20]. Thus, we used the 

SVM library LIBSVM for binary classification (http://www.csie.ntu.edu.tw/~cjlin/libsvm) in which the 

C-support vector classification (C-SVC) method and the radial basis kernel function (RBF) were applied 

at the default settings, i.e. cost = 1 and gamma = 1/15. 

2.8 Integration of the different types of features 

We designed a predictive model that was constructed using two SVMs. In this model, the first SVM 

employs k-mer features (k = 1,2,3) and outputs a probability value, which serves as an input value for the 

second SVM. The second SVM employs the contents of the characteristic sub-regions as features, which 

will be mentioned in Results. To train our model, we randomly selected 4000 positive sequences in 

addition to 6000 negative sequences from the six types of negative set (1000*6). 

3 RESULTS 

3.1 Characterization of the polyadenylation signals 

First, we examined the nucleotide composition of the genomic sequences of the single-type and 

multiple-type poly(A) sites. For each poly(A) site, we selected terminal sequences spanning -125 to +125 

nt surrounding the poly(A) site (Fig. 1(a) and Fig. 1(b)). Both types of poly(A) sites have similar 

patterns in the -35 to +35 region, in which the curve for each nucleotide acid reveals quick rises and falls. 

Upstream of the poly(A) site, an A-rich region is located from -25 to -15 and causes a drop in U-content 

(%U); this is closely followed by a U-rich region (-15 to -5). Downstream of the poly(A) site, there is a 

visible rise in %U with a peak at around +20; this spans a wider region and is closely mirrored by a 

http://en.wikipedia.org/wiki/Statistical_classification
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decline in %A. This U-rich region is generally regarded as the area containing CstF-binding sites. 

Meanwhile, a sudden rise in %A at -1 indicates that cleavage preferentially occurs next to an Adenine. 

When multiple-type poly(A) sites are compared with single-type poly(A) sites, the difference between 

the AU- and GC-ratio is larger at almost each position in the vicinity of the former type of site with the 

exception of the cleavage site and the region containing PAS hexamers, which are both shown to be 

highly conserved (Fig. 1(c)). 

As the next step, in order to discriminate positive sequences from the various categories of negative 

sequences, we analyzed nucleotide composition in each type. As Fig. 3(a) shows, the Adenine peak at 

around position 1 corresponds to the upstream A-rich region in Fig. 1(a) and Fig. 1(b). Similar peaks are 

found in negative sequences, especially those from CDS and hs_MC; however, these seem to reflect how 

often a randomly occurring PAS hexamer is found within an A-rich region. There is a decline in %A in 

the downstream region, which corresponds to the U-rich region (Fig. 3(b)), and this can help 

significantly to discriminate real sequences from negative sequences. In addition, we noticed a minor 

U-rich region was located between the PAS and the major U-rich region and that this results in a lower 

%C and %G relative to the whole sequence, as shown in Fig. 3(c) and Fig. 3(d). 

To summarize, we identified the characteristics of polyadenylation signals as made up of the following 

sub-regions, which are shown in Fig. 2: 

(1) A non-G-rich region, spanning -20 to +20 across the PAS. 

(2) A major U-rich region, spanning +20 to +45. 

(3) A minor U-rich region, spanning +3 to +12. 

(4) A non-C-rich region, spanning +6 to +15. 

(5) A non-A-rich region, spanning +17 to +55. 

Note that the positions described are relative to the PAS. 

The content of these five sub-regions, for example, the G-richness in the non-G-rich regions, was used 

by our SVM model for prediction. 

3.2 Prediction of poly(A) sites by the SVM 

We conducted an independent test using 2327 positive sequences and six types of negative sequences as 

previously described in Materials and Methods. For each negative set, 500 sequences were generated and 

predicted by our model and polya_svm version 1.1 using the default settings. The process was repeated 

10 times and mean values are presented. As shown in Table 2, our model is more sensitive than 

polya_svm, but only by a small amount. Comparable false positive (FP) levels were predicted by our 

model and by polya_svm for the randomized sequences. Using most types of randomized sequences, our 

model showed a high Specificity and Correlation Coefficient, the exception being randomized poly(A) 

region sequences. Interestingly, our model outperforms polya_svm when randomized CDS and 

randomized 5’-UTRs are used but shows an unexpected difference with real CDS and 5’-UTRs, which 

requires further discussion. 

3.3 RNA secondary structure 

Here, we firstly tested the hypothesis that it is RNA secondary structures that make a real 

polyadenylation signal what it is, one key factor being recognition by the CPSF. To this end, several 

computer programs were used to pinpoint possible secondary structures. We used RNAfold [15] with 

default parameters for the structure folding. Fig. 4 (a)shows the probability distribution at each site along 

the -40/+40 region of PAS. In contrast with CDS, the result suggests that the PAS hexamers in the poly(A) 

sites and 5’-UTRs have a high probability of being involved in a single-stranded structure, for instance, 

lying in a loop. This result was then verified using Sfold [14] with default setting to assess statistical 

folding. As shown in Fig. 4 (b), we found that the AAUAAA hexamers (the middle of the sequence) tend 

to be unpaired when sequences were compared across all datasets, including single-type poly(A) sites, 

CDS and 5’-UTRs. The same pattern was revealed when window sizes of 2 nt and 4 nt were used (data 

not shown). 

Based on the above, it seems likely that polyadenylation signals may stay unpaired during processing 

if no other factors interfere. However, the results for CDS and 5’-UTRs showed that this property did not 

distinguish positive sequences from negative ones. Consequently, we turned the spotlight on the 

downstream U-rich region and used RNAMotif [16], which is a common RNA secondary structure 

search program. In this test, we focused on simple hairpin structures in which the loop and the stem both 

have a flexible length of 6 to 10. G:U pairing was permitted in the stem in addition to the default 

Watson/Crick paring rule. Mispairs are allowed in the stem, with the base-paired limit set at 80% for the 

stem. Based on the positions in the literature, we counted the occurrence of PAS hexamers being entirely 
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in a loop or just being part of it. As Table 3 shows, for example, the value 50.16 represents 50.16% of 

AAUAAA hexamers in poly(A) sites being present in the loop and therefore the results suggests that 

there is no obvious preference for AAUAAA and AUUAAA to lie in the loop. Again, we found a high 

percentage was found in negative sequences, especially randomized poly(A) region sequences. 

For the downstream U-rich regions in the stem, we tried several Fig.s and eventually choose to set the 

threshold of U-richness at 60%. As shown in Table 4, about 60% of real polyadenylation signals have 

downstream U-rich regions that form the stems of hairpins and this is a relatively high correlation 

compared to other negative sequences. The value of Diff varies form ~10% to ~43%. We supposed such 

differences are mainly due to the U-content downstream of the different types of sequences. 

Finally, we explored the interaction between the two cases, that is, we identified those poly(A) sites 

with a PAS hexamer involved in the loop of one hairpin structure and a downstream U-rich region 

forming the stem of another loop. Such an arrangement is exemplified by the SV40 L polyadenylation 

signal [21]. As a result, out of 27573 sequences there were 8977 matches, which is approximately 

one-third of the sequences that have a PAS. When examined in detail, most of the matches are found to be 

multiple-type poly(A) sites ( 

Table 5). Given that the number of multiple-type sites is five times that of single-type sites, the 

association with this structure can not be inferred rigorously. For genes related to those matches, we 

observed a 46% coverage of 13756 human genes, which suggests that such a structural pattern might 

commonly exist around poly(A) sites. In addition, preference in usage could be found in multiple-type 

genes and this could be associated with the role RNA structure plays in the selection of multiple poly(A) 

sites. 

4 DISCUSSION 
In order to discriminate real polyadenylation signals from false ones, the characteristic of both the whole 

3’-UTR region and in its sub-regions motifs are curial. The traditional conserved AAUAAA PAS 

hexamer located 10-40 nucleotides (nt) upstream of the poly(A) site [1-4] is not the only factor. Other 

features such as structure and small sequence variants are also important. In our predictive model, we 

took into account not only the general AU-rich environment around the poly(A) site but also the 

characteristic sub-regions, which reveal significant positional dependency. In a manner consistent with 

previous findings, those sub-regions are supposed to harbor simple but important cis elements. A notable 

example is the specific AU-rich elements known as AREs, which represent the most common 

determinant of RNA stability in mammalian cells [22-23]. Our predictive model was found to be 

comparable to the most current prediction tool, polya_svm [12] and may have in many cases a higher 

sensitivity and specificity depending on the context of sequences in evalutaion. It is noteworthy that 

when testing with CDS and 5’UTRs, both our model and polya_svm predicted a surprising number of 

false positives, but this was not the case with randomized CDS and 5’-UTRs, where both showed 

excellent specificity. To explain this result, we presume that a large number of “real sites” might in fact 

exist that are capable of satisfying the feature definitions of our predictive model and of polya_svm. For 

CDS, this would be consistent with previous findings that there are poly(A) sites in internal exons [4, 7]. 

On the other hand, the false positives in the 5’-UTRs may actually act as some form of regulatory 

element. However, this hypothesis will require considerable experimental evaluation to assess its 

validity. 

The prediction result indicates that other unidentified features, such as RNA structures, may account 

for polyadenylation activity among the false negative sequences. In our analysis of RNA secondary 

structure, it seems that PAS hexamers tend to be in single-stranded form and unlikely to be affected by 

surrounding sequences. Notably, the U-rich region downstream of polyadenylation signals probable form 

the stem of a simple hairpin structure, which may be regarded as a feature that will be able to improve the 

prediction of poly(A) sites in the future. In the last test, it was found that 32% of poly(A) sites with PAS 

hexamers have their PAS and downstream U-rich region involved in two separate hairpins. Overall, we 

found that 46% of 13756 human genes would seem to have this structural pattern around their poly(A) 

sites; clearly this might be related to functionality. Based on these observations, we suggest that this 

simple hairpin structure is common across human genes and such this structural pattern could be one of a 

number of functional RNA structures associated with polyadenylation. Since this structural pattern has 

not been pinpointed as important in the past, an extensive study is needed to delineate the significance of 

hairpin structures during mRNA polyadenylation. We hope our present study has shed some light on the 

role that common RNA structures play in the complex mechanism of polyadenylation.  

In most cases, the PAS serves as the binding site for the CPSF as soon as it is transcribed, while the 

GU- or U–rich element is bound by the CstF. There may be multiple GU/U–rich downstream elements 
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associated with a single poly(A) site, suggesting configuration may control the efficiency of 

polyadenylation [21]. When bound, cooperation between the CstF and the CPSF produces a greatly 

enhanced binding to the pre-mRNA substrate, because a weak interaction of the PAS with a CPSF can be 

compensated for by a strong interaction of the GU/U –rich element with a CstF, and vice versa [24-25]. 

Several human disease have been reported to be caused by a malfunction of polyadenylation. The system 

involved include simian virus 40 (SV40), human immunodeficiency virus type 1 (HIV-1), human C2 

complement, collagen and cyclooxygenase-2 [26-32]. One examples is the FOXP3 gene, where a point 

mutation with a polyadenylation signal (AAUAAA to AAUGAA) can lead to IPEX syndrome [33]. 

Furthermore, some diseases may be ascribed to an abnormal level of mRNA 3’end formation during the 

process of polyadenylation, such as hereditary thrombophilia [34]. We developed a comprehensive 

methodology for human poly(A) site prediction in this study and we hope our study assist the current 

understanding of features related to the polyadenylation.  
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 Table 1. Top detected PAS hexamers 

 Frequency (%) Rank 

 Single Multiple Hs Hs Hs.B Hs.B* 

AAUAAA 67.00 41.52 45.51 1 1 1 
AUUAAA 14.14 14.57 14.51 2 2 2 

UAUAAA 2.26 4.21 3.91 3 3 3 

AGUAAA 2.60 3.49 3.35 4 4 4 
AAGAAA 0.74 3.01 2.65 5 10 5 

AAUAUA 1.00 2.13 1.96 7 5 6 

AAUACA 1.19 2.02 1.89 8 8 7 
CAUAAA 1.23 1.67 1.60 9 6 8 

GAUAAA 0.89 1.50 1.40 10 7 9 

AAUGAA 0.64 1.54 1.40 11 11 10 
UUUAAA 0.74 2.39 2.13 6 9 11 

ACUAAA 0.28 0.91 0.81 12 13 12 

AAUAGA 0.32 0.64 0.60 13 12 13 
coverage 93.04 79.61 81.71    

Human sequences located -40 to -1 nt upstream of poly(A) sites were used to detect hexamers that may function as polyadenylation 

signals. Single, single-type poly(A) sites; Multiple, multiple-type poly(A) site; Hs, all human poly(A) sites in our material; Hs.B, 

human result reported by Beaudoing et al. [2]; Hs.B*, human result reported by Tian et al. [4]. 

Table 2. Comparison of our predictive model with the polya_svm approach 

 Our model  Polya_svm  

 TP FN SN (%)  TP FN SN(%)  

Poly(A) sites 1306 1021 56.12  1278 1049 54.92  

Negative Set TN FP SP (%) CC TN FP SP (%) CC 

Poly(A) region first-oder MC 424 76 78.65  0.312  446 54 83.54  0.332  

CDS 417 83 77.13  0.302  432 68 80.12  0.330  

CDS first-oder MC 483 17 94.28  0.403  469 31 89.84  0.363  

5’-UTR 408 92 75.27  0.288  441 59 82.28  0.345  

5’-UTR first-oder MC 482 18 93.96  0.402  482 18 93.84  0.393  

Genome first-oder MC 473 27 91.21  0.388  481 19 93.52  0.397  

MC, Markov chain. Poly(A) region first-oder MC, randomized sequences surrounding poly(A) sites; CDS, coding region 

sequences; CDS first-oder MC, randomized CDS; 5’-UTR, 5’-UTR sequences; 5’-UTR first-oder MC, randomized 5’-UTRs. TP, 
true positives; FP, false positives; TN, true negatives; FP, false positives. SN, sensitivity; SP, specificity; CC, correlation 

coefficient. 

Table 3. Statistics of PAS involvement in hairpin loops for the different types of sequences 

Percentage (%) AAUAAA AUUAAA Other 11 types All types 

all_hs 50.16 53.99 50.08 50.82 

hsCDS 37.07 44.01 40.23 40.23 
hsCDS_MC 33.35 39.55 39.03 38.42 

hs_MC 45.28 49.57 48.82 48.52 

5UTR_nr 36.60 43.88 38.96 39.13 
5UTR_nr_MC 27.09 37.11 36.56 35.89 

chr1_MC 30.84 40.82 35.87 35.84 

all_hs, human poly(A) site; hsCDS, human CDS; hsCDS_MC, randomized CDS; hs_MC, randomized sequence of poly(A) region; 
5UTR_nr, 5’-UTRs; 5UTR_nr_MC, randomized 5’-UTRs; chr1_MC, randomized genomic sequence of chromosome 1. 

Table 4. Statistics of downstream U-rich region involvement in hairpin stems for the different types of sequences 

 #Reported #All Percentage (%) Diff (%) 

all_hs 16532  27573  59.96   

hsCDS 16027  45203  35.46  24.50  
hsCDS_MC 5477  16368  33.46  26.50  

hs_MC 7498  14958  50.13  9.83  

5UTR_nr 1096  3156  34.73  25.23  
5UTR_nr_MC 792  4645  17.05  42.91  

chr1_MC 1717  10113  16.98  42.98  

#Reported, the number of sequences reported by RNAMotif [16]; #All, the size of dataset; Diff, difference between all_hs and each 

negative sets. 
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Table 5. Statistics of poly(A) sites with PAS involvement in hairpin loops and the presence of downstream U-rich regions in hairpin 
stems 

 #Reported sites 
Percentage of all  

reported sites (%) 

#Related  

genes 
#Genes 

Percentage of  

all genes (%) 

All 8977  6390  13756  46.45  

Single-type 1378  15.35   1378  5272  26.14  
Multiple-type 7599  84.65   5012  8484  59.08  

Note that the percentage of all reported sites (column 3) derives from values in column 2, e.g., 15.35 = 1378 / 8977 * 100. 

Percentage of all genes (column 6) is derived from the same row, e.g., 45.39 = 6390 / 14078 * 100. 

 

 

Fig. 1. Nucleotide composition across the -125/+125 region 
of (a) single-type poly(A) sites (b) multiple-type poly(A) sites. 

(c)The difference between AU-ratio and GC-ratio. The 

difference at each position is calculated from (AU-ratio – 
GC-ratio). single_hs, single-type poly(A) sites; multiple_hs, 

multiple-type poly(A) sites. 

 

Fig. 2. Characteristic sub-regions. PAS, polyadenylation 
signal. 

 

 
Fig. 3. (a) Adenine (b) Uracil (c) Cytosine (d) Guanine 

frequencies at each position. In the vicinity of the poly(A) site 

(all_hs), CDS (hsCDS), randomized human CDS 
(hsCDS_MC), randomized poly(A) region (hs_MC), 

5’-UTRs (5UTR_nr), randomized 5’-UTRs (5UTR_nr_MC) 

and  randomized genomic sequences (chr1_MC). 

 

Fig. 4. Probability profiling of the loops by (a)RNAfold [15] 

and (b) Sfold [14]. single_hs, single-type poly(A) site (4908 

sequences); hsCDS, human CDS (5000 sequences); 5UTR_nr, 
5’-UTRs (3156 sequences). Note that in this test each 

sequence has the AAUAAA hexamer in the middle. 


